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Preface

“Cogito ergo sum.”

René Descartes (1637)

Throughout history, many philosophers have argued that thinking is the proof

of our own existence. We opened this preface with René Descartes’ statement that

shares this sentiment and it is arguably the most famous example of the concept.

Although a precise English translation will read as “I am thinking, therefore I

exist”, it is commonly – and very conveniently for this case – translated as “I

think, therefore I am”. Interpreting “I am” as representing the “self ” as opposed

to existence, we can borrow the quote to mean that what we think and who we

are, are actually the same thing.

This is not the first study to link the self to the mind. One example is J.

LeDoux’s work Synaptic Self [1]. In it, LeDoux presents a compelling scientific

argument to support the view that who we are is unambiguously determined by

our brains. Unlike him though, we defend that the self is fully defined by the

mind/brain, with physical aspects of the individual being mere vehicles.

Our self then is linked to our intellectual existence. Being subject to brain

plasticity, it is in constant evolution. If we change the way we think, we change

who we are. When this change is relatively small, we call it maturation, self-growth

or just learning. But if the change dramatically affects the way we interact with

the world, we will be perceived, perhaps even self-perceived, as a different person.

Hence the expression “he/she is not the same person since...”.
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In addition, our brain is possibly the pinnacle of our uniqueness. With its

synapses shaped not only by nature, but also by nurture, even the brain networks

of identical twins are different. Accordingly, as similar as twins can be, they think

differently and are distinct individuals. The brain, as a unique entity, is therefore

susceptible to being used as a means for identification.

The terms “self” and “identity” are treated separately in the philosophy liter-

ature [2]. In particular, an individual is commonly said to be composed of multiple

identities, such as their nationality, religion, profession, race and sexual orienta-

tion. These identities together form the individual’s self. However, although this

may be convenient for some arguments, we believe it falls far from its practical def-

inition; i.e. “the state of having unique identifying characteristics held by no other

person or thing” [3], as a single one of these identities cannot define individuality.

Furthermore, the coupling of one’s identity with groups of individuals, or cat-

egories, seems to contradict the pursuit of equality in societal terms. Conversely,

we propose that the identity of an individual is solely defined by the way he/she

interacts with the environment (i.e. thinks). Thus, all remaining bits of informa-

tion are secondary, and most of them are consequences of the former. Those that

are not; i.e. those that are out of the subject’s control (nationality, race, etc.),

should be left out of the definition of self or identity, as they do not necessarily

reflect the way the individual feels or thinks; although they likely have an effect on

it. Accordingly, we prefer the statement “I am myself, who happens to be Spanish

and European white”, to “I am Spanish and European white, and this is who I

am”.

Taking into account the definitions above, we consider that what we think (my

mind), who we are (my self), and our identity (my identity) are concomitant terms,

and are virtually the same thing.

Hence, it seems inconsistent to have our legal identity bounded to features of

our body (not transcending the physical for the psychological). The ePassport re-

lies on facial, fingerprint and iris recognition to verify the identity of an individual.
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By our definition of identity, the previous are just convenient solutions, as far as

such characteristics are relatively immutable, non-transferable and non-copyable.

We argue then that a more direct and reliable way to measure who a person is, is

by means of its brain activity.
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Chapter 1

Introduction

The search of genetic traits within Electroencephalogram (EEG) has received great

attention from the scientific community almost since the first human EEG record-

ings by Hans Verger in 1924 [4]. Unravelling this genotype-phenotype map will

allow us to build advanced and inexpensive tools for understanding many diseases

and diagnosing them early, especially those affecting the brain [5,6]. This is mainly

because a tool based on the quantitative measure of EEG properties will be closer

to gene function than the traditional interpretation of cognitive tests [5]. Crucially,

these tools will also allow us to measure the evolution of patients and evaluate the

effects of treatments in a quantitative manner.

The understanding of EEG genetic traits will also be applied on the develop-

ment of biometric security systems. In this era of abundance of information and

network communication, biometric systems have slowly become a necessity for con-

trolling access to sensitive places and/or information. These methods are based on

unreproducible, non-transferable characteristics of an individuals physiology, such

as the fingerprints or facial features.

EEG-based subject identification is a relatively new biometric discipline which

finds its origins in the advances of the above mentioned human genetics and clin-

ical neurophysiology studies. A system based on a subject’s EEG poses a very

attractive design due to its potential for reliability and difficulty in artificial repli-
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cation. Passwords will be harder to steal, as users will not need to perform any

revealing action. Even if stolen, the system could be tuned to respond not to the

passwords’ semantic meanings, but to the subjects’ specific EEG patterns. These

are extremely hard to reproduce by another individual, if at all possible. Further-

more, if a user is forced to enter their ’password’, their elevated stress levels, or

other changes in baseline EEG activity, could be detected by the system which

could then forbid access.

The main disadvantage of this design is the inconvenience of the recording

method. EEG devices, although strictly non-invasive, are relatively more invasive

than other biometrics. When considering clinical or experimental EEG devices,

the preparation of the recording session can be an arduous task, requiring the

application of conductive gel to the user’s scalp as well as precise trial and error

checks on signal clarity. This has been partially solved by the proliferation of

consumer EEG devices, which significantly reduce the preparation time and make

use of dry sensor technology. Although currently offered consumer devices have

lower quality signals than clinical devices, we can expect this to be gradually

overcome by future advances in the sensors field.

The current work is a study of the identity traits within EEG, and more specif-

ically, within its time-frequency representation. This is motivated by:

• the importance of understanding the genotype-phenotype map of neural ac-

tivity, which will lead to advances in medicine and psychology;

• and the potential offered by neural biometric identification, especially in

systems that require a robust security method and those that integrate any

form of Brain Computer Interface (BCI) and will directly benefit from it,

such as remote health monitoring/diagnosing devices or games.
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1.1 Hypothesis

Throughout this research, we will provide evidence supporting the following hy-

pothesis:

There exists, within the human EEG, a task-independent pattern concomi-

tant to the individual’s identity.

The second part of this hypothesis “... concomitant to the individual’s iden-

tity”, refers to the neural activity, as recorded by the EEG, being defined by the

subject’s phenotype, and therefore, being unique.

The first part of the hypothesis “... a task-independent pattern ...”, refers to

the mentioned unique activity being persistent across mind states, cognitive tasks

and experimental conditions — from now on, we will refer to these three as simply

‘tasks’. Persistent not in a strict sense, but in a way that fluctuations across

tasks are comparatively smaller than differences in the neural signatures across

individuals.

1.2 Document structure

We have carried out the current research in four main phases, which define the

different chapters of this document:

1. State of the art: (Chapter 2) Due to this being a relatively new biometric

modality, the literature lacked a review work summarizing the most impor-

tant findings on the subject. In fact, the state of the art was characterized

by the absence of a structured methodology. Authors had focussed their ef-

forts on applying new algorithms and architectures, without understanding

the fundamental properties of the targeted information, or basing this on

genetic and neurophysiologic studies that analysed the data from a different

point of view.
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2. Recollection of publicly available EEG databases: (Chapter 3) In a bid

to identify the commonalities as intrinsic properties of the neural signature

rather than idiosyncrasies of the data sets, we performed the study presented

here on 6 publicly available databases, each of different nature. The set of

databases included: resting states, motor and problem-solving tasks, event

related potentials and elicited emotions.

3. EEG time-frequency exploration: (Chapter 5) To cover the weaknesses

identified in the state of the art, the bulk of this research encompasses an in

depth analysis of the discriminant information within the time-frequency rep-

resentation of the EEG. This includes numerous experiments, each designed

to evaluate a single or a small set of qualities under controlled conditions.

4. Biometric system implementation: (Chapter 6) Finally, to evaluate the

advances made during the exploration of the subject traits within the EEG,

we applied our findings to the design of a biometric verification system.

In addition to the above points, a parallel research on the rejection of noise

from the EEG signal was conducted at the Department of Psychology, College

of Human Health and Science, Swansea University (Wales, UK). This resulted in

a new artefact rejection approach: Localized Component Filtering (LCF),

which was ultimately used for the preprocessing of the data sets used in the EEG

time-frequency exploration (chapter 4).

The above phases and research correspond to this text’s main structure, each

representing an individual chapter. To finalize, we will present a global discussion

on the subject, enumerate the produced innovations and outline some potential

research avenues for the future (chapter 7).
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Chapter 2

State of the art: comprehensive

review

This chapter presents a comprehensive review of the state of the art on EEG bio-

metric identification. As well as presenting the evolution of this field (from 1980

to 2015), we provide an overview of related genetic and neurophysiology studies.

We also propose a categorization of methods based on the tasks used in the ex-

periments. The most frequently used databases, some of which are public, are

identified and named to allow the comparison of results from these and future

researches. We show that, although basic questions remain unanswered, EEG has

been found to contain subject specific information that can be used for discrimi-

nation. Moreover, approaches such as a multi-day-session training, the fusion of

signals from different electrodes and frequency bands, and the application of Linear

Discriminant Classifiers (LDCs) and Support vector machine (SVM) are recom-

mended to maximize the system’s performance. Overall, the goal of discrimination

is more challenging than initially expected, as it relies on data extracted from com-

plex, heterogeneous EEG traits. Such traits are the results of elaborated models of

inheritance, which makes discrimination very sensitive to variables such as time,

frequency, sensor location, recording condition and system design.

In particular, we focussed on finding answers to the following questions:
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• What are the subject specific traits of a given EEG signal?

• Where are these traits in terms of location?

• What are the frequencies of these traits?

• Are they constant across time?

• Are they constant across cognitive tasks?

• Which is the best design approach?

Although there exist overviews of the field, each centred their attention on

a small set of the algorithms applied over a specific approach for EEG based

biometric systems [7–10]1. In contrast, this is a broad study considering all the

publications on the matter, covering all the techniques and strategies as well as

their relationships. From this, we will show that most of the questions asked above

were unanswered or only partially answered.

The bulk of the analysis presented here deals with articles published before

2014. This is the date when the original review of the state of the art was finalised,

the conclusion of which led to the EEG time-frequency exploration (section 1.2).

To complete the overview, we have added a review of the studies published during

the period spanned by the work presented here: from 2014 to April 2015, in section

2.4.6.

We will first detail the review methodology utilised in this research. Following

that, we will present the major findings on the genetic traits of the human EEG

signal. The individual main EEG databases used in the considered literature, and

the results obtained on each of the studied approaches will then be presented.

Subsequently, all the findings presented here will be pieced together in a bid to

answer the questions posed above. Finally we will present our conclusions.

1Since the publication of this review of the literature, two more complete reviews have been

published [11,12].
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Figure 2.1: Number of publications per year up to 2013. Categories: “conferences”,

“journals” and “other” are considered separately.

2.1 Review methodology

The research was executed in two phases. Firstly, we gathered literature on ge-

netic and neurophysiological fields regarding the phenotypic features of EEG. This

allowed us to establish a scientific foundation for the topic and provided a non-

technical point of view of the problem. The book “Genetics and the Electroen-

cephalogram” by F. Vogel [13] is of special relevance here. This book is a com-

prehensive resource in the genetics field, and provides a compilation of findings on

the genetic, clinical and neurophysiological aspects of EEG.

The second phase was comprised of the search of biometric literature. After

an in depth exploration, 108 works were finally found between 1998 and 2013 (fig.

2.1). This emphasizes the novelty of the area. Instead of filtering the sources to

include only journals, as is typically the case in these studies, all 108 works were

reviewed, from which 87 were finally included.

We propose the following classification of the literature based on the recording

tasks:

• Resting states: Resting with Eyes Closed (REC) and Resting with Eyes

Open (REO) have been extensively explored in the literature. These were

the first tasks used for identification via EEG.
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• Event Related Potential (ERP): Brain activity elicited by an exter-

nal stimulus has also been used for identification via EEG. Specially EEG

signals triggered by stimulation of the visual sense or Visual Evoked Poten-

tial (VEP).

• Multiple-tasks: This includes studies based on EEG recorded during var-

ious cognitive tasks. Usually, they focused on the performance difference

between recorded tasks and on the fusion of different tasks to boost the

system’s performance.

• Indirect: Some authors have tried to identify users by recognizing a thought

password or responses to specific stimulus, rather than subject-specific EEG

traits.

• Others: This category includes reviews, dissertations, reports and any other

work that is related to the subject but does not present any new system

architecture or experiment results.

We propose a further differentiation based on the hardware used: medical

or consumer equipment. The latter represents a cheaper alternative which re-

quires no conductive gel and is considerably easier to use. However, they also

provide lower signal to noise ratios and sensitivity. Accordingly, it seems advis-

able to keep in mind which hardware has been used in each case when comparing

results. Conveniently, all these categories can also be used to classify genetic and

neurophysiological works on the matter.

Figures 2.2 and 2.3 show the distribution of publications across each category.

Note that these figures do not represent percentage values, as some works fall into

several categories. It can be seen that the vast majority of studies have focussed

on REC and VEP (ERP) modalities. This is consistent with genetic and neuro-

physiological studies. Multiple-tasks studies have also received special attention,

as authors attempted to find the most appropriate paradigm for their systems.
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Figure 2.2: Distribution of publications per category up to 2013. A single publication

can fall into multiple categories.

Figure 2.3: Distribution of publications per category and per year up to 2013. Single

publication can fall into multiple categories.

In addition, as commercial EEG hardware have relatively recently appeared, the

proportion of studies using them is obviously lower than those using medical equip-

ment.

To maximize clarity of the analysis, we tagged and clustered publications into

research groups. This grouping convention is based on any overlap of authors

across relevant publications. This also helped to identify databases, which had

no names and tended to be difficult to track. The identification and naming of

databases allowed the comparison of results from different publications.
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2.2 EEG genetics

Identifying the genetic traits of EEG has proven to be an arduous task. These

are complex heterogeneous traits, as they are the result of elaborate models of

inheritance. For example, some genes appear to have different effects in different

brain areas and EEG frequencies. In addition, exogenous factors have also been

proven to influence human EEG signals and have to be considered when evaluating

the results [6].

Twin studies have proven to be immensely beneficial in the understanding of

this genotype-phenotype relationship. H. Davis and P. Davis were the first to study

the EEG signals of twins [14]. After evaluating a number of EEG traits; mainly

based on distinguishing marks of the posterior rhythm, the authors concluded

that the resting EEG of Monozygotic (MZ) twins were identical; i.e. as similar

as recordings from an individual across time (fig. 2.4). This was not the case for

dizygotic (Dizygotic (DZ)) twins, whom had less similarity between their EEG

signals, although they were significantly higher than those of unrelated subjects.

These results were later confirmed by numerous works across time, regardless of

their methods of examination: visual inspection; measures on paper; or computer

evaluations [13].

Finally, the first direct connection between the morphology of EEG signals and

the genotype of subjects was made by F. Vogel [16]. Some of the effects of time over

the EEG signals also proved to be concordant across MZ twins. Interestingly, these

results were also found in studies of twins reared apart, excluding the effects of

exogenous factors. Similarities were also present in reactions to hyperventilation,

photic stimulation and during sleep. The Non-REM sleep EEG patterns have been

reported as more heritable than those of resting EEG or ERPs, especially in the

range between 8 and 16 Hz [17].

Familial studies reasserted the findings of experiments conducted with twins.

EEG traits such as the mean spectral power and frequency values of alpha and beta
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Figure 2.4: Individual EEGs of MZ (left) and DZ (right) twins. Shaded areas represent

variation [15].

bands were found highly heritable [13, 18]. Moreover, some of these parameters

seem to form a continuous phenotypic range rather than clusters in well defined

discrete classes, so that traits of family members are more alike than those of

unrelated individuals [19].

