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A B S T R A C T   

Tire wear particles (TWP) are a major source of microplastics in the aquatic environment and the ecological 
impacts of their leachates are of major environmental concern. Among marine biota, copepods are the most 
abundant animals in the ocean and a main link between primary producers and higher trophic levels in the 
marine food webs. In this study, we determined the acute lethal and sublethal effects of tire particle leachates on 
different life stages of the cosmopolitan planktonic copepod Acartia tonsa. Median lethal concentration (LC50, 48 
h) ranged from 0.4 to 0.6 g L− 1 depending on the life stages, being nauplii and copepodites more sensitive to tire 
particle leachates than adults. The median effective concentration (EC50, 48 h) for hatching was higher than 1 g 
L− 1, indicating a relatively low sensitivity of hatching to tire particle leachates. However, metamorphosis (from 
nauplius VI to copepodite I) was notably reduced by tire particle leachates with an EC50 (48 h) of 0.23 g L− 1 and 
the absence of metamorphosis at 1 g L− 1, suggesting a strong developmental delay or endocrine disruption. 
Leachates also caused a significant decrease (10–22%) in the body length of nauplii and copepodites after 
exposure to TWP leachates (0.25 and 0.5 g L− 1). We tested a battery of enzymatic biomarkers in A. tonsa adult 
stages, but a sublethal concentration of 50 mg L− 1 of tire particle leachates did not cause a statistically significant 
effect on the measured enzymatic activities. Our results show that tire particle leachates can negatively impact 
the development, metamorphosis, and survival of planktonic copepods. More field data on concentrations of 
TWPs and the fate and persistence of their leached additives is needed for a better assessment of the risk of tire 
particle pollution on marine food webs.   

1. Introduction 

Up to 12.7 million metric tons of plastics are estimated to enter the 
ocean yearly (Jambeck et al., 2015) and microplastics have been ubiq-
uitously found in all marine compartments (Cózar et al., 2014; Isobe et al., 
2021). Plastics contain a variety of additives intentionally added to the 
polymers to give them specific properties and improve their functionality 
and durability. Examples of these additives are flame-retardants, plasti-
cizers, antioxidants, dyes, antimicrobial coatings, and UV stabilizers. 
Plastic additives are commonly not chemically bound to the polymer 
matrix and, depending on their solubility, they leach into water when 
entering the aquatic environment. These additives as parent compounds 
(e.g., polybrominated flame-retardants, ortho-phthalates, bisphenol A, 
nonylphenol, biocides) or their transformation products (e.g., N-(1, 
3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone, known as 

6PPD-quinone) can be hazardous to marine organisms (e.g., Gunaalan 
et al., 2020; Lithner et al., 2012; Paluselli & Kim, 2020; & Tian et al., 
2021). Therefore, the effects of plastic additive leachates on marine 
ecosystems are of major environmental concern. 

Tire wear particles (TWPs) are now considered a major source of 
microplastics in the environment, contributing over 50% of total 
microplastic emissions in some European countries (Baensch-Bal-
truschat et al., 2020; Boucher & Friot, 2017; Kole et al., 2017; Ly & 
Sayegh, 2023; Rødland et al., 2022; Wagner et al., 2018). TWPs, typi-
cally smaller than 100 μm (Kreider et al., 2010), are formed through the 
mechanical abrasion of tires with road surfaces when driving. It has been 
estimated that approximately 6 million tons of TWP are globally emitted 
every year (Khan et al., 2019; Sheng et al., 2021). Large tire particles are 
transported by road runoff to the aquatic systems whereas small TWPs 
become airborne and enter the oceans by atmospheric deposition 
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(Evangeliou et al., 2020; Wagner et al., 2018). TWP particles contain a 
complex mixture of chemicals at high concentrations (Müller et al., 
2022). Once TWPs enter the aquatic systems, dozens of potentially toxic 
additives leach from the particles (Foscari et al., 2023; Müller et al., 
2022) and can cause ecological impacts after runoff events (Tian et al., 
2021). 

Copepods are the most abundant animals in the ocean (Humes, 
1994) and a main link between primary producers and higher trophic 
levels in the marine food webs (Mauchline, 1998; Yang et al., 2022). 
Copepods typically dominate the zooplankton biomass and contribute to 
the global biochemical processes in the ocean like nutrient recycling and 
carbon sequestration by the biological pump (Verity & Smetacek, 1996). 
The effects of tire wear particle pollution on this important zooplankton 
group can result in alterations to marine ecosystem productivity and 
functions. Planktonic copepods are dioic and reproduce sexually. The 
postembryonic development of copepods is generally characterized by 
six naupliar stages, namely nauplius I to nauplius VI (NI to NVI), and five 
copepodite stages, namely copepodite I to copepodite V (CI to CV) 
(Marchus & Wilcox, 2007). The metamorphosis occurs from NVI to CI. 
Copepod nauplii are the main prey of many fish larvae (Last, 1980) and 
their abundance determines the recruitment of commercially important 
fish species (Castonguay et al., 2008). 

