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Abstract

The brackish water environment in the semi-enclosed Baltic Sea causes changes in plankton
community structure in close relation to large-scale circulation patterns. In addition,
seasonal changes in nutrients levels and stoichiometric ratios, light and stratification
successively modified it. The analysis of comprehensive data sets on environmental
properties, micro and meso-plankton communities, their metabolic activity and productivity
basing on classical and enzymatic methods allows verifying the interplay between
community structure and food web transfer from Kattegat to the Gulf of Finland in the
ninety nineties. Aspects, like the ratio between new and regenerated production, the
percentage of primary productivity utilized by heterotrophs of different size, and the
stoichiometry in nutrient regeneration by mesozooplankton were investigated. Regions
where new (primary) production was detectable were restricted to areas with river
discharge after the spring bloom, but did never exceed some percentages of gross
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production. Nitrogen and phosphorous were excreted by mesozooplankton in N/P=6 in May
and N/P=10 in August in the same region because of the larger percentage of
parthenogenetically reproducing cladocerans in summer. Herbivorous plankton <100u
utilized one magnitude more matter of autotrophic origin, than larger plankton. Although
there was a marked variability along the zonal gradient, overall seasonality exceeded
regional salinity driven differences in food web transfer and in the community structure.

Introduction

Biochemical, especially enzymatic methods for measuring proxies of physiological rates were
developed in the nineteen seventies for example for respiration (Electron transport system
[ETS] activity by Packard, 1969; Owens and King, 1975), ammonia excretion (Glutamate
dehydrogenase [GDH] activity by Bidigare and King, 1981), and growth (e.g. Aspartat
transcarbamylase [ATC] activity by Bergeron and Buestel, 1979). The use of these methods
became more and more practicable (c.f. in Harris et al., 2000). In contrast to classical incubation
methods, analyses were less time consuming and dislocated from ship to land based
laboratories. The reduction of initial volumes for various determinations permitted diverse
measurements from the same source material. This allowed a multidimensional mapping of
various physiological rates (e.g. Packard, 1985) in parallel with the quasi-synoptic
hydrographical measurements.

Results of enzymatic methods need to be calibrated by classical approaches mostly basing on
incubations. Both types of methods have their special restrictions and discussions on their
accuracies are not fully completed. On the other hand, the parallel use has also potentials for
testing hypothesis of fundamental relevance, for example the meaning of allometric
relationships in planktology (Packard and Gémez, 2008).

Twenty years ago, we used the enthusiasm during the process of European reunification and
associated funding to exchange ideas, to share knowledge, and to deepen partly existing
research co-operations. It resulted in a larger data set mainly on plankton respiration, ammonia
excretion, and growth collected during cruises when the Leibniz Institute of Baltic Sea Research,
Warnemiinde, Germany and partly the Marine Science Faculty of the University of Las Palmas,
G.C., Spain, were involved. The activities started in 1989 in the central part of the Atlantic
Ocean (Hernandez-Ledn et al., 1999), intensively continued in the Baltic Sea (Postel et al., 1992,
1995) and covered regions in Indian Ocean, a Norwegian Fjord, and the Angola- Benguela-
Frontal Region (Fig.1). Currently, the material will be viewed, data experiments performed in
order to use it for complex solutions. The space-temporal resolution of data is highest in the
Baltic Sea. On the other hand, combined studies on interactions in community structure and
matter transfer in the Baltic Sea are rather rare (Sandberg, 2007). Therefore, we started in this



region with our analysis. Later we will focus our efforts also in the deep sea areas and on
methodological aspects.

Methods

In principle, plankton of the Baltic Sea was collected during ordinary monitoring cruises
between Belt Sea and Gulf of Finland in 1990 (Fig.2). Phytoplankton fraction was collected by
bottle samples while WP2 net tows of 55 and 200 um mesh sizes were used for zooplankton.
The metabolic balance in oxygen has been measured in micro-plankton (<100um) from standard
depths down to 20m using an automated version of the micro Winkler method (Aristegui and
Montero, 2005). Calculations of new production base on a conceptual model. It considers the
idea that the physiological uptake of nitrate by the phytoplankton is controlled by the nitrate
reductase reaction which was measured. Zooplankton samples were sieved into size classes,
splitted for biomass determinations, species analyses and measuring metabolism by enzymatic
methods and by classical incubation methods on selected stations (Postel et al., 1995;
Hernandez-Ledn and Torres, 1997; Herndndez-Ledn et al., 1995). Phytoplankton data were used
from IOW data base. Methods on sampling and analysis are described in Wasmund et al. (2008).

Searching for reasonable geographical differences in phytoplankton and zooplankton
community structures in the upper layer, we conducted similarity and cluster analyses applying
Bray Curtis similarity analysis, square root transformation and complete linkage as the cluster
mode by PRIMER software (cf., Clarke and Warwick, 1994).

Results and Discussion

The actual salinity pattern in the one meter level (Figure 3) seems to be the result of the large-
scale counter-clockwise circulation in the Baltic proper. Plankton communities followed this
structure. Four clusters were found at the 50% similarity level using zooplankton abundance and
species composition in the upper layer (Figure 4a). They show an analogous distribution when
using the 30% similarity level (Figure 4b). The result recurred for phytoplankton. After the same
analysis, the stations grouped in five different categories at the 50% level (Figure 5a) and
showed a sequence of stations like zooplankton when using the 30% similarity level (Figure 5b).

In this stage of the analysis, we haven’t looked for the detailed influence of different community
structures on matter transfer.