Other authors focussed on the brain response to external stimulus (ERPs).

VEPs and Auditory Evoked Potentialss (AEPs) were recorded from twins and

families, showing similar results to those obtained with the resting EEG recordings

[5, 13, 20, 21]. This came as no surprise given the strong relationship between the

resting EEG and ERPs described previously by F. Vogel.

Computational tools produced some interesting works. Those of H.H. Stassen

et. al. [22–24] are of special relevance. In them, the authors provided quantitative

evidences of such comparability between twins and family members by applying

similarity measures. Indeed, their first work could be regarded as unintentionally

being the inaugural publication of an EEG biometric system [22]. However, they

used it as a tool for the evaluation of the inheritance of EEG traits, without

much concern about performance as a security system in real scenarios. Other

works using computational tools focussed on the classification of Vogel’s proposed



12 Chapter 2. State of the art: comprehensive review

EEG spectral variants: alpha and beta variants [16, 25]. These major categories

were then divided into sub-classes based on finer details of the activity, such as

particularly slow alpha rhythms.

On top of so the so far described complexity of the problem, the EEG signal

seems to change with maturation [13, 21]. Furthermore, some of these changes

may not be homogeneous across subjects, rhythms, or brain areas. To remove this

variable factor across time and subjects, normalizing methods have been proposed

[26]. Still, some works claimed to have found a remarkable stability of EEG spectral

distribution between sessions recorded more than a year apart [27].

Overall, neurophysiological research suggests that alpha power and peak fre-

quency over occipital regions present the strongest heritability [6,13,21]. This laid

the foundations of the first works on EEG biometric identification. After all, hav-

ing detected the phenotype traits of EEG signals, it may be enough for a biometric

system to detect, and differentiate between, such features.

2.3 Most used databases in the literature

Some databases have been extensively utilised in the field of EEG based subject

identification. However, as most of them had no name, they were difficult to

track. In some cases, studies used the same data set but with a different number

of subjects or channels, making the tracking even harder. Here, we identified the

most used databases in the literature and propose names to them (table 2.1).

2.3.1 Poulos’ database

Poulos’ database was used in the first series of published works on EEG biometric

identification by M. Poulos et. al. back in 1998, and it has been used by this

group in many subsequent publications (hence the proposed name). The original

purpose of this database is unclear, as it was never specified by the authors. It is

unknown whether it was created for the sole purpose of subject identification, or
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Table 2.1: Databases used on multiple publications of the relevant literature.

DDBB # subjects Categories

Poulos’ 4 users + 75 impostors REC

Zhang’s 125 (48 healthy + 77 alcoholics) ERP, VEP

Keirn’s 7 Multiple-tasks

IIIaBCI03 3 Multiple-tasks

BCI2000 109 Multiple-tasks

Tottori 23 Consumer EEG; REC

Lanzhou 11 users + 11 impostors Consumer EEG; REC

if, as with many databases used in the literature, it was part of a data set collected

with other aims.

This is a small database composed mainly of only 4 registered users (here

referred to as SetR), from which 45 recordings were taken. Each session consisted

on 3 minutes of REC while the voltage difference from electrodes 02 and Cz was

recorded at a sample rate of 128 Hz. The database also contains a second subset

of data (SetX ) composed of a single recording session from 75 different subjects

used as impostor attacks in experiments.

2.3.2 Zhang’s database

X.L. Zhang recorded two databases for the purpose of studying visual memory [28]

and the effects of alcoholism on memory [29]. It is unclear whether these studies

actually used two independent databases or if the latter is an extension of the

former. However, as they were taken under the same exact conditions and their

only difference resides in the number of subjects, they could be considered the

same for the practical purpose of results comparison. Thus, from here on, they

will both be referred to as a single database named Zhang’s database, which is

publicly available [30].

In this case, subjects were exposed to visual stimulus consisting of black and

white images taken from the set of Snodgrass and Vanderwart [31]. These images
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Figure 2.5: Original experimental paradigm of Zhang’s database. Snodgrass and

Vanderwart image samples (left). Representation of the paradigm (right).

represent easily identifiable objects with defined verbal labels (fig. 2.5). The trials

consisted of two stimuli; S1 and S2, each lasting 300 milliseconds and separated

by 1.6 seconds. The subjects were asked to determine whether S1 was the same

as S2. In some cases, only one stimulus was presented (fig. 2.5).

Forty trials were recorded from each subject, leaving 3.2 seconds between trials.

EEG pre-stimulus data was kept as baseline from 190 milliseconds before any

stimulus was presented, and 1.44 seconds of EEG post-stimulus data was registered

from the moment a stimulus was presented. A set of 61 channels were used, with

all channels referenced to Cz. Data was sampled at 256 Hz and hardware filtered

between 0.02 and 50 Hz.

This was the first database used for subject identification with a recording

paradigm different than REC and REO. With a total of 125 subjects (48 healthy

males 25.81 ± 3.38 years old and 77 alcoholic patients 35.83 ± 5.33 years old2 [29]),

it also represented an important step forward in the size of the databases used

for this problem at the time. Having said that, the use of alcoholic patients on

biometric experiments could be problematic due to the effects of alcoholism on

EEG recordings (this will be further discussed in section 2.5).

2X.L. Zhang reported on [28] 14 males (24.3 + 3.1 years old) and 14 females (23.2 + 1.7 years

old), all healthy. This was the only difference found between the databases.
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There are a number of works that may have used this database [32–45]. The

work published by A. Zuquete et. al. [46] used a database that is similar enough

to allow for a direct comparison of results, as the only differences found in the

experimentation was the inter-stimulus time (increased to 5.1 seconds) and the

length of the EEG recordings (1 second post stimulus onset). In fact, Zuquete’s

database is also composed of healthy and alcoholic subjects.

2.3.3 Keirn’s database

Z.A. Keirn recorded EEG signals from 7 subjects (6 males and 1 female between the

ages of 21 and 48) while they were performing different mental tasks. Their aim was

to explore new human-machine interaction through the brain [47]. Although this

is a small database, its relevance resides on the multiple-tasks recording paradigm.

This allowed R. Palaniappan (the only author that had used it so far3) to study the

effects of different mental tasks on the problem of EEG based identification [48–51].

A total of 5 tasks were recorded. Each repeated 5 times under both REC and

REO on every session. Two sessions were taken from each subject in a time span

of 2 weeks. The tasks were:

T1 Baseline measurements. This task was taken as a baseline for comparison. In

this case, subjects were only asked to relax.

T2 Complex problem solving. Subjects were asked to mentally solve non-trivial

multiplication problems.

T3 Geometric figure rotation. Subjects were presented with an image of a 3-

dimensional complex object and were asked to mentally rotate it.

T4 Mental letter composition. Subjects had to mentally write a letter to a friend

or a family member.

3As detailed in subsequent sections, we have also made use of Keirn’s database.
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T5 Visual counting. Subjects were asked to visualize numbers being written on

a blackboard sequentially, with the previous number being erased before a

new number is written.

Only the EEG signals from electrodes 01, 02, P3, P4, C3 and C4 were captured

on these experiments. Data was hardware filtered between 0.1 and 100 Hz and

sampled at 205 Hz. The EEG signal was recorded during 10 seconds of each task.

The database is publicly available [52].

2.3.4 IIIaBCI03 database

IIIaBCI03 database is another multiple-tasks database that has been used on dif-

ferent studies [44,53–57]. It is the data set IIIa of the BCI competition of 2003 [58],

provided by the Laboratory of Brain-Computer Interfaces of the Graz University

of Technology (Gert Pfurtscheller, Alois Scholögl).

The database is composed of only 3 subjects performing the following 4 tasks:

T1 : Imagining the movement of the left hand.

T2 : Imagining the movement of the right hand.

T3 : Imagining the movement of the foot.

T4 : Imagining the movement of the tongue.

Each subject performed each task 60 times. EEG was recorded by 60 electrodes

(+4 references) at a sampling rate of 250 Hz. The signal was hardware filtered

between 0.5 and 100 Hz and with a 50 Hz notch filter.

2.3.5 BCI2000 database

The BCI2000 data set consists of 109 subjects performing different motor/imagery

tasks [59–61]. A total of 64 EEG electrodes, as per the international 10-10 system,
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were recorded. One of the mastoid channels was used as reference. Recordings

were taken with a sampling rate of 160 Hz.

Each subject performed 14 experimental blocks: two one-minute baseline blocks

(one REO and one REC), and three two-minute blocks of the four following tasks:

T1 A target appears on either the left or the right side of the screen. The subject

opens and closes the corresponding fist until the target disappears. Then the

subject relaxes.

T2 A target appears on either the left or the right side of the screen. The

subject imagines opening and closing the corresponding fist until the target

disappears. Then the subject relaxes.

T3 A target appears on either the top or the bottom of the screen. The subject

opens and closes either both fists (if the target is on top) or both feet (if

the target is on the bottom) until the target disappears. Then the subject

relaxes.

T4 A target appears on either the top or the bottom of the screen. The subject

imagines opening and closing either both fists (if the target is on top) or

both feet (if the target is on the bottom) until the target disappears. Then

the subject relaxes.

So far, this database have only been used by three studies [62–64], but it is one

of the largest public databases in terms of number of subject.

2.3.6 Tottori database

Tottori database was the first to be recorded with a consumer EEG equipment

and used for the problem of subject discrimination. It was collected in the Tottori

University (Japan) by C. Miyamoto et. al. and was used in several studies in the

practical application of EEG for identification [65–68].
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The authors recorded data between 1 and 24 Hz at a sample rate of 128 Hz.

The hardware had a minimum and maximum voltage range sensibility of 5 and

80 uVpp respectively and it only contained the frontal electrodes Fp1 and Fp2.

The recording sessions were kept simple, in order to make the EEG identifi-

cation process more practical. Ten sessions were registered the same day from 23

subjects while they were REC. The last minute of a 3 minute recording was used

for the experiments.

2.3.7 Lanzhou database

The Lanzhou University (China) database was also recorded with consumer EEG

equipment. In this case, a Nexus-4 machine was used. This is a wireless device

connected through bluetooth with a sample rate of 256 Hz. In a bid to simplify the

process for practical applications, only electrodes Cz and A2 were collected [69–72].

Again, EEG was recorded while subjects were REC. The database contains

11 registered users (6 males and 5 females between 20 and 24 years old) and

11 intruders. Five recording sessions distributed over a few days were taken for

both users and intruders. Around 6 months later, an extra recording session was

implemented only for users, not intruders.

2.4 Experiments and results

This section provides a detailed review of the experiments and results in the state

of the art on EEG based identification following the proposed categorization. For

the sake of clarity and in order to easy the tracking of events, authors have been

clustered in groups4.

4The name of the main author at the moment of their first publication was used as a convention

for naming groups.
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2.4.1 Resting states

The first publication available on automatic EEG biometric identification was

in 1980 by H.H. Stassen [22]. He experimented with EEG signals recorded by

two posterior electrodes from a group of 82 subjects from 4 different psychiatric

diagnostic groups. By building a region, delimited by the maximum and minimum

Power Spectrum Density (PSD) of each subject, he evaluated the level of similarity

between subjects. He finally reported a classification rate of around 90%.

However, Stassen’s was an isolated work meant to build a tool for future ge-

netic and neurophysiological studies. The first series of related papers started in

September 1998 by M. Poulos et. al. [73]. Their work was based on previous find-

ings about the inheritance of EEG traits, which stated that the posterior rhythm

is the most genetically determined trait of the resting EEG. In a bid to facilitate

the arousal of such rhythm, a REC database was used. The proposed system

relied on the Absolute Power Spectrum (APS)5 of the alpha rhythm (7-12.5 Hz)

recorded by the O2 channel and classified by a Computational Geometry based

classifier (CG) algorithm. When tested on 4 subjects of Poulos’ database SetR,

this approach reached a success rate of 95% with regard to classification. The

authors also reported a 96.2% impostors rejection rate on the SetX.

These results encouraged Poulos’ group to keep investigating the usage of EEG

as a biometric modality for subject discrimination. In the following years, they

published a set of experiments interchanging coefficients of the PSD and Auto-

Regressive (AR) models as descriptors and CG and Artificial Neural Network

(ANN) as classifiers [74–77]. Systems were always applied over the alpha rhythm

and tested using Poulos’ database. In these studies, they explored for the first time

the differences between sub-bands of the alpha rhythm, concluding that the mid-

range sub-bands provided the most discriminative information. In a later work,

Poulos et. al. used a spectrum range that included, for the first time, all the main

5PSD refers to frequency spectral vector, while APS refers to a single power value within a

band.
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Table 2.2: Systems used on Poulos’ database. Columns specify: the name given to

the system for future reference (Sys.), filtered frequency bands (Freq. [Hz]), extracted features

(Feat.), applied classifiers (Cls.) and references of papers that used each design (Ref.).

Sys. Freq. [Hz] Feat. Cls. Ref.

Pou1 [7-12.5]; 0.3 Hz wide sub-bands

PSD

CG [73]

Pou2 [7-10]

LVQ-ANN
[74,77]Pou3 [8-11]

Pou4 [9-12]

Pou5 [7.5-12.5]

AR

[75]

Pou6 [7.5-12.5]; 1 Hz width sub-bands CG [76]

Pou7
[1-30] LVQ-ANN [78]

Pou8 Bilinear-AR

brain waves (i.e. delta, theta, alpha and beta), but failed to evaluate each band

individually [78].

Unfortunately, Paulos’ team’s results cannot be compared directly, as differ-

ent experimentation procedures were used on each occasion (tables 2.2 and 2.3).

However, they seem to suggest that PSD coefficients provide better accuracy than

AR models. Both methods have now been widely used by many researchers.

However, the fact that Poulos’ database contained only 4 subjects prevented

the establishment of any robust conclusions. In 2001, R.B. Paranjape et. al.

published a study that tested 40 subjects’ REO and REC [79]. The system used

AR coefficients as features and a Discriminant Function Analysis for classification.

The authors noted that an increase in the order of the AR model was necessary

to accommodate the rise in the number of registered users. Using an order of

15, they achieved an 85% success rate. This provided more solid evidence for the

possibility of performing subject discrimination via EEG.

Paranjape et. al. suggested that better performance would be expected if more

than a single channel was used. In 2006, G. Mohammadi et. al. explored this [80].

AR coefficients and ANN were again used on a 10-subjects REC database. Authors

reported accuracies between 80 and 95% (depending on the order of the AR model)
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Table 2.3: Results with Poulos’ database. Success rate (Succ.) of systems in table 2.2

on classification and verification experiments. The percentage of training samples and/or the

Cross-Validation (CV) method used on each case is specified (Tr.% / CV). In this case, training

percentage is specified as SetR% | SetX% (section 2.3.1). For works [74] and [77], only the best

results are shown.

Sys.
Classification Verification

Tr.% / CV Succ. Tr.% / CV Succ.

Pou1 55.56 | 40 95.00%
Not tested

Pou6 22.23 | 0 47.91%

Pou2

55.56 | 0
83.75%

55.56 | 33.34
87.50%

Pou3 86.25% 89.28%

Pou4 86.25% 87.85%

Pou2

44.45 | 0

91.00%

Not testedPou3 94.00%

Pou4 95.00%

Pou7 68.00%

44.45 | 40
79.28%

Pou8 78.00% 80.00%

Pou5 Not implemented 79.28%

when one posterior channel was used, and between 85 and 100% by fusing two or

more channels. In addition, they noted by visual examination that electrodes from

the back of the scalp provided better performances than electrodes from anterior

regions. This assertion was later proved empirically by several works [81, 82] and

was in line with the fact that the alpha rhythm is more prominent in occipital

areas.