Little is still known about the toxicity of TWP leachates on marine 
zooplankton. Li et al. (2023) showed that stormwater runoff from roads 
and TWP leachates were acutely lethal to freshwater zooplankton. 
Available information on the effects of TWP leachates on marine 
plankton is limited to a few species of phytoplankton (Capolupo et al., 
2000; Page et al., 2022; Turner & Rice, 2010) and copepods (Bournaka 
et al., 2023; Halle et al., 2021; Halsband et al., 2020; Yang et al., 2022) 
and sea urchin larvae (Rist et al., 2023). As far as we know, there are no 
any published studies on the effects of tire particle leachates on naupliar 
and copepodites stages despite the importance of these stages in 
copepod population recruitment and marine food webs. Toxicity end-
points can cover different biological levels. For instance, enzymatic 
biomarkers are useful tools to understand the response of organisms to 
pollution and toxicity mechanisms (Gonçalves et al., 2021). Exposure to 
pollution can activate detoxification mechanisms (Regoli & Giuliani, 
2014) and negatively affect biochemical processes causing alteration in 
the energetic metabolism and oxidative stress (Gonçalves et al., 2021; 
Villarroel et al., 2009). However, little is still known about the enzy-
matic response of marine planktonic copepods to plastic leachates and 
additives (Ensibi & Daly Yahia, 2017; Glippa et al., 2018). 

The general aim of this study was to investigate the acute effects of 
tire particle leachates on the life stages of planktonic copepods. We used 
Acartia tonsa as a model species, an abundant and cosmopolitan species 
of marine calanoid copepod. The specific hypotheses of this study were: 
1) Early life stages are more sensitive to TWP leachates due to the 
smaller size and higher surface-to-volume ratio, 2) tire particle leachates 
cause reduced hatching success, growth, and metamorphosis success as 
well as changes at the biomolecular level (enzymatic activities). These 
hypotheses were tested by addressing the following specific objectives: 
1) determination of the life stage-specific lethal toxicity of tire particle 
leachates; 2) assessment of the acute impact of tire particle leachates on 
the hatching, metamorphosis success, body length, and enzymatic ac-
tivities. To the best of our knowledge, this is the first study on the acute 
effects of tire particle leachates in copepod nauplii, key components of 
the marine food web as grazers and as the main prey of many species of 
fish larvae. Therefore, the results obtained here are relevant to evalu-
ating the potential impact of TWP pollution on the planktonic food web. 

2. Methodology 

2.1. Experimental organisms 

The calanoid copepod A. tonsa was obtained from the stock cultures 
at the EOMAR lab (ULPGC) established from specimens provided by 

DTU AQUA (strain DFH-ATI). A. tonsa is a species recommended by the 
International Organization of Standardization (ISO, 1999) for the 
assessment of acute toxicity of marine pollutants. The cultures of 
A. tonsa were kept in 30 L buckets filled with 0.1 μm filtered seawater 
(FSW), 35 ‰ salinity, with constant aeration, and at a temperature of 20 
◦C. A. tonsa cultures were fed the cryptophyte Rhodomonas salina ad 
libitum (>20000 cells mL− 1) 3 times weekly. The R. salina cultures were 
grown in B1 medium (Hansen, 1989) at 20 ◦C, a salinity of 35 ‰, an 
irradiance of ca. 80 μE m− 2 s− 1, and a 12:12 h day: night photoperiod. 
The R. salina cultures were diluted 3 times per week with B1 medium 
under a laminar flow hood to avoid contamination. 

To start a new cohort for the toxicity tests, we first separated adults 
of A. tonsa from the stock cultures using a 200 μm mesh sieve. The adults 
(sex ratio = 0.5) were placed in a 2 L glass beaker with FSW and food 
(R. salina) for 24 h. After 24 h, the adults were separated again with a 
200 μm mesh sieve and placed back into the stock cultures, and the 
<200 μm water fraction containing the eggs was placed in a jar. After 
that, the eggs were collected using a 40 μm sieve, concentrated, and 
rinsed with a high-pressure sprayer to break detritus and obtain cleaner 
egg samples. The eggs were placed into a beaker with 100 mL of FSW. 
Then, two aliquots (1–2 mL) were taken with an automatic pipette and 
placed in Petri dishes to count the eggs under the stereomicroscope. 
Finally, the collected eggs (from approx. 13000-150000 eggs depending 
on the experiment) were transferred to acid-washed glass containers 
(20–30 L depending on the experiment) with FSW and gently aeration. 
The nauplii were fed R. salina ad libitum (<20000 cells mL− 1) to allow 
non-limited food conditions for the growth of the copepod cohort. 

2.2. Leachate extraction 

A new car tire tread (Imperial 145/70-13 71T- Snowdragon HP- 
Vinterdæk) was used to generate tire particles and their leachates. To 
obtain tire particles, the tread of the tire was cut into strips and then 
micronized by grinding the strips with a stainless-steel pneumatic 
milling cutter (Page et al., 2022). The micronized tire particles were 
sieved through a 250 μm certified steel sieve and the fraction <250 μm 
was stored in a glass bottle. The protocol proposed by Almeda et al. 
(2023) was followed to obtain leachates for aquatic toxicity testing. 
Briefly, tire particles <250 μm were placed in 600 mL acid-washed glass 
bottles with autoclaved FSW at a concentration of 1 g L− 1. The bottles 
were closed with screw caps with a polytetrafluoroethylene (PTFE) 
protected seal without headspace/air. Then the bottles were placed for 
72 h in a roller (15 rpm) in a temperature-controlled incubator at 20 ◦C 
in the dark. After 72 h, the bottle content was filtered in a glass vacuum 
filtration system using glass-fiber filters (Whatman GF/F filters 0.7 μm 
pore size). The obtained leachate solution (stock solution, 100%) was 
stored in glass bottles at − 20 ◦C and later used in the experiments. The 
target chemical analysis of some relevant compounds in the leachates 
was conducted as described in Rist et al. (2023). The concentrations of 
the detected PAHs, flame retardants, and metals in the leachates are 
provided in Rist et al. (2023) and can be found in the Supplementary 
Information Table S1. 