The investigations were done after the phytoplankton spring bloom. Therefore, new primary
productivity calculated from nitrate reductase showed significant higher values in areas of
external nutrient supplies only like in the Odra river plume and in the Gulf of Finland (Figure 6).
In general, new production was clearly smaller in comparison to gross production (see units).



Consequently, the percentage of new production did not exceed 5% of gross production, i.e.
regenerated production dominated at this stage of seasonal development already.

Converting respiration to carbon and related to primary productivity as described in Postel et al.
(1995) , up to 80% of primary productivity was utilized by plankton <100um, and about 6% by
plankton > 100um (Figure 7). This percentage exceptionally increased up to 38% in summer
when zooplankton was more abundant.

Generally, in situ (Arrhenius corrected) respiration of plankton between 100 and 200um was in
turn with excretion except at some stations (Figure 8). This was not generally the case, which
might be of special interest. Figure 9 reflects the situation off Odra River in autumn. The
situation was characterized by a salinity front in about 10 nautical miles distance to the river
mouth (Fig.9a). Plant pigments decreased drastically on the sea side of the plume. It fitted with
the specific growth rate in terms of ATC activity units (substrate utilization), while the specific
respiration reached maximum values in the frontal area (stress?). In contrast to Figure 8,
excretion activity (GDH) did not spatially correlate with respiration. It increased downstream the
frontal area when respiration was low (Figure 9b).

The stoichiometry in nutrient regeneration by mesozooplankton was not investigated in detail
in our first attempt. Averages of N and P regenerated by zooplankton <200um showed
differences in May and in August according to Postel et al. (1995). The ratio was smaller in May
(N/P=6) than in August (N/P=10). It could be explained by different plankton composition and
potential differences in energy requirements for reproduction (Gismervik, 1997). In August, the
proportion of cladocerans was much higher than in May (Figure 10) which may cause larger P
requirements for energy rich ATP compounds due to their parthenogenetic reproduction mode.
By all means, this should become clearer when dealing with the annual time series (Table 1). For
the future, we also see potentials for answering the question: Do changes in communities
change the transfer of matter - to which extent - and vice versa?
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Table and Figures

Table 1: Review on zooplankton data collection (Project, when, where, parameter measured,
related aspects)



Figure 1: Locations of zooplankton studies on community structure, metabolism and growth by
enzymatic and classical methods by Leibniz Institute of Baltic Sea Research,
Warnemiinde, Germany, and partly by Marine Science Faculty of the University of Las
Palmas, G.C., Spain

Figure 2: Sampling locations in the Baltic Sea in May 1990
Figure 3: Salinity pattern in the one meter level during May 1990

Figure 4: (a) Similarity plot basing on abundance and species composition of zooplankton >
100um in the upper layer in May 1990 and (b) distribution of stations related on the
30% similarity level

Figure 5: (a) Individual dominance (relative abundance) within five phytoplankton clusters
during May 1990 in the upper 20 m and (b) distribution of station related on the 30%
similarity level

Figure 6: New versus regenerated production of plankton <100um in the upper 20m in May
1990: Gross production, new production calculated from nitrate reductase activity, and
the percentage of new production at gross production

Figure 7: Percentage of primary productivity utilized by plankton <100um and by plankton >
100um (PB Pomeranian Bay, AS Arkona Sea, BS Bornholm Sea, S&C GS Southern and
central Gotland Sea, NBP Northern Baltic proper, GoF Gulf of Finland, WGS Western
Gotland Sea, BS2 Bornholm Sea 2" survey, AS2 Arkona Sea 2" survey)

Figure 8: Comparison of the course of in situ specific ETS- and GDH activity of the fraction 100
to 200um between the western Baltic Sea (station 12) and the Gulf of Finland (station
305) and return to Arkona Sea (station 113) in May, 1990

Figure 9: Course of the in situ specific metabolic rates and growth off then Odra River mouth in
fall 1993: (a) salinity and plant pigments, (b) specific rates of ETS, GDH, and ATC

Figure 10: Comparison of average taxomomic composition of zooplankton >200um in May and
August in relation to the average N: P ratio in the Baltic Sea (according to Postel et al.,
1992)
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Figure 1: Locations of zooplankton studies on community structure, metabolism and growth by enzymatic and

classical methods by Leibniz Institute of Baltic Sea Research, Warnemiinde, Germany, and partly by Marine
Science Faculty of the University of Las Palmas, G.C., Spain
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Figure 2: Sampling locations in the Baltic Sea in May 1990




Figure 3: Salinity pattern in the one meter level during May 1990
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Figure 4: (a) Similarity plot basing on abundance and species composition of zooplankton > 100um
in the upper layer in May 1990
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Figure 4: (b) Distribution of stations related on the 30% similarity level
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Figure 6: New versus regenerated production of plankton <100um in the upper 20m in May 1990:

Gross production, new production calculated from nitrate reductase activity, and the percentage of new
production at gross production
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Figure 7: Percentage of primary productivity utilized by plankton <100um and by plankton > 100um
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Figure 8: Comparison of the course of in situ specific ETS- and GDH activity of the fraction 100 to 200um
between the western Baltic Sea (station 12) and the Gulf of Finland (station 305) and return to Arkona Sea
(station 113) in May, 1990
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Figure 10: Comparison of average taxomomic composition of zooplankton >200um in May and August in relation to
the average N: P ratio in the Baltic Sea (according to Postel et al., 1992)
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