In 2009, P. Tangkraingkij et. al. published the first detailed study on the spatial

distribution of discriminant information [83]. Their system applied Independent

Component Analysis (ICA) directly over the raw EEG for feature extraction and

relied on an ANN for classification. When the Joint Approximate Diagonalization

of Eigenmatrices (JADE)-ICA algorithm was employed, the system achieved 100%

accuracy for a 20-subjects REO database using all available 16 channels. When

testing different channels combinations, they managed to retain perfect classifica-
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tion using only 3 channels. The authors concluded that the most discriminative

channels under the REO are Fp1, P3 and C4.

However, a year later, M.K. Abdullah et. al. reported a significant drop in

performance when moving from central to parietal electrodes under REO, but not

on a REC scenario [84]. Contrary to P. Tangkraingkij et. al., they concluded

that the P3 electrode should be dropped on REO. The authors also compared

the performance between left and right hemispheres, which were found not to be

statistically significantly different. In addition, REC outperformed REO in general

terms. Nevertheless, on a second work with different processing techniques, their

results failed to replicate some of these findings, specially those regarding left

versus right hemispheres and REC versus REO [85].

In 2011, P. Campisi et. al. also examined the contribution of different brain

areas and different frequencies [81]. Their results showed again a decrease in per-

formance when moving from posterior to anterior areas. This decrease was more

pronounced when frequency rhythms above 33.33 Hz were removed from the EEG

signals. The best results were obtained with the temporal triplet T7-Cz-T8 and

a cut-off frequency of 33.33 Hz (96.08% accuracy over a 48-subjects database).

Results also showed an increase in performance between 4 and 9 percentage points

between the regular AR coefficients and their Reflection Coefficients (RC) coun-

terpart.

In a later work, Campisi’s team bolstered their conclusion on the spatial distri-

bution of discriminant information [82]. The results also showed that performance

was maximized using the alpha and delta rhythms, followed by the theta rhythm

and finally the gamma rhythm. When the selective filter was set to include more

than a single rhythm, the performance of the system increased. In particular,

the best outcome was obtained when all 4 rhythms were included and electrodes

O1-POz-O2 were used, reaching almost 99% accuracy.
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2.4.2 Event related potentials

In 2002, R. Palaniappan et. al. used for the first time VEPs for biometric iden-

tification [32]. They aimed to extract discriminant information from higher brain

functions like perception and memory. Their system extracted the APS of the

gamma band from 61 electrodes. An ANN was applied for classification. This

achieved, on average, 90.95% accuracy on 10 subjects of Zhang’s database (tables

2.4 to 2.8).

In the following years, Palaniappan’s group focussed on perfecting their VEPs

based design. They experimented with Principal Component Analysis (PCA),

both as a preprocessing step for noise reduction (PCA-NR) [33] and as a feature

reduction technique [36]. They tested different band widths such as that of the

late gamma band (between 30 and 50 Hz [38]), and numerous filters [35]. They

also tried to increase the system’s performance normalizing the features [34] and

applying different classification techniques. Two of their works offer the results

of an interesting set of experiments combining and directly comparing several of

these methods [37, 39].

In a bid to reduce the volume of data processed by the classifier, in 2007,

Palaniappan’s group applied the Multiple Signal Classification (MUSIC) algorithm

to select features from the PSD coefficients of the dominant frequencies between

25 and 56 Hz [86]. An ANN was used for classification. This approach achieved

97.61% accuracy for 102 subjects of Zhang’s database. However, this pool of

users included both healthy and alcoholic subjects (see section 2.3.2). Hence,

the previous result, and for that matter the results of all experiments with this

characteristic, should be carefully interpreted (see section 2.5 for a discussion).

In 2006, landmarks of VEPs, APS and AR coefficients were directly compared

by A.J. Power et. al. [87]. A LDC and a 13-subjects database were used. Results

showed that relative amplitudes between two channels of P100 and N75 performed

around 15 percentage points above N1356. When fused, P100 and N75 between Oz

6The terms P100, N75 and N135 refer to peaks on an ERP, so that P100 is a positive peak
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Table 2.4: Systems used on Zhang’s database. Along with those presented on table 2.5.

Refer to table 2.2 for details of the columns’ nomenclature.

Sys. Freq. [Hz] Feat. Cls. Ref.

Zha01

[32-48] APS

FA-ANN [32]

Zha02 RB-ENN
[86]

Zha03 Manh. kNN

Zha04

[30-50]

Butterworth

APS

SFA-ANN [37,39]

Zha05 Eucl. kNN [39]

Zha06 Manh. kNN [37,39]

Zha07 LDC [39]

Zha08

Norm.APS

BP-ANN [34,36,40]

Zha09 SFA-ANN [39]

Zha10 RB-ENN [86]

Zha11 Eucl. kNN [39]

Zha12 Manh. kNN [39,86]

Zha13 LDC [39]

Zha14

PCA-NR; APS

SFA-ANN [33,39]

Zha15 Eucl.kNN

[39]Zha16 Manh. kNN

Zha17 LDC

Zha18

PCA-

NR;

Norm.APS

BP-ANN [38]

Zha19 SFA-ANN [37–39]

Zha20 Eucl. kNN [39]

Zha21 Manh. kNN [37,39]

Zha22 LDC [39]

and O2 obtained a success rate of 82%. The APS ratio of the beta band reached

59.6% accuracy, outperforming that of the alpha band on more than 40 percentage

points. The 4-order AR coefficients produced a 63.5% success rate. In all cases,

the best results were obtained with occipital channels.

A year later, G.K. Singhal and P. RamKumar proposed a system based on

100 msecs post-stimulus and N75 and N135 are negative peaks 75 and 135 msecs post-stimulus

respectively.
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Table 2.5: Systems used on Zhang’s database. Along with those presented on table 2.4.

Refer to table 2.2 for details of the columns’ nomenclature.

Sys. Freq.

[Hz]

Feat. Cls. Ref.

Zha23

[30-50]

Elliptic

Norm.APS
BP-ENN [35]

Zha24

LDC [41]
Zha25 Norm. APS; 13 ch. by GA

Zha26 Norm. APS; 23 ch. by GA

Zha27 Norm. APS; 40 ch. by GA

Zha28
[20-50]

Elliptic

AvgMnt; Norm. APS; 1 ch. by DBI

RB-ENN

[40]Zha29 AvgMnt; Norm.APS; 35 ch. by DBI

Zha30 AvgMnt; Norm. APS; 50 ch. by DBI

Zha31 [30-70]

Elliptic

Norm. and whitened APS; PCA [36]

Zha32 [26-56]

SD-FIR

AvgMnt; APS of dominant frequency by

MUSIC
[86]

Zha33 Manh. kNN

Zha34 [30-50] AR model of order 14 + Peak value of

PSD; LDC
Eucl. kNN

[42]

Zha35
Full

range

AR model of order 4 [43]
Zha36

lSVM
Zha37 From channles C3, Cz, C4, P3, Pz, P4,

O1, O2: MFCC + spectral features +

APS + pitch + zero crossing rate +

probability of voicing + jitter and

shimmer and their statistics;

Correlation-based floating forward

feature selection

[44]
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Table 2.6: Results with Zhang’s database. Success rate of systems in tables 2.4 and 2.5

evaluated on classification with 20 subjects. For systems with configurable parameters accuracy

ranges are given. Refer to table 2.3 for details of the columns’ nomenclature.

Sys. Tr. % / CV Succ. Min-Max Succ.

Using 20 subjects of Zhang’s database

Zha08
50%

99.06% 98.98-99.15

Zha14 94.18% 93.50-97.75

Zha37* 66.67% 92.80% -

Zha04

Leave-One-Out

71.14% 70.50-73.00

Zha05 66.12% 63.13-67.63

Zha06 70.88% 67.38-72.38

Zha07 84.00% -

Zha09 66.26% 65.38-69.88

Zha11 62.48% 59.88-63.63

Zha12 65.64% 63.25-67.00

Zha13 85.75% -

Zha14 91.93% 91.63-93.25

Zha15 91.54% 90.75-92.25

Zha16 94.18% 93.75-95.25

Zha17 84.25% -

Zha19 92.84% 92.25-95.25

Zha20 89.32% 87.88-90.38

Zha21 92.04% 89.50-93.13

Zha22 96.50% -

Zha34 100% -

Zhan37*: In this case, even though only 20 subjects of the Zhang’s database were used, the

pool contained 10 healthy subjects and 10 alcoholics.
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Table 2.7: Results with Zhang’s database. Success rate of systems in tables 2.4 and 2.5

evaluated on classification with 40 subjects. For systems with configurable parameters, accuracy

ranges are given. Refer to table 2.3 for details of the columns’ nomenclature.

Sys. Tr. samples Succ. Min-Max Succ.

Using 40 subjects from Zhang’s database

Zha08

50%

95.69% 95.37-96.13

Zha18 95.40% 89.83-97.33

Zha19 82.44% 81.54-85.59

Zha23 95.42% 95.00-96.63

Zha31 99.08% 98.75-99.62

Zha08

Leave-One-Out

93.08% 91.38-94.00

Zha28 13.63% -

Zha29 98.29% 98.06-98.56

Zha30 99.00% -

Zha24

50% for GA; 50% for Leave-One-Out

72.25% 55.00-.90.00

Zha25 44.65% 35.00-65.00

Zha26 73.95% 53.00-86.00

Zha27 82.00% 75.00-95.00

VEPs measured by a single occipital electrode (Oz) [88]. The algorithm was again

based on VEP’s landmarks (phases, amplitudes and latencies) and relied on a

similarity measure with a 2 dimensional Gaussian kernel classifier. Their method

achieved 78% classification accuracy on a 10-subjects database.

In 2009, K. Das et. al. studied the spatio-temporal pattern responsible for

encoding subject discriminant data [89]. They computed what they called the

“fisherbrains”: coefficients of the Linear Discriminant Analysis (LDA) (fig. 2.6).

In the temporal domain, they concluded that the most informative signal arises

between 120 and 200 msecs after the stimulus is presented, while pre-stimulus sig-

nal led to poor results (chance level). Presumably, these 120 msecs time-scales

are required in order to process the visual information. In terms of space, occip-

ital regions proved again to be more critical for subject identification. When a

Linear SVM (lSVM) was used for classification, the system achieved performances
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Table 2.8: Results with Zhang’s database. Success rate of systems in tables 2.4 and 2.5

evaluated on classification with 10, 102, 120 and 122 subjects. For systems with configurable

parameters accuracy ranges are given. Refer to table 2.3 for details of the columns’ nomenclature.

Sys. Tr. samples Succ. Min-Max Succ.

Using 10 subjects from Zhang’s database

Zha01 50% 90.95% 88.00-95.00

Using 102 subjects from Zhang’s database

Zha02

10 k-folds

96.43% 95.09-96.64

Zha03 90.70% 89.75-92.87

Zha10 96.01% 94.63-96.58

Zha12 89.85% 88.48-91.94

Zha32 97.61% 96.77-98.12

Zha33 95.85% 95.00-96.13

Using 120 subjects from Zhang’s database

Zha35
4 k-folds

95.02% 93.24-96.34

Zha36 98.86% -

Using 122 subjects from Zhang’s database

Zha37 66.67% 61.70% -

Figure 2.6: Fisherbrains. K. Das’ fisherbrains from two subjects from a 170 msecs post-

stimulus VEP [89].

between 90% and 95% accuracy on a 20-subjects database.

A. Ferreira et. al. proposed in 2010 a system based solely on an SVM [90,91].

This was the first time that an SVM with a non-lineal kernel, in particular an

Radial Basis Function (RBF) kernel, was utilised for EEG based identification.

They achieved an 84.33% success rate on a 13-subjects database. Although worse

than those of the state of the art, this result was remarkably high considering that
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the system relied on raw EEG voltages.

Finally, in 2012, P. Nguyen et. al. borrowed techniques from the voice-

processing field [44]. In particular, they built the following feature vector:Mel-

Frequency Cepstral Coefficients (MFCC), spectral features, energy and pitch mea-

surements, zero crossing rate, probability of voicing, jitter, shimmer, and their as-

sociated statistics. A correlation-based feature selection, with sequential floating

forward selection, was then applied to reduce the dimensionality of the data. An

lSVM was applied during classification. The model achieved 92.80% and 61.70%

classification accuracies on 20 and 122 subjects of Zhang’s database respectively

(in both cases, healthy and alcoholic users where included).

2.4.3 Multiple-tasks

In a bid to explore the possibilities of new recording tasks, at the end of 2005

R. Palaniappan published the first study to compare the performance of different

mental tasks [48]. As a starting point, he used AR coefficients and an LDC, a

configuration extensively used in the field. Four subjects of Keirn’s database were

used for testing. The lowest accuracy; 92.45%, was obtained by tasks 1 and 4, while

the best result; 97.40%, was obtained by task 2. Recalling from section 2.3.3, tasks

1 and 4 correspond to relaxed and letter composition tasks respectively, while task

2 corresponds to solving complex mathematical problems.

Palaniappan also experimented with the fusion of features from two tasks.

This resulted in an increase in performance. The best results were obtained fusing

tasks 2 and 4, with 99.05% of success, and tasks 2 and 4 with 98.95%. These

combinations included both the best and one of the worst performing tasks when

they were evaluated individually.

Palaniappan’s team produced three more papers using 5 subjects of Keirn’s

database, reasserting that the fusion of different tasks increases performance [49–

51]. However, they obtained contradictory results regarding the differences be-

tween paradigms. For example, some experiments reported tasks 2 and 4 being
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Table 2.9: Systems used on Keirn’s database. All these systems share a common high-pass

pre-filtering stage at 0.2 Hz using an elliptic filter. In addition, the EEG signal separated into

20 segments of 0.5 seconds windows. Refer to table 2.2 for details of the columns’ nomenclature.

Sys. Feat. Cls. Ref.

Kei1 6 order AR LDC [48]

Kei2 Kei1’s features + APS and IH-APS of

[8-13]Hz, [14-20]Hz and [21-50]Hz bands;

PCA

LDC [49]

Kei3 Kei2’s features + inter-hemispheric channel

linear complexity + non-linear complexity

2 stage Manh.

distance OCC
[51]

Kei4 Kei3’s features; PCA

the best and worst respectively, reversing the conclusions of Palaniappan’s first

work. When groups of 3 were evaluated, tasks 1, 2 and 4 appeared again in the

best combinations (tables 2.9, 2.10 and 2.11).

In 2007, Marcel and Millan published the first work that actually studied the

effects of time over an EEG based identification system [92]. They did so us-

ing a data set including the imagined tasks of moving the left hand, moving the

right hand and producing words. Their system was based on Normalized (Norm.)

PSD features and a Gaussian Mixture Model (GMM) classifier. Results showed a

drop in performance when training and testing sets got apart in time. They also

noted that this drop can be circumvented by using a multi-day-session training

approach. They obtained a best Equal Error Rate (EER) of 6.60% with the left

hand movement task.

At the end of that year, S. Sun proposed a Multi Task Learning (MTL) ap-

proach where an ANN was trained with features extracted from multiple tasks [93].

The 9-subjects database used contained only two tasks: imagine left and right

hand movements. An increase of around 4 percentage points was observed when

the MTL approach was used, obtaining 95.60% and 94.81% classification on each

task respectively.
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Table 2.10: Results with Keirn’s database. Success rate and EER of systems in table 2.9

evaluated on classification and verification experiments with a maximum of 5 subjects. In both

cases, a CV method using 50% of the database for training and 50% for testing was applied.

Results of individual and combined tasks are presented. Refer to table 2.3 for details of the

columns’ nomenclature.