2.3. Toxicity tests 

2.3.1. . Bioassays to estimate the lethal and sublethal effects at the 
organismal level 

A total of six toxicity tests were conducted with five different life 
stages of the life cycle of A. tonsa: eggs, mid nauplii (N3–N4), late nauplii 
(N5–N6), copepodites (C3–C5), and adults (Table 1). The experiment 
conducted with adults (sex ratio = 0.5) was done twice (Table 1). Each 
life stage was collected from the corresponding cohort, concentrated 
with a sieve (40 μm mesh for eggs and nauplii, 100 μm for copepodites, 
and 200 μm for adults), and placed in a beaker with 100 mL of FSW. Two 
aliquots were taken from the concentrate to quantify the number of 
organisms and estimate the required volumes to have 20 individuals per 
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replicate. Then, aliquots from the concentrate were added to Petri dishes 
and the number of individuals was adjusted to 20 per replica under the 
microscope. 

Twenty individuals of their respective developmental stages 
(Table 1) were placed in 34 mL glass bottles containing 25 mL of the test 
solutions. All the experiments were conducted without food. In each 
toxicity test, the specific life stage was exposed to different leachate 
dilutions (100%; 50%; 25%; 12.5%; 6.25%), a negative control (only 
FSW), and a positive control (Nickel chloride, 0.4 mg Ni L− 1). All 
treatments were conducted in triplicates. The leachate dilutions were 
prepared by serial dilution of the stock leachate solution (100%, 1 g L− 1) 
in autoclaved FSW. Therefore, the equivalent concentrations in g of 
particles L− 1 of the used dilutions are 1, 0.5, 0.25, 0.125 and 0.0625 g 
L− 1. As recommended in Almeda et al. (2023), a solid-to-liquid ratio of 1 
g L− 1 was used in the stock solution to prepare dilutions covering a range 
of potential effects, from no effect to >50% effect to allow precise 
calculation of median lethal concentration (LC50) or median effective 
concentration (EC50). Nickel chloride was used as a positive control 
(toxicity reference) based on the standardization methods recom-
mended by Gorbi et al. (2012) for early nauplii of A. tonsa. To prepare 
the positive control exposure solution, 10 mg of nickel chloride powder 
(SIGMA-ALDRICH, 654507) were diluted in autoclaved FSW (0.1 μm) 
and, from this solution, a second dilution was prepared to have a final 
nickel concentration of 0.4 mg Ni L− 1. 

Before adding the organisms to the experimental bottles, both the 
leachate stock solution and the controls complied with the following 
criteria: a temperature of 20 ◦C, a salinity of 35 ‰, a pH of 7.9, and 
oxygen saturation. The temperature was assessed using a digital ther-
mometer, salinity was measured using a refractometer, and pH was 
recorded using a Grison (GLP 21) pH meter. The leachate stock solution 
and the controls were bubbled for 15 min with glass pipettes acting as an 
“air outlet” connected to a silicone tube for the aquarium pump to 
achieve oxygen saturation (Almeda et al., 2023). Finally, the individuals 
(20 per bottle) were added with a glass pipette to the experimental 
bottles with the test solutions. The bottle caps were not fully closed to 
allow gas exchanges during the exposure. Finally, the bottles were 
placed in an incubator at 20 ◦C for 48 h in dark and static conditions. 

After the exposure period, the content of each bottle was poured into 
a Petri dish to determine the mortality using a stereomicroscope. In all 
bioassays, dead individuals were counted and removed with a glass 
pipette. Then, the rest of the sample was placed in a falcon tube and 
fixed with Lugol’s solution (1%) for further counting and length mea-
surements using the microscope. Mortality (%) was estimated as the 
proportion of dead individuals from the total amount of individuals 
found in each bottle, and in the case of nauplii where decomposition 
occurs fast, the initial number of individuals was used. To estimate the 
sublethal effect on growth, stereomicroscope images were taken to 
measure the total body length for nauplii and prosome length for 

copepodites and adults using Leica Application Suite V4.12 (LAS V4.12). 
Additionally, hatching success was estimated in the experiment with 
eggs, and metamorphosis success (N6–C1) in the experiment with late 
nauplii (Table 1). 

2.3.2. Bioassay to estimate the acute effects of tire particle leachate at the 
biomolecular level 

A new cohort with approximately 137000 eggs of A. tonsa was used 
to get enough biomass of copepods for the analyses of biomarkers (>20 
mg wet weight per sample). Several batches of eggs were harvested as 
described above and stored in 15 mL Falcon tubes with autoclaved FSW 
without air at 4 ◦C in the dark. The eggs were placed in a 30-L glass 
container with FSW and aeration to start the cohort. After 24 h, R. salina 
was added to the cultures as food 3 times per week. After two and a half 
weeks, the adult copepods were used for the biomarker experiment. In 
this bioassay, we used a control (only FSW) and one experimental 
treatment (leachates, 50 mg L− 1), with triplicates for both treatments. 
The leachates were obtained as described above but using a solid-to- 
liquid ratio of 50 mg L− 1. This concentration was chosen because is a 
sublethal concentration within the range of predicted concentrations of 
TWP in surface waters (0.03–56 mg L-1, Wik and Dave, 2009) and es-
timates of TWP discharged from surface water drainage (12–179 mg 
L− 1, Parker-Jurd et al., 2021 and references therein). Copepod abun-
dance in the cohort was quantified by counting the number of copepods 
in 3 subsamples of culture collected with a 200 μm filter. Then, a volume 
of culture of 2.7 L was filtered to have a concentration of 3000 in-
dividuals per bottle/replicate. The collected copepods were concen-
trated in 100 mL of FSW and added to 2.3 L glass bottles. Then we add 2 
L of the test solutions to the glass bottles. The exposure nominal con-
centration in the leachate treatment would be equivalent to 47.6 mg L− 1. 
Leachates and FSW were prepared as described above the other bio-
assays; quality control and incubation conditions were similar to the 
organism-level effect tests. Quality control in terms of temperature, 
salinity, oxygen, pH, and incubation conditions was done as described 
above for the toxicity tests. After 48 h of exposure, we mixed the bottles 
and took an aliquot of 20 mL from each bottle with an automatic pipette 
to check the status of the copepods in a Petri dish under the stereomi-
croscope. Mortality was very low (<%5) without a significant difference 
between the control and experimental treatment. Then, the entire con-
tent of each bottle was concentrated in a 200-μm sieve and place in a 
beaker with 100 mL of FSW and then filtered through a 50 μm mesh 
placed in a conical strainer, concentrated, and carefully collected with a 
laboratory stainless-steel spatula. Finally, the samples were then placed 
in microtubes, weighed, and stored at − 80 ◦C for further biomarker 
analyses. 

A battery of enzymatic biomarkers was tested: electron transport 
system (ETS), catalase (CAT), superoxide dismutase (SOD), glutathione 
S-transferase (GST), lactate dehydrogenase (LDH), Citrate Synthase 

Table 1 
Summary of the bioassays including the used life stages, their average size in μm (body length for nauplii and prosome length for copepodites and adults), their age 
(days after hatching), and the endpoints investigated in each test. *Average size of nauplii. SD: standard deviation.  

Bioassay Life stage Age (days) Size ± SD Endpoints 

1 Eggs/early nauplii (NI-II) 0–2 *122.6 ± 4.3 Hatching success 
Nauplii mortality 
Body length 

2 Mid nauplii (N3–N5) 4 195.1 ± 34.3 Mortality 
Body length  

3 Late nauplii (N5–N6) 6 212.8 ± 25.3 Total mortality 
Metamorphosis N6–C1 
Body length 

4 Copepodites (C3–C4) 12 505.4 ± 52.4 Mortality 
Prosome length 

5 Adults (C6) 21 774.7 ± 59.7 Mortality 
6 Adults (C6) 15 689.9 ± 61.6 Mortality 
7 Adults (C6) 19 678.5 ± 67.5 Enzymatic activities  
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(CS), Acetylcholinesterase (AChE). The samples were homogenized in a 
microtube for 45 s in a sonicator (Vibra-cell) in 1 mL of 0.1M phosphate 
buffer (0.1M Na2HPO4, 0.1 mM KH2PO4, 75 μM MgSO4 ⋅ 7H2O, 1.5% 
PVP and 2% Triton X-100), at pH = 8.5 as described by (Owens & King, 
1975). Homogenates (1 mL) were centrifuged at 4000 rpm at 4 ◦C for 10 
min and the supernatant was used for the enzymatic analysis. After that, 
an aliquot of the remaining supernatant was stored at − 20 ◦C for further 
protein analysis. Duplicates for the control treatment and triplicates for 
the experimental treatment were analyzed. The detailed methodology to 
estimate the enzymatic activity of each enzymatic biomarker can be 
found in Supporting Information (S.I. Methods, text S1). The enzymatic 
activities were performed at 25 ◦C and standardized by protein content 

(mg). The unit for all activities was μmol min− 1 mg− 1 of protein (= IU 
mg− 1 of protein), except for ETS which was nmol O2 min− 1 mg− 1 of 
protein. The analyses of ETS, CAT, and protein were followed on a Cary 
series UV-VIS spectrophotometer, and the analyses of GST, AChE, CS, 
LDH, and SOD were followed on a BMG-FLUOstar Omega microplate 
reader. 

3. Data and statistical analyses 

Data on the mortality (%) in relation to the leachate dilution (%) 
after 48 h of exposure was fitted to the following sigmoid model: 

Fig. 1. Mortality (%) of different life stages of the copepod A. tonsa after 48 h of exposure to a range of TWP leachate dilutions (%). Stages are (a) = N1-2; (b) = N3-4; 
(c) = N5–N6; (d): copepodites II-III; (e) and (f) = adults. The stock solution (100%) was prepared at a solid-to-liquid ratio of 1 g L− 1. The continuous lines are the 
fitted curves based on Eq. (1). The dotted curves indicate the 95% confidence bands. The estimated model parameters are presented in Table 2. 
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M = 100
/(

1 + e− (C− LD50 )/b ) Eq..(1)  

where M is the mortality (%), C is the TWP leachate solution (%), LD50 is 
the median lethal dilution (%) and b is the slope. 

To evaluate the lethal effect of the tire particle leachates as a function 
of size (body/prosome length), we plotted the obtained LD50 vs the 
initial length of each life stage. In the case of the egg test, the size of the 
nauplii in the control treatment was used for the relationship. 

Data on hatching or metamorphosis success in relation to TWP 
leachate solution (%) after 48 h of exposure were fitted to the following 
sigmoid model: 

Y =Y0

/
(1 + ( C /ED50)

b
)

Eq. (2)  

where, Y is the hatching or metamorphosis success (%), Y0 is the 
hatching or metamorphosis success (%) in the absence of leachates (i.e. 
in the control), C is leachate dilution (%), ED50 is the median effective 
dilution (here defined as the leachate solution in % required to reduce 
the hatching or metamorphosis by half compared to the control, Y0), and 
b is the slope. 