Classification Verification

Sys.: Kei1* Kei2 Kei3 Kei4

Task/s Succ. EER

Task 1 92.45% 97.77% 0.15% 0.20%

Task 2 97.40% 96.88% 0.07% 0.07%

Task 3 94.30% 97.84% 0.00% 0.00%

Task 4 92.45% 98.64% 0.10% 0.12%

Task 5 95.30% 98.40% 0.00% 0.02%

Tasks 1 & 2 98.98% 99.60%

Tasks 1 & 3 98.15% 99.52%

Tasks 1 & 4 98.50% 99.60%

Tasks 1 & 5 98.50% 99.60%

Tasks 2 & 3 98.85% 99.24%

Tasks 2 & 4 99.05% 99.76%

Tasks 2 & 5 98.90% 99.32%

Tasks 3 & 4 98.60% 99.56%

Tasks 3 & 5 98.35% 99.40%

Tasks 4 & 5 98.75% 99.60%

Kei1*: Only 4 of the 5 subjects were used.

The previous scenario of imagined movements of the left hand outperforming

the right was also studied by other researchers. For example, in 2009, X. Bao’s

et. al. found no significant differences between these tasks on their experiments

on IIIaBCI03 database [53, 55]. Their results also showed that imagining tongue

movement produced better results compared to hand tasks; around 10 percentage

points better, and that frequencies between 20 and 30 Hz provided more discrim-

inant information than lower ones. Nevertheless, these results, and any result
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Table 2.11: Results with Keirn’s database. Success rate of systems in table 2.9 evaluated

on classification with a maximum of 5 subjects. A CV method using 50% of the database

for training and 50% for testing was applied. Refer to table 2.3 for details of the columns’

nomenclature.

Sys. Kei2

Task/s Succ.

Tasks 1, 2 & 3 99.84%

Tasks 1, 2 & 4 99.88%

Tasks 1, 2 & 5 99.68%

Tasks 1, 3 & 4 99.84%

Tasks 1, 3 & 5 99.60%

Tasks 1, 4 & 5 99.82%

Tasks 2, 3 & 4 99.98%

Tasks 2, 3 & 5 99.74%

Tasks 2, 4 & 5 99.78%

Tasks 3, 4 & 5 99.60%

Tasks 1, 2, 3 & 4 100%

Tasks 1, 2, 3 & 5 99.80%

Tasks 1, 2, 4 & 5 99.80%

Tasks 1, 3, 4 & 5 99.98%

Tasks 2, 3, 4 & 5 99.78%

Tasks 1, 2, 3, 4 & 5 100%

obtained with IIIaBCI03 database (tables 2.12 to 2.14), must be approached with

caution, as the database only contains 3 subjects. In fact, in a later work from the

same group, their results did show a superiority of an imagined left hand movement

task over the right hand equivalent [57].

In 2012, S. Yang and F. Deravi compared motor imagery tasks and actual

movements [62] using the BCI2000 database. However, they obtained inconclusive

results. One task gave better results when the actual movement was carried out

while the other performed better under the imagery condition. When the authors

studied the spatial distribution, they concluded that parietal and occipital channels
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Table 2.12: Systems used on IIIaBCI03 database. Systems 1 to 6 used only channels

C3, C4, P3, P4, O1 and O2. Refer to table 2.2 for details of the columns’ nomenclature.

Sys. Freq. [Hz] Feat. Cls. Ref.

IIIa1 [0.5-100]

AR + Linear Complexity +

PSD + Phase Locking Value

BP-

ANN

[53]
IIIa2 [8-13]

IIIa3 [14-20]

IIIa4 [21-30]

IIIa5 [2-40] IIIa1’s features + Energy

Entropy + Mutual Information

+ Cross-correlation

[54]

IIIa6 [2-40] ARMA model [55]

IIIa7 [8-30]

DWT [56]
IIIa8 [8-13]

IIIa9 [14-20]

IIIa10 [21-30]

IIIa11 Full SCBI-NR; 10 highest

coefficients of LDC

[57]

IIIa12 Same as Zha37 on table 2.5 [44]

Table 2.13: Results with IIIaBCI03 database. Success rate and EER of systems in table

2.12 evaluated on classification and verification experiments. A CV method using 50% of the

database for training and 50% for testing was applied.

Sys. Task1 Task2 Task3 Task4

Classification

IIIa1 81.20% 82.10% 82.80% 90.60%

IIIa2 ∼61% ∼62% ∼68% ∼68%

IIIa3 ∼56% ∼57% ∼54% ∼55%

IIIa4 ∼81% ∼72% ∼76% ∼88%

IIIa6 76.70% 77.90% 80.90% 92.20%

IIIa11 82.40% 79.10% 81.70% 88.10%

Verification

IIIa6 80.80% 80.50% 81.30% 92.80%
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Table 2.14: Results with IIIaBCI03 database. Success rate (Succ.) rate and EER of

systems in table 2.12 evaluated on classification and verification experiments. A CV method

using 50% of the database for training and 50% for testing was applied. These were MTL

experiments; i.e. systems used EEG from all the recorded paradigms to determine the user’s

identity.

Sys. Succ.

Classification Experiment

IIIa7 84.07%

IIIa8 ∼74%

IIIa9 ∼65%

IIIa10 ∼85%

IIIa12 99.00%

Verification Experiment

Sys. EER

IIIa5 ∼13%

were the most discriminant.

Finally, some works that used multiple-tasks databases focussed merely on

achieving high performances and did not report individual task results. For ex-

ample, C. He et. al. applied Multivariate AR (mAR) coefficients and Naive Bayes

classification [94, 95]. When tested on verification mode using a 4-subjects data

set with 5 motion related tasks and 16 electrodes distributed around the scalp, the

system obtained a Half Total Error Rate (HTER) of 6.70%. Soon after, He’s group

improved the design applying ICA as a spatial filtering tool and using a 7 order

AR model [96]. Such architecture obtained a HTER of 2.20% on an expanded

version of the database which contained 7 subjects.

Nguyen’s et. al. study, introduced in section 2.4.2, also tested several multiple-

tasks databases [44]. Their system obtained a 99.00% classification on the II-

IaBCI03 data set, a 46.24% on a 9-subjects database similar to the previous and

an 80.80% on another 9 subjects database with left and right hand imagery move-

ment tasks.
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2.4.4 Consumer EEG devices

Once the viability of identifying subjects using their EEG was established, re-

searchers started to realize its possibilities as a high level security system [97].

However, for this to become a reality, they first needed to overcome the hardware

issues. Medical and research EEG apparatuses are expensive and need qualified

staff, conductive gel and at least 15 minutes of preparation. Some authors already

tried to simplify this process by using less electrodes7. However, thanks to the

advances made in the field of sensors, easy to use electrodes and commercial EEG

caps started to be used for subject identification in 2008.

A. Riera et. al. presented the first true viability test of a real EEG verification

system [98]. In doing so, they used a database composed of 51 registered users

and 36 intruders, with REC sessions recorded in a time frame of 34 ± 74 days for

each subject, thus including the effect of time on their experiments. The system

used only two dry electrodes: FP1 and FP2. They applied a total of 28 combina-

tions of features and classifiers. These included AR and PSD coefficients, plus 3

statistical measurements, and 4 variants of the LDC. For each registered user, the

5 best combinations were selected. Using partially overlapping training and test

sets, authors reported a classification accuracy of 98.10% on the aforementioned

database. Following this, the best 15 classifiers were fused into a single verification

system, achieving an EER of 3.4%.

Around the same time, C. Miyamoto et. al. published two papers using Tottori

database [65,66] (table 2.15). In a bid to build a practical system, the authors used

simple designs based on spectral features and similarity measures. These models

achieved errors of around 20% in verification. A year later, they managed to lower

this to 11.00% using the concavity and convexity of the spectral distribution from

the alpha band [67].

F. Kennet provided a statistical study of multiple features [99]. His 12-subjects

7The first work with REC, while not approaching the research from this perspective, used a

single occipital channel
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Table 2.15: Systems and results with Tottori database. A CV method using 50% of

the database for training and 50% for testing was applied. Refer to table 2.2 for details of the

columns’ nomenclature.

Sys. Freq. [Hz] Feat. Cls. EER Ref.

Tot1

[7.8-13.3]

Non-dominant region of

the power spectrum

Similarity

measures

30%

[65]

Tot2 Variance of spectral power 30%

Tot3 Fusion of Tot1 and Tot2 21%

Tot4
Full range

N maximum spectral

values and their frequencies

30%
[66]

Tot5 Sum of frequency values

over a threshold

31%

Tot6 [8-13] Concavity of spectral

distribution, variance,

convexity of spectral

distribution

11% [67]

Tot7 Score fusion of Tot4 and Tot5 28% [66]

database, recorded with a ThinkGear device, contained multiple tasks: relaxation;

counting; reading a text; thinking on a colour; thinking on rotating a mouse;

thinking on a password; thinking on music; and thinking on words starting with

the letter “M”. Several features were computed. Results showed that the power

of high frequencies, between 20 to 50 Hz, were the most promising based on their

std/mean rate, while the mean of the phase angle produced the worst score. In

addition, features from the mid-range frequencies were the most normal, i.e. the

more stable. No relation between features and tasks was found on a Manhattan

metric (Manh.) based analysis.

In 2010, F. Su et. al. presented a work on the effects that diet and/or circadian

rhythms have on these systems [100]. They recorded a 40-users REC database with

the HXD-I EEG consumer device. The database included sessions captured before

and after the intake of coffee and at different times of the day. Using AR coefficients
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and PSD from 5 to 32 Hz as features, the system achieved 97.5% of accuracy when

classifying with a combination of LDC and k-Nearest Neighbour (kNN), 81.90%

when classifying with an ANN, and 79.60% when classifying with an SVM. The

results also showed a decrease in accuracy of around 10 percentage points when

coffee was drunk and a rise when the length of the EEG signal increased; peaking

at around 3 minutes long. A later study demonstrated that these differences on

performance were in fact statistically significant, and that diet and coffee affected

the system reliability [101].

Finally, Q. Zhao et. al. published a number of studies on Lanzhou database

[69–72] (tables 2.16 and 2.17). The latest of these works was the first to study the

influence of time over long periods (around 6 months) when using a commercial

EEG device [72]. The results reiterated the conclusions previously found by Marcel

and Millan [92]. Moreover, they implemented a fully functional system which could

record EEG from a mobile device and send it to a server for processing. Other

fully implemented systems have also been published [102,103].

2.4.5 Other approaches

All the works introduced so far aimed to identify or verify the users’ identity di-

rectly from their EEG activity. On the other hand, some works applied an indirect

approach based on information other than the subject’s unique EEG features that

would ultimately help to identify them.

Palaniappan’s group have been especially interested in such a strategy. After

studying the P300 wave under target and non-target visual stimulus [104, 105],

they proposed a system that allows to introduce a password via automatic stimulus

response. Such a system flashed letters [106] or numbers [107] to users on a screen.

When the target (the character that matched the subsequent password digit) was

flashed, the subjects’ brain produced a specific P300 response. This was detected

by the system, which then assembled the password. They managed to achieve a

perfect accuracy when 3 users performed 5 attempts of login.
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Table 2.16: Systems used on Lanzhou database. Refer to table 2.2 for details of the

columns’ nomenclature.

Sys. Freq. [Hz] Feat. Cls. Ref.

Lan1
Full range

6 order AR coefficients

kNN
[70]

Lan2 ApEn + C0-complexity +

correlation dimension D2

+ largest Laypunov

exponent

Lan3 [0-40] Fast-ICA; central freq. +

max. power + average

peak-to-peak value +

power ratio

[69]

Lan4 [4-7]

[70]Lan5 [8-13]

Lan6 [12-15]

Lan7 DWT-NR From an adaptive AR

model: Lan7’s features +

activity, mobility and

complexity Hjorth

parameters

[72]

Lan8 DWT-NR;

[8-13], [14-30]

and [4-7]Hz

from AR model: maximum

PSD and its frequency +

APS of each rhythm

Naive

Bayes

Classifier

[71]

S.K. Yeom et. al. [108, 109] used the differences between VEPs elicited by

self and non-self images to verify users (fig. 2.7). When tested on a verification

experiment, the model achieved an 86.10% success rate on a 10-subjects database

(Yeom’s database will be described in section 3.1.5). In addition, the authors noted

that frontal, central and parietal regions provided the most discriminant data.

2.4.6 Advances made in parallel to the present work

So far, we have analysed studies published before 2014. Between 2014 and April

2015, and during the execution of the remaining of the present work, a total of 22

extra publications have been identified, including conference and journal articles,

technical reports and a patent [110]. From these, the following are of special
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Table 2.17: Results with Lanzhou’s database. Success rate of systems in table 2.16

evaluated on classification and verification experiments. Refer to table 2.3 for details of the

columns’ nomenclature.

Sys. Notes Succ.

Classification Experiments

Lan3

3-kfolds over 3 registered users 99.23%

3-kfolds over 4 registered users ∼98.50%

3-kfolds over 5 registered users ∼97.75%

3-kfolds over 6 registered users ∼97.60%

3-kfolds over 7 registered users ∼97.25%

3-kfolds over 8 registered users ∼97.20%

3-kfolds over 9 registered users ∼96.90%

3-kfolds over 10 registered users

96.77%

Lan1 83.78%

Lan2 <25%

Lan4 97.29%

Lan5 94.59%

Lan6 94.59%

Lan8
Using 4 secs of EEG ∼65%

Using 60 secs of EEG ∼100%

Verification Experiments

Lan7

11 registered users + 11 intruders ∼66%

Same day test 94.60% TAR

1 week latter test 83.64% TAR

6 months latter test 78.20% TAR

interest.

Two published papers executed their experiments on the 108-subjects BCI2000

data set. M. Fraschini et. al. proposed a system based on the eigenanalysis of

a functional brain map of the Phase Lock Index measured on 6 bands between

0.5 and 50 Hz [63]. When evaluated with an Euclidean metric (Eucl.) distance

classifier on a verification paradigm, their architecture achieved an EER of 4.4%

and 6.5% on REO and REC respectively. Unfortunately, the authors gave no
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Figure 2.7: VEPs elicited by self and non-self face images [109].

details of the experimentation methodology.

Campisi’s team ran a classification test on the BCI2000 database [64]. They

reported a perfect classification accuracy under leave-one-out CV, on both REC

and REO. Their system characterized the EEG signals by the Spectral Coherence

(COH) of sensor pairs. Notably, to obtain the signal’s spectral representation,

they applied the Welch’s periodogram method with a 50%-overlapped 1-second

Hanning window. Finally, they applied a Manh. distance based classifier. Their

results showed that PSD coefficients of single channels performed, on average, 15

percentage points better than COH of single pairs. However, when the authors

fused (at score level) the responses of multiple channels/pairs, COH was the only

one to reach perfect classification. This was achieved for both REC and REO

when fusing pairs of frontal channels. Finally, they also reported that the PSD

of posterior sensors outperformed central and frontal regions under REC, but not

under REO .

In a later work, Campisi’s team used a 9-subjects database with two REC

and REO sessions recorded 1 or 2 weeks apart [111]. In this case, they used

AR coefficients extracted individually from delta, theta, alpha, beta and gamma

rhythms. LDC was applied for classification. After system optimization, they

decided to use a 10-order AR model on 1 second segments and to reject the gamma

band ([30, 40] Hz). When applying a CV protocol that trained and tested the
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system with different sessions, they achieved perfect classification using parietal

trios on REC.

Other proposals included the use of muscle and blink artefacts recorded by EEG

sensors for the discrimination of subjects [112–114], practical implementations of

EEG biometric identification systems [115,116], and two multimodal systems: one

fusing EEG and iris biometries [117] and another one exploiting the gender, age

and task information contained in the EEG signal to boost the overall system’s

performance [118].