The estimated LD50 (%) and ED50 (%) were expressed, respectively, 
in their equivalent median lethal concentration (LC50) and median 
effective concentration (EC50) in g L− 1 for comparison with other 
toxicity studies and environmental concentrations of TWP. 

Statistical analyses were conducted with Sigmaplot v.12. Statistically 
significant differences in mortality, hatching, metamorphosis success, 

and length (p ≤ 0.05) among treatments were assessed using one-way 
analysis of variance (ANOVA). The assumptions of normality and ho-
mogeneity of variances were tested with the Shapiro-Wilks Test and the 
Levene Test, respectively. When data did not follow a normal distribu-
tion or show heterogeneity of variances, the non-parametric test, 
Kruskal-Wallis was used. Post hoc Dunnet’s or Dunn’s test was used to 
compare the control with the experimental treatments. A non- 
parametric Wilcoxon signed-rank test was used to determine statisti-
cally significant differences between treatments (p ≤ 0.05) for the 
biomarker data. 

4. Results 

4.1. Life stage-specific lethal effect of TWP leachate in A. tonsa 

Exposure to leachates for 48 h caused mortality in all the stages, with 
lethality increasing with increasing leachate concentration (Fig. 1). The 
naupliar mortality in the positive control was 49.5%, perfectly accord-
ing to the criteria proposed by Gorbi et al. (2012) for standardized 
methods for toxicity tests with A. tonsa. Significant differences in mor-
tality of early nauplii were found between the control and the 100%, 
50%, 25%, leachate dilution treatments (p < 0.05) (Fig. 1a). In the rest 
of the bioassays (Fig. 2 b-f), the mortality in the two highest leachate 
solutions (100% and 50%; p < 0.05) were significantly higher than in 
the control. The sigmoidal model fitted well to the data (r2 = 0.87–0.97; 
Table 2) and the estimated coefficients were statistically significant (p <
0.05). The estimated LD50 ranged from 40.1 to 59.9 % with equivalent 
LC50 of 0.401 and 0.599 g L− 1, respectively (Table 2). The relationship 
between LD50 and the length of studied life stages was positive but 
moderately correlated (Fig. 2). The LD50 did not exhibit a clear pattern 
of correlation with the size of the naupliar stages, but adults were more 
tolerant to TWP leachates than nauplii and copepodites (Table 2). 

4.2. Effects on hatching and metamorphosis success 

The hatching success (%) decreased moderately with increasing TWP 
leachate concentration, with a minimum hatching of 52% at the highest 
leachate concentration tested (100%) (Fig. 3a). Significant differences in 
hatching were found between the control treatment and the 25% and 
100% leachate dilutions (p < 0.05); The EC50 (48h) for hatching was 
higher than 1 g L− 1 ( Fig. 3a, Table 3). Metamorphosis from N6 to C1 was 
observed in the bioassays 2 (mid nauplii) and 3 (late nauplii; Table 1) 
but the % of copepodites the bioassay 2 was very low (<10%) in all the 
treatments including the control. In the bioassay with late nauplii, 
metamorphosis success (%) was high in the control treatment (average: 
65%) (Fig. 3b). The metamorphosis success decreased notably after 
exposure to increasing concentration of leachates, being completely 
absent at the 100 % leachate dilution (Fig. 3b). A statistically significant 
difference in metamorphosis success was observed between the 100%, 
50% and 25% treatments and the control (p < 0.05) (Fig. 3b). The 
estimated EC50 for metamorphosis (48 h) was 0.28 g L− 1 (Table 3). 

Fig. 2. Median lethal dilution (LD50, %) as a function of body/prosome length 
for the studied life stages of A. tonsa. The vertical errors bars are standard error 
of the LD50 coefficients estimated with eq. (1) and the horizontal error bars the 
standard deviation on the length (Table 1). The continuous line is the fitted 
linear regression. Equation shown in the graph. The dotted curves indicate the 
95% confidence bands. 

Table 2 
Parameters from the sigmoidal model (Eq. (1)) relating A. tonsa life-stage specific mortality to TWP leachate dilution (%) after 48 h of exposure (Fig.2). LD50: medial 
lethal dilution (%), b = slope, SE: standard error, r2: coefficient of determination, t and p values for the estimated LD50; *LC50: estimated median lethal concentration 
expressed in g TWP L− 1.  

Bioassay Stage LD50 ± SE (%) b ± SE r2 t p *LC50 ± SE (g L− 1) 

1 N1–N2 44.9 ± 3.6 17.7 ± 2.7 0.94 6.56 <0.0001 0.449 ± 0.036 
2 N4–N5 50.5 ± 2.2 19.4 ± 1.8 0.97 22.57 <0.0001 0.505 ± 0.022 
3 N5–N6 40.1 ± 2.1 13.6 ± 1.6 0.96 8.48 <0.0001 0.401 ± 0.021 
4 C3–C4 48.6 ± 2.2 14.2 ± 1.9 0.97 7.63 <0.0001 0.486 ± 0.022 
5 Adults 59.1 ± 3.5 20.7 ± 2.5 0.94 8.25 <0.0001 0.591 ± 0.035 
6 Adults 59.9 ± 4.8 31.5 ± 4.1 0.87 12.4 <0.0001 0.599 ± 0.048  
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Fig. 3. Effect of TWP leachates on hatching (a) and N6–C1 metamorphosis success (b) in A. tonsa after 48 h of exposure. The continuous lines are the fitted curves 
based on Eq. (2). The dotted curves indicate the 95% confidence bands Table 3. 

Table 3 
Parameters from the sigmoidal logistic model (Eq. (2)) relating hatching and metamorphosis success to leachate dilutions. ED50 is the median effective dilution (%), b 
= slope, Y0 is the hatching or metamorphosis success (%) in the absence of leachates (i.e., in the control), SE: standard error, R2: coefficient of determination, t and p 
values for the estimated ED50; LC50: estimated median lethal concentration expressed in g TWP L− 1. (*) Note that the model does not predict the ED50 well for hatching 
since the reduction in hatching did not reach 50% compared to the control; we indicate that ED50 is higher than the maximum tested concentration (1 g L− 1).  

Endpoint Stage LD50 

± SE (%) 
Yo ± SE (%) b 

± SE 
r2 t p LC50 

± SE (g L− 1) 

Hatching Egg 273* ± 286 81 ± 6.1 0.4 ± 0.2 0.53 2.03 0.061 >1 
Metamorphosis N6–C1 22.8 ± 5.6 65 ± 6.9 1.73 ± 0.6 0.80 4.05 0.001 0.288 ± 0.056  

Fig. 4. Effect of TWP leachates (%) on the mean body length of nauplii (a–c) and prosome length (d–f) of copepodites after 48 h of exposure. The asterisk indicates a 
statistically significant difference compared to the control (p < 0.05). Errors bars are the standard deviations. 
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4.3. Effects on growth rates (body length) and enzymatic activities 

We observed a clear tendency of reduction in body size with 
increasing leachate concentration in nauplii and copepodites (Fig. 4). 
Significant differences in the mean body size of early nauplii were 
observed in the 50% dilution with a decrease in length of 22% compared 

to the control (Fig. 4a). A statistically significant decrease of approxi-
mately 10% in mean prosome size was observed for copepodites (Fig. 4d 
and f). 

The activities of all the tested enzymes were successfully measured in 
A. tonsa adults (Fig. 5, Table S2). However, exposure to TWP leachates 
from a solid-to-liquid ratio of 50 mg L− 1 did not cause any statistically 

Fig. 5. Effect of TWP leachates on the enzymatic activities of Acartia tonsa : (a) Lactate dehydrogenase (LDH), (b) Citrate Synthase (CS), (c) Acetylcholinesterase 
(AChE) , (d) superoxide dismutase (SOD), (e)catalase (CAT), (f) glutathione S-transferase (GST), (g) Electron Transport System (ETS). Enzymatic activities are 
expressed in μmol min− 1 mg− 1 of protein (=IU mg− 1 of protein) except for ETS which is expressed in nmol O2min− 1 mg− 1 of protein. Ctrl = control treatment; exp =
leachates from 50 mg TWP L− 1. Errors bars are the standard deviations. 
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significant effect on the tested enzymatic activities (p > 0.05). The ac-
tivity of AChE enzymewas quite similar between treatments (Fig. 5c). 
Some non-significant tendencies were observed; for instance, the 
measured activity of ETS, CS, CAT, and GST enzymes was higher in the 
control than in leachate treatment, whereas LDH and SOD showed the 
opposite trend (Fig. 5, Table S2). 

5. Discussion 

5.1. Lethal effect of tire particle leachates on A. tonsa life stages 

Our results show that tire particle leachates negatively affect all life 
stages of a cosmopolitan and ecologically relevant marine planktonic 
copepod in estuaries and coastal areas. This is in line with other studies 
showing that tire rubber leachates are acutely toxic to marine plankton 
(Bournaka et al., 2023; Capolupo et al., 2020; Halsband et al., 2020; 
Page et al., 2022). Our results on the lethal effect of tire particle 
leachates on adult stages of A. tonsa (LC50 = 0.591 and = 0.559 g L− 1), 
Table 1) are very close to those found by Bournaka et al. (2023) for the 
same exposure period (LC50, 48 h, = 0.54g L− 1). The toxicity of tire 
particle leachates on plankton varies depending on the car tire type and 
the leachate extraction methodology (Wik & Dave, 2006). Thus the 
direct comparisons of species sensitivities should be done cautiously. 
But, based on the limited available data, the tolerance of A. tonsa to 
rubber particle leachates seems to be lower than for other marine co-
pepods (Bournaka et al., 2023; Halsband et al., 2020) and freshwater 
zooplankton (Wik & Dave, 2006). This indicates that A. tonsa is a sen-
sitive species to TWPs that can be potentially used as a good bioindicator 
of pollution impacts on the coastal pelagic food web. 

As hypothesized, early life stages were found to be more sensitive to 
the tire leachates than adults. Similarly, other studies have also found 
that than naupliar stages are more affected by pollutants than adult 
stages (e.g., Sunda et al. (1987), Araújo-Castro et al. (2006); Huang 
et al., 2006; Saiz et al., 2009), making copepod nauplii suitable as bio-
logical models for ecotoxicity testing due to their sensitivity and 
ecological relevance. The lower tolerance of nauplii to pollutants can be 
related to larger surface to body volume, which leads to a higher sorp-
tion of dissolved toxicants, and to a thinner exoskeleton compared to 
adults (Forget et al., 1998; Jeong et al., 2016)). Other factors can also 
explain the higher sensitivity of early larval stages of aquatic organisms 
compared with adults, such as underdeveloped homeostatic mechanism 
and immature detoxification pathways, and higher carbon-specific 
metabolic demands (Mohammed, 2013). However, the differences in 
sensitivity to leachates between adults (LC50 = 0.59–0.60 g L− 1) and the 
earlier developmental stages (LC50 = 0.40–49 g L− 1) were relatively low. 
This suggests that other factors and not only the surface-volume ratio 
and exoskeleton thickness influence the uptake of dissolved pollutants 
and their toxic effects on planktonic copepods. For instance, it is possible 
that defense/detoxification mechanisms are already present in the early 
stages of copepods, increasing the tolerance of nauplii to pollutants 
despite their smaller sizes compared to adults (Ensibi & Daly Yahia, 
2017; Li et al., 2023). More research is needed to better understand the 
differences in sensitivity among zooplankton life stages to pollutants. 