2.5 Discussion

At this point, it is clear that the problem of EEG subject identification is sensitive

to several factors, such as: the spatial location of electrodes, frequencies, time

spans, recording tasks, subject conditions and, of course, the system’s architecture.

In many cases, this was accentuated by the fact that systems were highly tuned

for specific information. An example of this can be seen in the results obtained by

K. Das et. al. and S.K. Yeom et. al. using VEPs. While the former reported that

the most discriminant information was localized on the occipital region between

120 and 200 msecs after stimulus onset [89], the latter found the most discriminant

information on anterior brain regions and from 250 ms post-stimulus onset onwards

[108,109]. These differences in time and location are probably due to the important

detail that, even though both studies used a VEP paradigm, each was based on

different information within the ERPs.

Before assessing each of these factors, let us discuss the usage of EEG activity

recorded from unhealthy subjects for the evaluation of EEG based identification

systems. Some of the studies found in the literature used data from healthy and

alcoholic subjects [43, 44, 46, 86, 119, 120]. The problem with this practice is that

alcohol has been shown to affect various aspects of EEG activity [5, 6], including

the alpha rhythm [13]. Therefore, it is likely that such data sets were biased,
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overrating the systems’ performances. To clarify this, we encourage future works

including unhealthy individuals to provide a statistical study probing that the

computed parameters are not affected by the relevant disorder, i.e. assuring these

are uncorrelated.

2.5.1 Which are the subject specific traits of the EEG?

There is enough evidence to confirm the existence of subject identity within EEG.

Which these traits are is, at the moment, less clear. Genetic and neurophysiological

studies affirm that the power and peak frequency of the alpha band present the

strongest heritability relationship, followed by the beta band [18,21]. Nevertheless,

these bands by themselves proved to be insufficient to obtain high accuracy rates

on biometric systems, forcing researchers to explore the usage of different features.

In general, results suggest that it is the overall shape of the spectrum that codes

the subject’s identity. However, without an exhaustive study, we are prevented

from making definitive assertions.

2.5.2 Where are these traits in terms of location?

Several studies reported the optimum sources of discriminant information as being

occipital, temporal and parietal during REC [64, 80–82]. This should come as

no surprise given that the posterior rhythm was described as highly genetically

determined. The opposite scenario was observed under REO, where anterior brain

areas provided optimum discriminant information [64,83–85,121].

The balance seems to tilt back to occipital regions on VEP experiments [89].

This was attributed to the increase in activation of these areas during VEPs.

However, Yeom’s et. al. showed that when the experimentation procedure implies

personality and self-representation thinking, as in VEPs elicited by self images,

frontal brain areas are again the most discriminant [108, 109]. This could still

be associated with the relative activation of brain regions, given that the visual
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pathway describes a flow of information/activation from posterior to anterior areas

as the brain interprets the scene [122].

From the multiple-tasks studies, only Yang’s et. al. considered the spatial

factor [62]. However, they did so with a small database (only 3 subjects). Their

results show parietal areas near the temporal lobes carrying the most discriminant

information.

Differences between hemispheres are even less clear. Several studies, including

some neurophysiological, concluded that there is no significant hemisphere effects

[83, 84, 121, 123]. However, others have reported that such difference do exist [40,

57,85]. In the latter case, they all described a scenario where the right hemisphere

outperformed the left.

The lack of homogeneity in this regard hinders the extraction of any strong con-

clusion. Some of these variations can be explained by properties of the functioning

of the brain and system design. For example, systems analysing ERPs perform

better on occipital regions probably due to ERPs being more easily detected in

those areas. However, it could also be the case that the overall differences in

performance across locations are due to idiosyncrasies of the data, such as set-up

artefacts.

2.5.3 Where are these traits in terms of frequency?

The frequency factor has received much less attention. This is largely due to

authors focusing on localized information on a specific part of the spectrum, based

on previous studies or on their own experience.

On the REC paradigm, neurophysiological as well as biometric studies con-

cluded that alpha and delta rhythms are the most discriminant, followed by the

theta and the beta rhythms [18,21,82,123]. Within the alpha rhythm, the middle

section has outperformed the first and last portions in some experiments [74, 77].

However, this is not always the case, and the theta rhythm has also been reported

to be the most discriminant one [70].
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On the remaining tasks, it has usually been the case that higher frequencies

produce better classification rates [53, 56, 63, 68,99].

2.5.4 Are they constant across time?

Genetic and neurophysiological studies have described changes in human EEG

across maturation, some of which are related to heritable traits [13]. Even though

these must be considered in genetic studies, one can decide not to contemplate

them in an adult security system, as they are slow changing effects past develop-

mental years8.

Genetic and neurophysiological works have observed high stability of EEG

PSD between sessions recorded even one year apart [27]. However, apart from I.

Nakanishi et. al. visual inspection [67], all biometric studies have contradicted

this. S. Marcel and J.D.R. Milla were the first to observe a drop in performance

when the training and test sessions grow further apart in time [92]. In addition,

studies on diet and circadian effects revealed how sensitive a system could be to

changes of the EEG activity elicited by common events, such as the intake of coffee

or daily physiological changes [100,101,124]. Having said that, authors also noted

that this can be circumvented by a multi-day-session training approach [43,72,125].

2.5.5 Are they constant across cognitive tasks?

Performance differences on multiple-tasks databases have been reported since the

very beginning of this research field, except for Kennet’s statistical work [99]. The

first Palaniappan’s results suggested that the most cognitively demanding tasks

provide the best discriminant information [48]. However, this was soon undermined

by follow-up work of his, where the findings were inverted [49].

Such a high variability, even between studies performed by the same research

8EEG activity has been identified to change dramatically during developmental years until

approximately 19-20 years old [13].
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group, hinders the extraction of a consistent narrative. Even in a comparison

between left and right hand movement imagery tasks, there are several works

reporting that the left outperforms the right [57, 92, 93, 119] and several stating

something else [53, 55].

What seems to be clear is that the systems extracted some task-dependant

discriminant information. This was exhibited by Palaniappan’s results, where the

best combination of tasks turned out to include the best and the worst performing

ones individually. In addition, this hypothesis is in line with S. Sun’s results on

MTL [93].

2.5.6 Which is the best design approach?

Explored features can be divided in two large groups: “broad” and “specific”.

The majority of the publications fall in the former group, which refers to features

that describe EEG signals extensively. Hence, the discriminant information is

not directly presented, but somewhat hidden within the larger picture. The more

prominent examples are coefficients of AR models and PSD. In these cases, it

is the classifier or a feature selection technique which must find/access the right

data.

Specific features include peak APS and its corresponding frequency and ERP

characteristics. In these cases, the discriminant information is more directly ex-

posed to the classifier, facilitating its task. These have been the de facto features

used on consumer EEG databases, mainly due to the pursuit of low processing

complexity and high speeds. Although specific features have achieved lower accu-

racies, they have boosted the performance of broad features when concatenated.

For example, R. Palaniappan improved his system on a multiple-tasks database

by including APS measurements from each sub-band to the AR coefficients [51].

Even when the AR coefficients already contained such information; in fact APS

values were computed from the AR coefficients.

In addition, the use of data from multiple electrodes, rhythms and tasks in-
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creases the system’s performance, as well as the application of NR techniques.

Tools such as LDA for feature reduction and LDC and SVM for classification seem

to give better results.

Regarding the indirect methods studied by Palaniappan’s work, these do not

measure any EEG subject specific traits. They represent BCIs to enter passwords

and, as a consequence, they lack most of the robustness of EEG biometric systems.

2.5.7 Medical versus consumer devices

Judging from the relatively few works using consumer EEG devices, they seem to

provide worse results than medical equipment. This could be attributed to the

quality of the recorded signal. Nevertheless, a specific experiment using the same

subjects and tasks recorded with both types of equipment is necessary to draw a

firm conclusion on this matter.

2.6 Conclusions

We have presented an extensive research of the state of the art on EEG biometric

identification systems. We conclude that the EEG, and in particular its spectral

distribution, contains subject specific traits suitable for a biometric identification

system. Moreover, results suggest that this is specially true for data within the

alpha rhythm.

Perhaps, one of the most striking facts of this analysis is the low level of

agreement between studies. This may come as a consequence of the complexity of

the heritable model underlying the EEG traits, along with the amount of degrees

of freedom in the problem. On top of that, some of the considered variables seem

to be dependant on one another. Hence, we conclude that the state of the art only

scratches the surface of the problem, and further research is needed to draw firmer

conclusions.



2.6. Conclusions 47

Having said that, we can extract from the presented results that: the combina-

tion of multiple electrodes, rhythms and tasks increases the system’s performance;

and a multi-day-session training approach and/or a continuous learning method

can counteract the detrimental effects of time. Other features are less clear. Con-

sumer EEG devices may give worst results than medical equipment, presumably

because of the quality of the recorded signal. On the other hand, if the traits

used are robust enough to noise, this may not be the case. In addition, tools

such as PCA-NR, LDA for feature reduction and LDC and SVM seem to provide

higher performances. Although this depends, again, on all the other variables of

the problem.
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Chapter 3

Materials

Almost all of the studies presented in chapter 2 focused on the analyses of isolated

databases. Even when multiple data sets were used [27, 44, 126], authors tested

systems with different architectures, but never analysed base properties of the

EEG traits. In addition, databases were not always publicly available. These

two facts hinder the interpretation and reproduction of results. In chapter 5, we

will present a study of the basic properties of the EEG discriminant information,

performed on 6 publicly available databases with different characteristics. Two of

these databases: Keirn’s and Zhang’s, have been extensively used in the literature.

Two more: BCI2000 and Yeom’s, have also been used in the literature, but less

frequently. The remaining 2: DEAP [127,128] and P. Ullsperger’s [129] databases,

are new within this context (EEG biometrics).

In this chapter, we will describe in detail the 6 data sets used throughout the

current work. First, we will introduced the original properties of the databases

and its initial preparation. Subsequently, we will detail the preprocessing applied

to each of these databases in a bid to reduce noise and uninteresting differences

between them; such as sampling frequencies and montages. We will close with a

description of the ten final data sets extracted from the original 6 databases.
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3.1 Raw databases

Data sets were initially prepared with the aim of maximizing the available data

and testing conditions. However, in some cases, it was necessary to exclude data.

For example, we only included subjects identified as healthy/normal to avoid any

bias on the obtained results. We also rejected subjects with not enough trials

per task, to ensure reasonably balanced data sets. In other cases, the original

EEG segments were fragmented maximizing the inter-segment time to increase

the number of samples.

3.1.1 BCI2000 database

BCI2000 database has been previously described (section 2.3.5). It is mainly

composed of two resting states and 4 tasks, each divided in three conditions. Here,

we considered all the possibilities within each individual task. That is: a relaxing

stage, left/right for T1, left/right for T2, and fists/feet for T3 and fists/feet for

T4. As a result, a total of 11 tasks (4x2 tasks + 1 common relaxing stage + 2

baselines) were differentiated.

We extracted a total of three different sets: BCI2000-Baseline, BCI2000-Tasks

and BCI2000-Full. The first contains samples from the REO and REC tasks,

each divided in 5 10-second segments, non-overlapped and as temporally spaced

as possible. The BCI2000-Tasks set contains the 9 labels (4x2 tasks + 1 common

relaxing stage) from the different tasks. Non-overlapped 4-second segments were

extracted, again as temporally spaced as possible. The last data set, BCI2000-Full,

contains 4-second segments of all of the 11 tasks.

As it is not specified on the documentation, it was assumed that all blocks were

recorded in a single session.
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3.1.2 DEAP database

The DEAP database (Dataset for Emotion Analysis using EEG, Physiological and

Video Signals) was originally collected to study emotional responses [127, 128]. A

single session was recorded from 32 participants (50% males, aged between 19 and

37, mean age 26.9) while they visualized 40 60-second music videos which elicited

different emotions. These music videos were presented on a 17-inch screen placed

at 1 meter from the participant. The resolution was set to fit approximately 2/3

of the screen in a bid to reduce aye movements. The sound was played through

stereo speakers. 32 AgCl EEG electrodes and peripheral physiological signals were

collected by a Biosemi ActiveTwo system at a sampling rate of 512 Hz. Recordings

were made without a reference channel, as is usually the case with the Biosemi

hardware.

Before each session, a 2-minute baseline was recorded with subjects relaxed.

We extracted three separate sets: DEAP-Baseline, DEAP-Playback and DEAP-

Full. The first is composed of 5 20-second segments per subject of the recorded

baseline, non-overlapped and as temporally spaced as possible. The playback

dataset contains 20-second EEG segments from each of the played videos, non-

overlapped and as temporally spaced as possible. Videos were rated in terms of

arousal (boring versus stimulating), valence (positive/happy versus negative/sad),

like versus dislike, dominance (submissive versus dominant) and familiarity. For

the playback set, 4 states corresponding to the quadrants of the arousal-score

representation of emotions were identified. The number of states per subject varied

due to their personal evaluation of the videos. Finally, the DEAP-Full data set

contains a mix of the two previous sets.

3.1.3 Keirn’s database

Keirn’s database was described in section 2.3.3. To increase the number of samples,

we divided the 10-second trials in two 4-second segments separated by 2 seconds.
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3.1.4 P. Ullsperger’s database

P. Ullsperger et. al. recorded AEPs from 5 subjects [129]. Auditory stimuli

(words) were presented to the participants, who had to classify each of the stimulus

as synonyms or non-synonyms of a given target. The number of trials varied across

subjects. Inter-stimulus time between trait and test stimulus was set to 1 second.

The EEG was recorded from 61 electrodes referenced to PCz and CP1 with

a sampling rate of 200 Hz. A notch filter between 47 and 53 Hz was applied to

remove line noise. From each trial, segments were extracted from 2 seconds before

to 2 seconds after presentation of the second (testing) word.

3.1.5 Yeom’s database

This database was used by S.K. Yeom et. al. for an indirect EEG based subject

verification system [108, 109] (section 2.4.5). It contains 11 male participants (10

users and 1 impostor); including 1 pair of monozygotic twins, with ages between

20 and 29 years old (mean 26.67). Self and non-self images were presented to the

subjects in 2 different-day sessions. Each session consisted of 20,000 trials divided

into 2 runs (with a short break in between), 50 blocks per run, and 20 trials per

block (10 self and 10 non-self stimuli).

A Neuroscan SynAmps2 system was used to record the EEG signal from 18

electrodes (International 1020 System). Note that the available database is a

post-processed version and therefore some of the parameters may differ from the

original. The sampling rate was set to 300 Hz and a band-pass filtered between

0.1 and 100 Hz as well as a 50 Hz notch filter were applied. EEG was extracted

from 200 ms pre- to 800 ms post-stimulus. The data set consisted of 1-second

EEG segments starting at stimulus onset.

3.1.6 Zhang’s database

Zhang’s database was used as described in section 2.3.2.
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Figure 3.1: Preprocessing steps applied to all databases. Block “Art. Rej.” represents

an artefact rejection method (chapter 4).

3.2 Preprocessing

As a group, the databases just described comprise a wide range of configuration

values. While some were of interest for the current study (tasks, signal length,

number of subjects, etc.), others were not (sampling frequency, number of channels,

filtered range, etc). In a bid to remove the latter and normalize the databases, we

applied a common preprocessing stage (fig. 3.1).
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3.2.1 Filtering

All databases were filtered using a High-Pass (HP) Finite Impulse Response (FIR)

filter with a low edge frequency of 1 Hz. On data sets with 50 (DEAP) or

60 Hz (BCI2000, Keirn’s database) line noise, we applied a FIR notch filter as

appropriate. Additionally, we low-pass filtered the EEG activity from Zhang’s

Database (DDBB) at 40 Hz to homogenize channels, as some of them came fil-

tered at around that frequency.

FIR filters were selected for their linear phase response, as we aimed to distort

the signal of interest as little as possible. Relatively high filter orders (table 3.1)

had no negative connotations, as we applied the preprocessing offline for compu-

tational optimization reasons.

Table 3.1: Filtering details for each database. The table shows: the sampling frequency

(Fs) at which each database was processed, the high-pass filter order (HP order), and the fre-

quency at which the notch filter was applied (Notch fcut) and its order (Notch order).

DDBB Fs [Hz] HP order Notch fcut [Hz] Notch order

BCI2000 128 424 60 424

DEAP 256 846 50 424

Keirn’s 250 826 60 826

P.Ullsperger’s 200 660 50* -

Yeom’s 300 990 60* -

Zhang’s 256 8448 - -

*: Originally filtered.

3.2.2 Channel rejection

Next, extremely noisy EEG channels were automatically detected and rejected to

avoid any interference in subsequent computations. Specifically, the time kurtosis

Kc = rn(|kurt(Xc)− 3|) for c = 1, 2, ..., C, (3.1)
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withXc the EEG of the c-th channel, was used as a noise indicator feature, together

with the weighted correlation between channels

Rc = rn(median(Φc, ∀j 6= c)) for i = 1, 2, ..., C (3.2)

and Φc = {1− |corr(Xci, Xcj)|e−dci,cj , ∀j 6= c}, (3.3)

where dci,cj is the arc distance between channels ci and cj in a sphere with radius

one. In both cases, rn is the robust normalization function

rn(v) =
20(v −median(v))

27 · iqr(v) , (3.4)

where v is a feature vector and median and iqr are the median and interquartile

functions respectively. Note that (27/20) · iqr(vn) ≃ θn for a normal distribution

vn with standard deviation (std) θn.

Channels with any of these features exceeding a value of 3 were rejected. If

the proportion of such channels fell below 10%, they were excluded, otherwise we

rejected the 10% of the channels with the largest scores
√

K2
c +R2

c .

3.2.3 Voltage normalization

Apart from neural activity, EEG voltage ranges depend on scull thickness and

exogenous factors such as the hardware used and the cap preparation. In a bid to

isolate the brain signals, we normalized EEG voltage ranges by equation 3.4. This

was preferred over z-score normalization due to the level of artefacts in some of

the databases.

3.2.4 Events rejection

When there were a sufficient number of available trials, the noisiest were discarded.

Again, the criterion applied to determine the number of retained trials relied on

the desire to have a balanced database across subjects, tasks and sessions.
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Hence, noise in events was characterized by the voltage range

Ae = |rn(〈p(95)(T ) (Xe)− p
(5)
(T )(Xe)〉(C))| for e = 1, 2, ..., E (3.5)

and the voltage variance

Ve = |rn(〈var(T )(Xe)〉(C))| for e = 1, 2, ..., E, (3.6)

where Xe is the EEG of the e-th event, p
(n)
(T ) and var(T )(·) are the n% percentile and

variance across time (T ) and 〈·〉(C) represents the average across channels. Events

were then sorted based on their score
√
A2

e + V 2
e and those with the highest values

were rejected until the desired amount was reached. This amount varied across

databases (table 3.2).

3.2.5 Channel interpolation

With artefactual signals removed, rejected channels were interpolated back into

the data set. A spherical spline interpolation method was applied for this purpose

[130].

3.2.6 Session rejection

Some subjects of Keirn’s data set contained 3 recorded sessions. To normalize the

number of sessions to 2, the one with the worst signal quality was discarded. The

rejection was based on the score

〈
√
A2 + V 2〉(E)

2
, (3.7)

where A and V are the features defined in (3.5) and (3.6), and 〈·〉(E) is the average

along the events dimension.
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3.2.7 Subject rejection

When the number of subjects available allowed it, those with the worst signal

quality were discarded. The rejection was based on the score

〈
√
A2 + V 2〉(E)

2
+ 30

Ĉ + 1

C
, (3.8)

where A and V are the features defined in (3.5) and (3.6), 〈·〉(E) is the average

along the events dimension, C is the number of channels and Ĉ is the number of

rejected channels. The number of rejected subjects varied across databases (table

3.2).

3.2.8 Channel selection and sampling frequency

Finally, in order to reduce the volume of data, only a set of 16 channels distributed

around the scalp were kept (figure 3.2), except for Keirn’s and Yeom’s databases,

from which all available channels were kept. In addition, databases were down-

sampled to 128 Hz.

3.3 Final databases

After the preparation of the 6 publicly available databases described (section 3.1)

and preprocessing detailed above (section 3.2), we obtained a total of 10 data sets

(table 3.2). Together, they represent a rich variety of tasks (mind states, cognitive

tasks and experimental conditions). In particular:

1. BCI2000-Baseline and DEAP-Baseline databases represent resting states,

2. BCI2000-Tasks includes real and imagery motor tasks (it also contains a

relaxation task),

3. Keirn’s data set provides multiple problem based tasks,

4. DEAP-Playback assesses the effects of emotions,
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Figure 3.2: Selected EEG channels. Diagram of the 10-20 International System for EEG

channel locations. Highlighted channels were kept for experimentation.

5. Yeom’s and Zhang’s databases contain two extensively studied VEPs, and

6. P.Ullsperger’s data introduces the use of AEP.

The above variety helped us to identify properties characteristic of the neural

signature and discard those due to idiosyncrasies of the set-up.
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Table 3.2: Normalized databases used for experimentation. Columns show the name

of the database (Database), the number of subjects (Subj.), the number of tasks (Tasks), the

number of sessions (Sess.), the number of trials (Trials), the length of the EEG segments in

seconds (Len.) and the descriptive keywords (Keywords).

Database Subj. Tasks Sess. Trials Len. Keywords

BCI2000-Baseline

(BB)
100 2 1 5 10 REO; REC

BCI2000-Tasks

(BT)
100 9 1 [9, 10] 4 Motor real/imagery

BCI2000-Full (BF) 100 11 1 [9, 10] 4 REO; REC; Motor

real/imagery

DEAP-Baseline

(DB)
20 1 1 5 20 REO

DEAP-Playback

(DP)
20 4 1 [5, 10] 20 Elicited emotions

DEAP-Full (DF) 18 5 1 [5, 10] 20 REO; Elicited

emotions

Keirn’s (K) 5 5 2 [8, 10] 4 Problem-solving

tasks

P.Ullsperger’s (P) 5 2 1 180 4.1 AEP

Yeom’s (Y) 10 2 2 900 1 VEP

(Self-representation)

Zhang’s (Z) 30 3 1 [15, 20] 1 VEP
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Chapter 4

EEG artefact rejection: Localized

Component Filtering

Being a non-invasive technique and a relatively inexpensive way of recording neu-

ral activity, EEG is extensively used in research and application development in

all brain-related areas. One of the main difficulties faced by EEG devices is the

coexistence of interesting and contaminating electrical fields. The former are gen-

erated by spiking neurons, while the latter may come from various sources, such as

muscle activity or interference from electric activity in the vicinity of the record-

ings. These contaminating sources are in many cases greater in magnitude than

the interesting ones, resulting in a low signal to noise ratio. Advances in recording

technology have increased this ratio, but contamination by noise is still a major

concern [131,132].

The most direct and simple way to solve this problem is to reject the artefactual

portions of the signal. However, this may not always be possible due to a limited

amount of data or constraints of the recording conditions. In these cases, it is

desirable to dissociate and remove the noise from the neural activity, i.e. clean

the signal. The most common approaches to separate signal from noise are based

on the application of Blind Source Separation (BSS) techniques, and in particular

ICA [133]. These outperform other methods in rejecting high amplitude noise such
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as eye movements [134].

Activity recorded at each EEG sensor represents a combination of multiple

sources, some of which are based on brain activity (signals) and some of which are

not (noise). BSS algorithms treat the EEG as high dimensional data, with each

sensor depicting a different dimension. This space (called the original space) is

then transformed into a new one (BSS space) with the aim to have each dimension

(component) correspond to an individual source. To the extent that this separation

of sources is successful and that artefactual sources can be identified, eliminating

the corresponding dimensions and projecting the remaining components back into

the original space will produce a clean signal [135].

As opposed to other problems, the presence of noise in the signal can play a

positive as well as a negative role in EEG subject identification, as artefacts can

arise from an individual’s characteristic behavioural patterns. We described in

chapter 2 the existence of identification systems based on muscle and blink artefacts

[112–114]. As stated, we aimed to study the discriminant information contained

in brain activity, and therefore it was necessary to isolate this information from

artefacts.

Hence, we began by applying an existing algorithm: Automatic EEG artifact

Detection based on the Joint Use of Spatial and Temporal features (ADJUST)

[136], to the databases listed in chapter 3. However, the success of ADJUST, and

of any rejection method, relies mainly on the performance of the BSS. The better

the dissociation of noise and neural activity is, the better the result. S. Romero

et. al. offered a comparative study of several of these techniques [137]. In general,

they all provide a non-perfect separation of noise and neural activity, and BSS

artefactual components do contain neural activity that gets subsequently rejected

(neural leakage) [138,139]. This could be circumvented by applying more restrictive

conditions during the identification of noisy and clean components, keeping those

with mixed signals. The most obvious drawback of this approach is that some

artefacts will now be retained.



63

Therefore, we devised a method to reduce the neural leakage while maintaining

the same level of artefact rejection1. In particular, we propose a novel methodol-

ogy that focuses the processing of BSS components: Localized Component Filter-

ing (LCF). The presented algorithm localizes time segments within components

contaminated by artefacts, and directs the processing to these segments, keep-

ing the remaining parts of the component in their original form. This allows to

lower the identification threshold of artefactual components, as the a priori noisy

components undergo further scrutiny, reducing the probability of neural leakage.

Furthermore, we have designed LCF to be easily integrated within any existing

artefact rejection system based on BSS. The LCF component can be directly em-

bedded after the BSS−1 block, without any modification of the original algorithms

(central panel of fig. 4.1). In addition, LCF can also be used by itself, without an

artefact rejection method (right panel of fig. 4.1).

LCF is not a closed tool, but a general approach to the problem of neural

leakage. Although we will later describe a prototype, this is just one possible

design, and any of its components can be modified and improved, while maintaining

the underlying concept. In fact, the prototype was kept as simple as possible to

assess the validity of the concept.

Below, we will first define the common structure of a BSS EEG artefact rejec-

tion method. We will continue by detailing the proposed LCF methodology and

describing the particularities of the prototype implemented for experimentation.

The two databases (one synthesized and one real) used for testing will then be

detailed, followed by the introduction of the experimentation methodology and

the obtained results and discussion. We will end with the conclusions extracted

from this study.

1This research was conducted at the Department of Psychology, College of Human Health

and Science, Swansea University (Wales, UK).
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Figure 4.1: Diagrams of feature rejection systems based on BSS. (Left) Common

architecture of existing systems. The actual BSS component can be seamlessly interchanged and

therefore it has been left out of the “Artefact Rejection Method” box, which defines how the

output of BSS is processed. (Centre) Combination of the common architecture and the proposed

LCF method. The only difference with the previous diagram is the embedded LCF component.

All the other blocks are exactly the same as before. Hence, the simplicity of its integration within

any existing system. (Right) LCF can also be used individually, without any artefact rejection

method.

4.1 Structure of a BSS EEG artefact rejection

method

Six steps may be differentiated in the BSS approach (left panel of fig. 4.1). (Pre-

processing) The data is initially prepared for further analysis. This generally

includes filtering the signal and rejecting highly artefactual channels and/or seg-

ments, which may interfere with the BSS algorithm. (BSS) The data is then pro-
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jected into the BSS space and (Classification) extracted components are classified

as either neural or artefactual. (Processing) Following that, artefactual compo-

nents are processed to remove their noise. In many cases this is implemented as a

complete rejection (zeroing) of the components. (BSS−1) The EEG signal is sub-

sequently reconstructed using the clean components. (Post-processing) Finally,

processing functions that work better under clean conditions are applied.

The literature contains a variety of architectures following the described pro-

cedure. For example, the classification of components into clean and artefactual

can be manual or automatic. The latter, although algorithmically more complex,

is preferred to avoid the introduction of subjective factors, which will hinder the

reproduction of the analysis. Some supervised pattern recognition algorithms rep-

resent a very powerful option [140]. However, their requisite for labelled data sets

of clean and artefactual components make them cumbersome to adopt. Most of

the systems are therefore based on unsupervised techniques, which tend to be less

accurate but do not require labelled data. In some cases, systems entirely lack a

classification stage, treating each of the components equally [139]. In between ap-

proaches can also be found, where clean and artefactual components are processed

differently [141].

Most of the available designs differentiate themselves in the way they describe

the components. Topological templates of artefacts [142,143] and statistical prop-

erties of their temporal and frequency representations [144, 145] have been exten-

sively used to characterize noisy components. Ultimately, it is the combination of

some or all of these features which provide better results [136,146,147].

4.2 Localized Component Filtering concept

Although current BSS techniques are unable to perfectly dissociate noise and neu-

ral activity, they do provide a representation of the data where artefacts are more

easily identifiable. Hence, the principle behind the proposed LCF is to use such
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Figure 4.2: Diagram of the LCF step. The inputs and output are (C) the original BSS

components, (L) the control signal pointing to the components that will be mixed, (P) the

processed or alternative components, and (R) the resulting mixed components.

enhancement to apply a targeted noise treatment. By doing so, we aim to reduce

the leakage of neural activity while rejecting the unwanted signal.

Crucially, LCF represents a single block that can be easily integrated within

any noise rejection system. Within this block, the following four sub-blocks can

be identified (fig. 4.2):

1. Features Extraction: Instantaneous characteristics (measures defined for each

time instant n) of noisy activity are extracted from the original component.

Most of the features used in the literature are statistics measured across time,

channels or events, and their adaptation to instantaneous measurements is

not always obvious, if at all possible. Features such as the instantaneous volt-

age and its time derivative can be easily used here. Spectral measurements

can also be used if a time-frequency analysis is applied. Other features, such

as variance or kurtosis, may be computed within a sliding window centred at
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each instant. This module outputs a list of features, with Fi[c, n] representing

the i-th feature measured from the c-component at instant n.

2. Integrator : Because instantaneous features are usually noisy within the sur-

roundings of an artefactual event, a more stable version is computed by

applying an integrating window around each time instant (fig. 4.3). The

integrated features Fi[c, n] are defined as

Fi[c, n] =
Fi[c, n] ∗WI∑
k∈K

WI(k)
, (4.1)

where WI is a window of length NI , ∗ is the convolution operator, and K is

the integration range defined as

K = [max(0, NI/2− n),min(NI − 1, NI/2 +NC − n)], (4.2)

with NC the length of the component. The range K covers the entire inte-

grating window except when it reaches the beginning or end of the compo-

nent. The denominator of equation 4.1 is a normalizing factor that effectively

transforms the integration into a weighted average around each time instant.

It also counteracts the boundary effects of the convolution operation, so that

artefacts at the beginning and end of the signal segment can be correctly

detected.

3. Decision Logic: Once features are extracted and integrated, we identify the

presence of noise within each component c at each time instant n. As

with the feature measurement block, the current module can be designed

in many different ways: from using a fixed threshold, to applying more so-

phisticated classification algorithms. We compute a single logical vector

A[c, n] = f({Fi[c, n], ∀i}), where f is the decision logic function.