5.2. Effects of tire particle leachates on hatching, metamorphosis, and 
growth of A. tonsa 

Data on the sublethal effects of TWP and their leachates on marine 
planktonic copepods are very scarce. In this study, eggs were exposed 
directly to the tire particle leachates and the hatching was negatively 
affected, but not drastically. Koski et al. (2021) did not find any effects of 
tire and crumb rubber particles on the hatching success of Acartia tonsa 
and Temora longicornis when eggs were exposed for 24 h. The high 
tolerance of copepod embryos, allowing hatching in polluted waters, 
could be related to the chitin shells of copepod eggs that offer some 
protection against the pollutants. This suggests that hatching success is 

not the most sensitive endpoint to assess the toxicity of pollutants to 
copepods. However, we found that once hatched, early naupliar stages 
lose the protective chitin shell and become vulnerable to the toxicity 
leachates, showing reduced survival and growth rates as hypothesized 
here. Several studies have reported a developmental delay in copepods 
and other marine invertebrates caused by different pollutants (Almeda 
et al., 2014, 2016; Grenvald et al., 2013; Rist et al., 2023). Since our 
exposure tests were conducted in the absence of food, the observed 
decrease in nauplii and copepodite growth after exposure to TWP 
leachates could be related to alterations in the mobilization of lipid re-
serves and altered allocation of energy. Among the studied endpoints, 
TWP leachates have the strongest toxicity on the metamorphosis from 
nauplii to copepodites. This process involved the most drastic morpho-
logical change in the life cycle of copepods, which could partly influence 
the high sensitivity of this endpoint to toxicants. Although the hormone 
regulation of metamorphosis in copepods is still not fully understood, 
several studies suggest that this process is controlled by the “juvenile 
hormones” in conjunction with the actions of ecdysteroids, as known 
from insects and other crustaceans (Cheong et al., 2015; Laufer et al., 
1988; Rodríguez et al., 2007). Certain pollutants, including additives 
from conventional plastics and synthetic rubber, can cause endocrine 
disruption in crustaceans (Rodríguez et al., 2007). Andersen et al. 
(2001) found inhibition of A. tonsa metamorphosis (from nauplii to the 
copepodite stage) after exposure to endocrine disrupters, including 
p-octylphenol, which is used in the production of p-tert-octylphenol 
based resins for the manufacturing of tires and other rubber materials. It 
has been also reported that Acartia tonsa is highly sensitive to bromi-
nated flame retardants, especially PBDEs, which significantly reduced 
metamorphosis success. Among brominated flame retardants, BDE-99 
and BDE-100, have been found to be ecdysteroid antagonists in vitro 
and can be considered endocrine disruptors in arthropods (Wollenberger 
et al., 2005). Additionally, it has been documented that exposure to 
polystyrene nanoparticles in the crustacean Macrobrachium nipponense 
caused inhibition of molting-associated and growth-related genes (Li 
et al., 2022). More research is needed to evaluate what chemicals pre-
sent in the leachates of TWP can act as endocrine disruptors in plank-
tonic copepods, and the molecular mechanisms behind the toxic action 
of synthetic rubber additives. 

5.3. Effects of tire particle leachates on the enzymatic activities of A. 
tonsa 

Enzymatic biomarkers are commonly used in benthic invertebrates 
(e.g., mussels) and fish to assess the effects of pollution at the biomol-
ecular level and organisms’ response to pollutants (Alberdi, 2019; Le 
Du-Carrée et al., 2021a; Lénia et al., 2016; Schmitz et al., 2015). Great 
variability exists regarding how contaminants trigger enzymatic re-
sponses in different organisms (Alberdi, 2019; Le Du-Carrée et al., 
2021b). Alterations in enzymatic activities in zooplankton can serve as 
crucial indicators, shedding light on the repercussions of contaminants 
within ecosystems (Minutoli et al., 2002a; Minutoli and Fossi, 2002b). 
Notably, fluctuations in acetylcholine esterase (AChE) levels across 
various zooplankton species have been linked to the presence of envi-
ronmental contaminants (Minutoli and Fossi, 2002b, Minutoli et al., 
2007). Furthermore, the responsiveness of enzymes associated with 
redox balance in copepods has demonstrated a correlation with 
contamination from a diverse array of pollutants. For instance, Han et al. 
(2014) exposed Tigriopus japonicus to different concentrations of the 
water-accommodated fraction (WAF) of crude oil for 24h, and found 
that antioxidant enzymes as GST and CA, among others, increase their 
activity in a concentration-dependent manner. Soloperto et al. (2022) 
also found a significant increase in the GST activity in the copepod 
Calanus finmarchicus after 24 and 72h of exposure to WAF solution. 
Similarly, an increase in the GST activity and ROS level has been re-
ported when the cyclopoid copepod Paracyclopina nana after 24 h of 
exposure to different concentrations of the pollutant 2,2′,4, 
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4′-tetrabromodiphenyl ether, known as BDE-47 (Lee et al., 2016). It has 
been also documented that the activities of the enzymes GST and SOD 
and reactive oxygen species (ROS) significantly increase when T. japonicus 
was exposed to the antimicrobial agent triclosan (TCS) for 12 and 14 h 
(Park et al., 2017). In our study, we successfully measured the different 
enzymatic activities in A. tonsa adults. However, we cannot provide 
conclusions on the effect of TWP leachates at the molecular level since 
we did not find a significant difference in the enzymatic activity between 
treatments The lack of significant differences can be explained by the 
relatively low leachate concentration tested, the variability among 
replicates, or/and the low sensitivity as a biomarker of the tested 
enzymatic activities for A. tonsa. To our knowledge, there are no studies 
in the literature reporting the effects of TWP leachates on the enzymatic 
biochemistry of copepods. More studies with longer exposure time and 
multiple concentrations are required to go further in the understanding 
of the biomolecular response of copepods to TWP leachates. 