4. Mixer : Finally, the detection vector is used as a control signal to mix the

original components C[c, n] and the processed (cleaned) ones P [c, n] given by

the artefact rejection system (in the absence of a separate artefact rejection
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system, P [c, n] can be simply set to zeros). Let M be a mixing signal defined

as

M [c, n] = A[c, n] ∗WM , (4.3)

where WM is a window of length NM and
∑

WM [n] = 1, used to round the

edges of detected areas, which in turn smooths the transitions in the mix.

The resulting component is defined as

Q[c, n] = P [c, n] · (1−M [c, n]) + C[c, n] ·M [c, n]. (4.4)

Therefore, Q is a mixed vector where the amount P (alternative/processed

component) and C (original/raw component) is determined by the detection

of artefacts. If a segment is identified as clean, only the original component

will be included in the mix and no signal will be lost. If a segment is iden-

tified as artefactual, only the processed component will be used. Borders

between P -only and C-only segments contain a mix between the two signals,

smoothing the transitions from one to the other, avoiding the introduction

of discontinuities (fig. 4.4).

The resulting components can then be back-projected to the original space.

Since only artefactual areas are processed, the system is now better protected

against the leakage of neural activity. Hence, the result is a robuster version of

whatever the original BSS-based rejection method was.

4.2.1 Implemented LCF prototype

We implemented a prototype of the LCF methodology to evaluate the concept.

Again, this is just one possible implementation, and many changes can be applied

to each of the blocks just described.

1. Feature Extraction: As stated before, even though BSS algorithms are inca-

pable of a perfect dissociation between neural and artefactual sources, they
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do provide a space where noise in artefactual dimensions stands out from

neural activity. As a result, the voltage of these components can be used as

an indicator of the presence of noise. Equally, high absolute values of the

first time derivative indicate the position of high frequency noise. These two

measurements are instantaneous and easy to obtain, and therefore they were

included in the current implementation.

In addition, both features were normalized by the equation

Θ(X) =
X −mean[X̂]

std[X̂]
, (4.5)

where mean(·) and std(·) are the global mean and std and X̂ is a trimmed

version of the vector X built by excluding samples that deviate more than

three times the std. Thus, features are formally defined as

F1 = Θ(|C|) (4.6)

and

F2 = Θ(|dC/dt|) (4.7)

2. Integrator : We configured the integrator block to have WI equal to a Ham-

ming window of 0.2 seconds (fig. 4.3).

3. Decision Logic: We used a simple threshold (τ) to determine whether a given

feature indicated the presence of noise (which corresponds to a value of 1 in

the decision vector A), so that

Vi[c, n] =




1 if Fi[c, n] > τ

0 otherwise.

(4.8)

A threshold of τ = 1 was set empirically (note that Fi are z-scored vectors).

However, the response of Vi was still unstable within artefactual segments.

To overcome this, detected zones were dilated by an all ones window WD of
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ime [s]

Time [s]

Figure 4.3: Examples of F1 (top) and F2 (bottom) defined in the implemented LCF

block. Their integrated version Fi is smoother, allowing for a more robust detection of Ai (in

the figure we expanded the amplitude of Ai to the length of the y axis).

length ND = 0.1 seconds, which produced continuous noise regions that were

well separated from adjacent noise regions. The result was then binarized to

maintain the mask-like nature of the vector, resulting in

Vi[c, n] = bn(Vi[c, n] ∗WD), (4.9)

where bn(·) is a binarizing operator which sets all values different than 0 equal

to 1. We then combined the responses from each feature in a single logical

detection signal A[c, n] = V1[c, n]∨ V2[c, n], with ∨ the logical “or” operator,

which pointed the location in time of artefacts within each component.
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T

Figure 4.4: Mixing of the component C whose features are depicted in figure 4.3

when its processed version P are all zeros. Transitions between on and off are smoothed

to avoid discontinuities. The amplitude of M was modified to match the y axis.

Two more extra logical operations were finally applied to account for highly

noisy events and components. Firstly, if more than 75% of a trial was labelled

as noise, the whole trial was rejected. Secondly, if more than 75% of a

component was labelled as noise, the whole component was rejected.

4. Mixer : We set WR (from the mixer block defined in the previous section)

equal to a Hamming window of 0.1 seconds (fig. 4.4).

4.3 Materials for the validation of LCF

As this study was developed at Swansea University (Wales, UK) we used a differ-

ent set of databases to evaluate the proposed method. In particular, we utilized

a sample of the simulated data set used to assess Fully Automated Statistical

Thresholding for EEG artifact Rejection (FASTER) in its original work [146,148],

and a real data set recorded by us at Swansea University.

The simulated database has its neural and artefactual activity perfectly disso-

ciated and defined, which allows us to quantify the effect of LCF by measuring

how much of the injected noise is rejected and how much of the neural activity is
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Figure 4.5: Examples of the simulated data set used on FASTER’s original work.

Contaminated channels and blinks are particularly prominent.

lost (fig. 4.5). Five files with 200-epochs each were available, simulated with the

BESA Dipole Simulator program [149]. Artefacts were randomly added following

the procedure described in [145]. In addition, a random number of channels were

contaminated with white noise, and some of the epochs were also corrupted by a

high-amplitude (30–150 µV) low frequency (1–3 Hz) wave.

However, this database represents a simpler version of the problem. To evaluate

the system under real conditions, we applied it to real data (fig. 4.6). This

contained the EEG recordings of 18 participants while they performed a memory

based task. A total of 133 electrodes (128 scalp + 2 mastoids + 3 EOG) from

a BIOSEMI system were recorded with a sampling rate of 500 Hz. From each

participant, 576 trials were extracted from 0.5 seconds pre-stimulus onset to 1

second post-stimulus onset.
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Figure 4.6: Examples of the real data set recorded from a memory based task.

Artefacts are substantially more complex than in the synthesized EEG.

4.4 Experimentation methodology

The evaluation of any artefact rejection system is a complex process, especially

since it is still impossible to identify noise and neural activity with full certainty.

In general, visual judgements and numerical measurements rely on assumptions

based on known characteristics of EEG activity. Any deviation from the expected

behaviour is therefore labelled as artefactual.

In this case, to assess the effectiveness of the proposed method, we performed

the following studies over a set of systems with and without LCF.

4.4.1 Evaluated systems

To generalize the benefits of the proposed LCF methodology, we assessed the

performance of three different systems based on BSS algorithms. In order to

isolate the effects of LCF in combination with each of the evaluated methods, we
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designed the systems to share all the blocks described in section 4.1, except the

two enclosed within the “Artefact Rejection Method” label (fig. 4.1).

Thus, the EEG data was first high-pass filtered at 0.5 Hz with a FIR filter

of order 99 and Hamming window, and low-pass filtered at 40 Hz with a similar

filter of order 100. The baseline was then removed from the signal and highly

artefactual channels and events were automatically rejected based on the z-score

of several statistics (variance, correlation and Hurst exponent for channel rejection;

voltage range, variance and channel deviation for epoch rejection) following the

same preprocessing described in [136].

Next, the INFOMAX ICA algorithm was used as a BSS technique [150]. Once

the Independent Components (ICs) were computed, each of the following artefact

rejection methods were individually applied:

• ADJUST [136]: This method characterizes artefactual ICs by both temporal

and spatial features: kurtosis, variance and the spatial distribution of ICs

activations. These are then automatically classified into clean or artefactual

ICs by an Expectation Maximization algorithm, which maximizes the likeli-

hood of the distribution of classes by an iterative process [151]. The detected

artefactual ICs are then zeroed.

• FASTER [146]: In this case, artefactual ICs are described mainly by tempo-

ral measurements. In particular, descriptors are: temporal correlation with

EOG channels, spectral and voltage gradient, Hurst exponent, and spatial

kurtosis. Outliers, as per their z-score, are then labelled as artefactual. The

detected artefactual ICs are then zeroed.

• Wavelet enhanced ICA (ICAW) [139]: This technique processes each IC

by thresholding their Discrete Wavelet Transform (DWT) coefficients. A

threshold equal to the 99.5 percentile of the absolute wavelet coefficients was

set empirically.
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We post-processed the cleaned reconstructed EEG data by correcting the base-

line and interpolating the rejected channels using the spherical spline technique

[130]. Finally, we re-referenced the EEG signal to common average and locally

interpolate channels showing noisy activity within epochs. This was again imple-

mented as described in [136].

Two versions of the above systems, with and without the LCF component

described above, were therefore evaluated. In addition, to asses the absolute effect

of LCF, we also tested a system without any artefact rejection method. In this

case, the LCF block was fed with an all-zeros alternative signal and configured to

process all the extracted ICs (None+LCF).

4.4.2 Quantitative analysis of synthetic EEG data

The simulated dataset has the advantage of offering fully controlled testing con-

ditions. Hence, noise and neural activity can be completely dissociated by Z =

Y −X, where X is the original EEG signal, Y is its contaminated version and Z is

the injected artefacts. Similarly, the rejected signal is defined as R = Y − ar(Y ),

with ar(·) any artefact rejection method. Therefore, under the assumption that

X is pure neural activity, any deviation from X = ar(Y ), and therefore Z = R, is

considered misses of the applied process.

In particular, we defined the following measurements:

1. True Rejection Power Rate (TRPR): This is the proportion of power from

the artefact signal that has been successfully removed. It corresponds to the

overlapped area under Z and R, and is defined as

TRPR =

∑
n∈Ω

min(|Z(n)|, |R(n)|)2
∑
∀n

Z(n)2
, (4.10)

where Ω = {n | sign(Z(n)) == sign(R(n))}.

2. False Rejection Power Rate (FRPR): This accounts for the leakage of neural

activity, either by an overcompensation of the artefact or by miss-classification
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Figure 4.7: Graphical representation of the true and false rejection and false ac-

ceptance concepts.

of a clean signal as noise. It corresponds to the area under R and above Z.

It is defined as

FRPR =

∑
n∈(Ω∩Ψ)

(R(n)− Z(n))2 +
∑
n∋Ω

R(n)2

∑
∀n

X(n)2
. (4.11)

with Ψ = {n | |Z(n)| < |R(n)|}.

3. True Acceptance Power Rate (TAPR) and False Acceptance Power Rate

(FAPR): Once the previous values were computed, TAPR and FAPR were

derived from them as 1− FRPR and 1− TRPR respectively.

Note that the worst cases are whenever R and Z have different polarities, as

there is no TRPR and the area under Z and R corresponds to FAPR and FRPR

respectively (fig. 4.7). Based on the above definitions, we seek to obtain high

TAPRs, i.e. retain as much of the original EEG as possible, and low FAPRs, i.e.

reject as much of the injected artefacts as possible.

To isolate the influence of LCF, the original X and noisy Y versions of the

signal were extracted at the exit of the pre-processing stage, while the cleaned

version ar(Y ) was sampled at the output of the BSS−1 block (fig. 4.1).
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4.4.3 ERP analysis of real EEG data

A common way to analyze EEG data is to average EEG activity across events

to produce an ERP. We partitioned the 128 EEG channels into 9 regions of

interest (within which we averaged the sensors) as shown in Figure 4.8. For each

participant we then computed the ERP for each region and then averaged those

ERPs across participants.

In real data sets without labeled artifacts the quantities we used to assess

performance on the simulated data set are not readily available. Because the

baseline period of each event in the real data set lacked external stimuli that were

synchronized across events, we expect the average ERP to be fairly constant and

close to 0 µV for clean EEG data. However a small proportion of artifacts (such

as those produced by motion) can cause significant deviations from that mean due

to their large amplitude.

Our events were locked to the presentation of a test stimulus and it is common

to see ERP deflections reflecting the processing of such stimuli. Noise, however, can

obscure these synchronous effects of stimulus processing in the EEG and attenuate

the resulting ERP. On the other hand, removal of neural activity will also reduce

the signal to noise ratio and attenuate the ERP.

As an extra tool for the analysis of the results, we studied the rejected ERPs.

These were computed by subtracting the cleaned ERP (by whatever method ap-

plied) from the original one. Hence, we expected them to show all the pre-stimulus

noise – or any other noise – of the original ERP and no actual ERP wave after the

stimulus onset, meaning that all the noise has been removed while all the ERP

power has been retained.

Finally, to directly assess the effects of embedding LCF into an existing artifact

rejection method, we studied the difference between the ERPs of the original

methods and those with LCF integrated. According with the described effects of

artifacts, we expected the resulting signals to show activity only within the post-

stimulus ERP, meaning that LCF retrieved the lost neural signal while rejecting
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Figure 4.8: Computed regions by averaging BIOSEMI sensors within each area.

Channels falling on top of the division lines are included in the cardinal regions, i.e. those with

angles 0 deg, 90 deg, 180 deg and 270 deg as measured from the sagittal plane.

the noise.

4.4.4 Time-frequency analysis of real EEG data

Another common way to analyze EEG activity is to perform a time-frequency

decomposition of the signal. Because these analyses often reveal interesting effects

even for frequencies beyond the 40 Hz low-pass filter that we applied for the ERP

analyses (section 4.4.1), we repeated the processing steps without applying a low-

pass filter for the time-frequency analyses. We calculated power for 64 frequencies



4.5. Results and discussion 79

Table 4.1: Numerical results obtained with the synthetic database as detailed in

section 4.4.2. Mean and std is provided for the percentage of processed ICs (% ICs), TAPR

and FAPR.

% ICs TAPR FAPR

None+LCF All 45.70% ± 1.78 14.64% ± 1.17

ADJUST 2.05% ± 1.40 97.78% ± 1.72 62.77% ± 44.09

ADJUST+LCF 99.33% ± 0.51 66.47% ± 40.59

FASTER 14.67% ± 2.88 61.98% ± 10.12 11.72% ± 1.90

FASTER+LCF 81.51% ± 5.14 12.01% ± 1.68

ICAW All 51.97% ± 3.78 26.97% ± 3.73

ICAW+LCF 61.74% ± 2.44 27.00% ± 4.11

(logarithmically spaced between 2 and 100 Hz) using Morlet’s wavelets with 5

cycles. We averaged power across events and z-transformed the resulting power

separately for each frequency on the basis of the respective mean and standard

deviation in the 0.5 s pre-stimulus baseline. For simplicity, we will refer to this

representation as Event Related Spectrogram (ERS).

4.5 Results and discussion

Results for both quantitative and qualitative analyses will be provided in this

section. Note that quantitative analyses are computed from the simulated dataset,

which represents a version of the problem with ideal conditions. Hence, results are

only an optimistic estimation of the properties of the evaluated systems, and should

be considered as such.

4.5.1 Simulated EEG data results

In general, the application of LCF reduced the leakage of neural activity (increased

TAPR) without heavily penalizing the rejection of noise (maintained FAPR). Nev-

ertheless, each system showed its own characteristic behaviour (table 4.1).
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ADJUST proved to be the most conservative method during classification of

ICs, with only 2% of the ICs rejected on average (in one case, no IC was rejected).

This left LCF with a reduced scope to improve the TAPR – it obtained less than

2 percentage points of improvement. At the same time, it led to extremely high

an variable FAPRs.

On the opposite end of the spectrum sat ICAW, which processed all the avail-

able ICs. The FAPR improved with respect to ADJUST by more than 35 per-

centage points, but at the expense of a 45 percentage point drop on the TAPR.

Here, LCF increased the TAPR by almost 10 percentage points while not affecting

the FAPR level, i.e. reduced the neural leakage without penalizing the rejection

of noise.

Halfway between ADJUST and ICAW lay FASTER, selecting between 11%

and 18% of the ICs for rejection. It also provided the best overall results, with

62% of TAPR and 12% of FAPR. When combined with the proposed LCF, the

TAPR increased to 81%, again with virtually no deterioration of the FAPR. In

addition, the stability of the TAPR was also improved, reducing its std from 10

to 5.