5.4. The chemical composition of tire particle leachates 

Tires are commonly made of synthetic rubber polymers (mostly 
styrene-butadiene-rubber and butadiene rubber, also halobutyl rubber) 
in combination with natural rubber and high amounts of diverse addi-
tives including filling agents, vulcanization agents, flame retardants, 
antioxidants, and antiozonants (Page et al., 2022; Wagner et al., 2018; 
Wik & Dave, 2009). Heavy metals and dozens of potentially toxic 
organic chemicals have been detected in tire particle leachates (Capo-
lupo et al., 2020; Foscari et al., 2023; Halsband et al., 2020; Jiang et al., 
2023; Müller et al., 2022; Page et al., 2022). This indicates that the entry 
of TWP into aquatic ecosystems results in the release of a potent cocktail 
of organic additives and metals with potential effects on marine or-
ganisms. In the leachates used in this study, we found several potential 
toxicants such as flame retardants (e.g., Tris (2-chloroisopropyl)phos-
phate), polyaromatic hydrocarbons (naphthalene, pyrene) and metals 
(e.g., zinc) (S.I. Table 1). Several studies have indicated that Zn can be 
one of the main contributors to the toxicity of TWP leachates to plankton 
(Bournaka et al., 2023; Capolupo et al., 2020; Halsband et al., 2020; Rist 
et al., 2023). Also, organic compounds used as additives in tire rubber (e. 
g., alkylphenols like 4-tert-butylphenol and the antioxidant N-(1, 
3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) are known to 
be toxic to aquatic organisms (Gray & Metcalfe, 1999; K. Li et al., 2023). 
Further studies on single additive toxicity, chemical fractionation of 
leachates, and effect-directed analysis are needed to identify which 
compounds are the main ones responsible for the observed toxicity 
and/or the “cocktail effect” to marine planktonic organisms. 

5.5. Ecological risk of tire particle pollution 

Based on the current literature, concentrations ranging from less 
than 25 to 100,000 mg of TWP per liter of water can cause acute effects 
of TWP on aquatic biota, while long-term effects have been reported at 
concentrations ranging from 10 to 3600 mg of TWP per liter of water 
(Page et al., 2022; Wagner et al., 2018; Wik & Dave, 2009). It is 
important ant to note that TWPs and their additives undergo trans-
formation in the environment due to physico-chemical factors. A 
reduction of their toxicity has been observed within a sort weathering 
time, while other studies have reported a considerable increase in 
toxicity after weathering (Tian et al., 2021, Liu et al., 2022; Fohet et al., 
2023). Therefore, to fully understand the impact of TWPs it is important 
to consider their environmental transformation and how this affects the 
toxicity of their leachates (Tamis et al., 2021). More research with 
leachates from field collect tyre wear particles is needed to better un-
derstand the effects of TWP pollution on aquatic systems. 

Field data on concentrations of TWPs are still limited; reported/ 
predicted concentrations of TWPs in aquatic systems can range from a 
few milligrams per liter in the water column (up to 56 mg L− 1) to 
hundreds of grams per Kg in the sediments (155 g kg− 1 DW) (Wagner 

et al., 2018; Wik & Dave, 2009). It has been estimated that the mass of 
tire wear discharge from surface water drainage range from 12 to 179 
mg L− 1 (Reddy and Quinn, 1997; Kumata et al., 1997, 2000; 2002; Wik 
and Dave, 2009; Zeng et al., 2004; Parker-Jurd et al., 2021). Although 
the reported concentrations of TWP in surface waters are below the 
median lethal and effective concentrations found here, concentrations in 
the sediments are much higher, and TWP on the surface of the sed-
iments/soil can leach their toxic chemicals into the water. Additionally, 
long-term sub-lethal toxicity of TWP leachate could occur at lower 
concentrations than the acute effects investigated in this study. There-
fore, coastal shallow areas and estuaries, the habitat of A. tonsa, situated 
near roads are more susceptible to run-offs, making these aquatic eco-
systems more vulnerable to the ecological effects of TWP pollution. 

6. Conclusions 

Acute exposure to TWP leachates caused lethality in all life stages of 
A. tonsa, as well as harmful effects on critical life cycle processes, such as 
reduced hatching, growth rate, and metamorphosis success. Nauplii and 
copepodites were the most sensitive stages to tire particle leachates. The 
metamorphosis from nauplii to copepodites was especially affected by 
the exposure to tire particle leachates, suggesting endocrine disruption. 
We did not observe statistically significant effects on enzymatic activ-
ities at the studied exposure concentration. Although field data on tire 
leachates are still limited, our findings suggest that TWP pollution can 
have a potential negative impact on the planktonic food web in coastal 
areas, particularly after road runoff events and in sites affected by the 
drainage of urban stormwater after torrential rainfalls. 
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