By itself, LCF obtained relatively good results. In particular, it achieved

a TAPR of 46% (comparable to ICAW) and an FAPR of 15% (comparable to

FASTER).

Finally, looking at the individual results (prior to averaging across sets), there

were occasions where LCF improved the detection of artefacts (reduced the FAPR).

This may seem strange at first given that the method reduces the amount of

signal rejected. However, removing non-artefactual parts of an IC may disrupt

the reconstruction of EEG data, resulting in introduced noise. Depending on the

polarity of this noise, and given the way we defined the performance measurements,

this can result in an increase in FRPR or in FAPR. Thus, its correction can results

in an improvement of FAPR.
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4.5.2 Real EEG data results

The results for the real EEG data set mirror those from the simulated data (fig.

4.9 to 4.12). ADJUST only tagged few ICs as artifactual, limiting the scope for

improvement that could be gained by LCF. FASTER, on the other hand, rejects

more ICs which results in more rejected noise and larger levels of neural leak-

age, which LCF reduces. ICAW processes all ICs, which maximizes the potential

effectiveness of LCF.

Because this was a real case scenario, as oposed to the simulated data, there

were situations where the BSS algorithm found an especially bad solution for the

dissociation of neural and artefactual activity, which resulted in the benefits of LCF

being magnified (fig. 4.9). When averaging the ERPs across subjects, differences

between methods, although still present, are less obvious (fig. 4.10). By improving

the ERP of those especially bad cases, LCF allows to retain cases that may be

discarded otherwise, increasing the volume of data available for the EEG analysis.

Looking at the ERPs (fig. 4.10), whereas ADJUST was not affected much by

the introduction of LCF, the amplitude of the ERPs increased markedly with LCF

when FASTER was used as an artifact rejection method. Notably, this increase

in amplitude was confined to the ERPs in response to stimulus onset – no such

increases in amplitude are discernible in the baseline periods or more than about

500ms past stimulus onset. A similar pattern of results is evident for ICAW. Fi-

nally, LCF by itself (None+LCF ), performed better than we anticipated, despite

the simplicity of the current implementation. The LCF only implementation re-

jected a good amount of noise (as evident in the reduced baseline amplitude) while

retaining most of the ERP.

A complementary way to visualize the results is to examine the rejected ERPs

(i.e., ERPs based on the difference between the processed and the original signal)

(fig. 4.11). To the extent that artifactual activity is not time-locked to stimulus

onset, rejected ERPs should be around zero and significant deflections indicate

the removal of time-locked activity. It is evident that LCF tended to reduce the
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Figure 4.9: ERPs for one participant after applying each of the systems defined in

section 4.4.1. Systems are applied both without (Original) and with a subsequent LCF step

(+ LCF). The top left image corresponds to the ERPs of the original signal. Lines correspond

to the brain regions specified in figure 4.8, so that the top line is RC and subsequent ones are

R0D, R45D, R90D, ..., R315D.

rejection of time-locked activity and that FASTER was particularly effective at

avoiding the removal of time-locked activity.

Finally, the effects of integrating LCF within the original rejection methods can

also be assesed by their contrast (i.e. substracting the LCF integrated system with

the original, no LCF design) (fig. 4.12). With the exception of ICAW, it is evident

that differences between the two are mainly confined within the stimulus locked

ERP, with LCF having little effect outside this area. This adds to the evidence
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Figure 4.10: ERPs averaged across participants after applying each of the systems

defined in section 4.4.1. Systems are applied both without (Original) and with a subsequent

LCF step (+ LCF). The top left image corresponds to the ERPs of the original signal. Lines

correspond to the brain regions specified in figure 4.8, so that the top line is RC and subsequent

ones are R0D, R45D, R90D, ..., R315D.

that LCF regains part of the leaked neural signal, without heavily penalizing in

the noise removal.

4.5.3 Time-frequency analysis

The same set of systems, but without a 40 Hz low-pass filter within the prepro-

cessing step, were applied again to both data sets. Overall, the same relationship
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Figure 4.11: Rejected ERPs averaged across participants after applying each of the

systems defined in section 4.4.1. Systems are applied both without (Original) and with a

subsequent LCF step (+ LCF). Lines correspond to the ERPs of each brain region specified in

figure 4.8, so that the top line is RC and subsequent ones are R0D, R45D, R90D, ..., R315D.

between original and LCF systems was observed, with the latter reducing neural

leakage.

Interestingly, results of the synthetic data show an improvement in all the

systems except those based on FASTER (table 4.2). This was especially true

for ADJUST, which lowered the std of its FAPR from 62 to 3. Crucially, LCF

discriminated better between noise and neural activity, dropping the FAPR level

from 15% to 11%. Looking at the ERP’s amplitude of the real EEG data set (fig.

4.13 and 4.14), we can see a similar overall improvement.
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Figure 4.12: Difference between the ERPs of the systems defined in section 4.4.1

without and with LCF. Lines correspond to the ERP difference of each brain region specified

in figure 4.8, so that the top line is RC and subsequent ones are R0D, R45D, R90D, ..., R315D.

Table 4.2: Numerical results obtained with the synthetic database and no 40 Hz

low-pass filter. Mean and std is provided for the percentage of processed ICs (% ICs), TAPR

and FAPR. Refer to table 4.1 to compare these with the results of the original systems (with

40 Hz low-pass filter).

% ICs TAPR FAPR

None+LCF All 81.96% ± 1.85 11.07% ± 1.17

ADJUST 2.96% ± 1.96 96.26% ± 2.49 11.55% ± 3.09

ADJUST+LCF 98.80% ± 1.03 17.09% ± 4.29

FASTER 11.93% ± 1.16 75.57% ± 11.50 18.40% ± 6.07

FASTER+LCF 97.83% ± 0.79 20.61% ± 5.23

ICAW All 73.28% ± 2.56 30.99% ± 1.34

ICAW+LCF 85.88% ± 2.12 32.12% ± 1.52
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Figure 4.13: ERPs averaged across participants after applying each of the systems

defined in section 4.4.1 without low-pass filter. Systems are applied both without (Origi-

nal) and with a subsequent LCF step (+ LCF). The top left image corresponds to the ERPs of

the original signal. Lines correspond to the brain regions specified in figure 4.8, so that the top

line is RC and subsequent ones are R0D, R45D, R90D, ..., R315D.

The interpretation of the ERSs is more complicated than that of the ERPs.

There are less conceptions about how the ERSs should look like, as opposed to

ERPs, which, for example, we know that they should be flat prior to the stimulus

on-set. From the time-frequency representation of the real EEG data, the effects

of LCF seemed to be mainly localized between 2 and 40 Hz (fig. 4.15). The

selection of artifactual ICs by ADJUST, FASTER and ICAW focused these effects

on the lowest frequencies (between 2 and 10 Hz). Overall, the usage of any of
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Figure 4.14: Difference between the ERPs of the systems defined in section 4.4.1

without low-pass filter without and with LCF. Lines correspond to the ERP difference of

each brain region specified in figure 4.8, so that the top line is RC and subsequent ones are R0D,

R45D, R90D, ..., R315D.

these methods with or without LCF had no apparent disruptive effects on the

spectrogram, and can, therefore, be used on a time-frequency analysis.

4.6 Conclusions

In this chapter, we have proposed LCF as a novel methodology to boost the per-

formance of existing EEG artefact rejection systems that are based on BSS tech-

niques. The method takes the original and processed components as inputs, and

mixes them so that the processed (cleaned) components replace the original ones

only when an artefact is detected. We have performed quantitative and qualita-

tive analyses on simulated and real datasets, demonstrating the benefits of LCF,

especially in the reduction of neural leakage.

LCF was designed to be compatible with any of the existing systems based

on BSS. Moreover, its integration is straight forward and requires no big changes

on the system itself, facilitating its adoption. On the other hand, LCF’s ability
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Figure 4.15: ERSs of the central channels cluster (RC) as defined in figure 4.8.

Mean across participants, after applying each of the systems defined in the text without low-pass

filter, without (Original) and with LCF (+ LCF). The top left image corresponds to the ERS of

the original signal.



4.6. Conclusions 89

to retain neural activity allows to further increase the restrictiveness of the sys-

tem’s classification component, without heavily penalizing on signal loss. This is

specially interesting in cases such as the one observed with ADJUST, where the

system performs over-conservatively.

Furthermore, the implementation of LCF used here as a prove of concept is

a very simplistic one, based on the voltage amplitude and its speed of change.

Hence, better results are to be expected with more sophisticated artifact localiza-

tion features. These in turn will allow to increase the restrictiveness of the artifact

rejection systems even more.

To conclude, it is important to stress that the benefits of LCF are inversely

proportional to the quality of the BSS algorithm. If the algorithm is able to

perfectly dissociate neural and noise activity, the inclusion of an LCF block is

then unnecessary. However, until such a BSS technique is available, LCF will

always serve as an extra tool to ensure that the interesting signal is retained.
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Chapter 5

EEG time-frequency exploration

In chapter 2, we identified the lack of a comprehensive study of the spectral dis-

criminant information in biometric EEG identification research. All the biometric

studies published to date focused their efforts mainly on improving the accuracy

rates through the application of new algorithms. Meanwhile, the exact nature

and properties of the processed information has yet to be fully described from a

biometric point of view. In this chapter, we attempt to fill this gap with a series

of carefully designed experiments. In particular:

1. we provide a set of recommendations to maximize the quality of the discrim-

inant spectral information;

2. we present visual evidence of the existence of such information and associated

properties by means of a stacked representation of the PSD;

3. we use 6 publicly available databases – ultimately divided into 10 data sets–,

which allow us to distinguish general properties of the EEG signature from

idiosyncrasies in individual data sets;

4. we use, for the first time, an AEP database for EEG biometric subject iden-

tification; and
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5. we provide evidence of the existence of a task-independent neural

signature .

Contrary to the state of the art, the study presented in this chapter at no point

aimed to obtain high accuracy rates during classification. Instead, it intended

to describe in some detail the subject discriminant information within the time-

frequency representation of EEG activity, and to characterize the effects of each

of the parameters in the classification problem.

5.1 Methodology

The experimentation process was divided into four blocks, each composed of sev-

eral tests focussed on a common goal (fig. 5.1 and tables 5.1 and 5.2). Configura-

tion details missing in this section will be given within the corresponding results

section, as their rationale depends on the results of previously evaluated steps.

Complementary qualitative and quantitative studies were carried out during each

experiment. In both cases, a Short Time Fourier Transform (STFT) spectrogram,

computed with a Hamming window, was used to extract the time-frequency rep-

resentation of the EEG signal. All the experiments were ran on the preprocessed

databases listed in table 3.2. From each data set, except Keirn’s and Yeom’s, 3

versions were evaluated:

• Raw-EEG: The preprocessed data sets as defined in chapter 3.

• ADJUST-EEG: A cleaned version of the databases applying ADJUST arte-

fact rejection to the raw version (fig. 3.1).

• LCF-EEG: A cleaned version of the databases applying a combination of

ADJUST, FASTER and LCF artefact rejection to the raw version. This

combines the detection of artefacts from ADJUST and FASTER and uses

LCF to compute the cleaned components (fig. 3.1 and chapter 4).
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Figure 5.1: Diagram of the experimentation methodology. (1) We identified the con-

figuration of the PSD that maximizes the discriminant information. (2) We find the represen-

tation of the time and frequency domains that maximizes the discriminant information. (3)

We characterized the properties of the EEG discriminant information. (4) We characterize the

task-independence property of the neural signature. This figure complements the information

presented in tables 5.1 and 5.2.

5.1.1 A note on the application of artefact rejection meth-

ods

When interpreting the results, it is important to keep in mind that those obtained

with the cleaned data sets may be subject to optimistic bias. It is possible that,

when there are errors present during artefact rejection, the EEG data is modified

in unexpected ways other than noise removal (e.g. neural leakage). As we applied

the artefact rejection techniques within each subject, these alterations would be

specific to that subject, therefore biasing the results.

The issue becomes more complicated when one assumes that the general ac-
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Table 5.1: Phases 1 and 2 of the experimentation methodology. This table complements

the information presented in figure 5.1.

1. Configuration of the PSD

Spectrogram width and

number of spectral

coefficients

Analysis of number of spectral coefficients (NF ), spectrogram

window length (LW ) and EEG length (LG)

Window overlap Analysis of spectrogram window overlap (Θ)

Frequency range Analysis of maximum (Fmax) and minimum (Fmin) cut-off

frequencies

Review of spectrogram

width with optimal

parameters

Analysis of spectrogram window length (LW ), with specific

number of coefficients (NF ), window overlap (Θ) and EEG

length (LG)

Review of EEG length

with optimal parameters

Analysis of the EEG length (LG), with specific number of

coefficients (NF ), spectrogram width (LW ) and window

overlap (Θ)

2. Representation of the time and frequency domains

EEG montages Analysis of multiple EEG montages

Spectral normalization Analysis of different normalization methods

curacy of the system will improve with the removal of artefacts. We will see that

this improvement indeed occurs. However, it is difficult (if at all possible) to asses

the extend to which performance differences between raw and cleaned data sets

are due to the removal of noise or due to erroneous alterations of the EEG.

Given the analysis introduced in chapter 4, we expected the application of

LCF to reduce this bias. However, it remains imperative to bear in mind the

above consideration.

5.1.2 Configuration of the PSD

During the first experimentation stage, we defined the configuration of the STFT

that maximizes the discriminant information. Specifically, we explored the number

of Fast Fourier Transform (FFT) coefficients (NF ), the window length or spectral
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Table 5.2: Phases 3 and 4 of the experimentation methodology. This table complements

the information presented in figure 5.1.

3. Properties of the discriminant information

Spatial distribution Analysis of the spatial distribution of the EEG discriminant

information

Frequency distribution Analysis of the frequency distribution of the EEG discriminant

information

Uniqueness Analysis of the EEG discrimination power with increasing number

of subjects

Permanence Analysis of time stability of the EEG discrimination information

4. Task-independence of the neural signature

Task-independence Analysis of the task-independence of the EEG discriminant

information

Permanence of

task-independence

Analysis of time stability of the task-independence property of the

EEG discriminant information

width (LW ), the window overlap percentage (Θ), the EEG segment length (LG)

and the frequency range (FR). With this aim, we ran the following experiments:

1. Spectrogram width and number of spectral coefficients : Hamming window

lengths LW ∈ [0.1, 60] seconds and the number of FFT spectral coefficients

NF ∈ [32, 1024] were evaluated on a grid-like set of experiments where the

window overlap Θ was fixed to 0.

2. Window overlap: Overlap percentage values Θ = 0, 25, 50 and 75 were tested

on the best performing configurations (LW and NF ) of the previous step.

3. Frequency range: The width of the spectral band used was modified by

varying the maximum Fmax and minimum Fmin frequencies between 10 and

60 Hz on individual experiments.

4. Review of the spectrogram width with optimal parameters : To clarify the ef-

fects of the STFT window length on the system’s performance, optimal con-
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figurations were represented against LW . That is, LW ∈ [0.1, 60] was tested

with the remaining parameters (NF , LG and Θ) set based on conclusions

from previous experiments.

5. Review of the EEG length with optimal parameters : To clarify the effects of

the EEG length on the system’s performance, optimal configurations were

represented against LG. That is, LG ∈ [LW , L], with L the available length

of signal, was tested with the remaining parameters (NF , LW and Θ) set

based on conclusions from previous experiments.

5.1.3 Representation of the time and frequency domains

Once the STFT was fully configured, we evaluated different time and frequency

representations of the data. In particular, we ran the following experiments:

1. Montages : Transformations of the signal in the time domain were assessed

by EEG montages Common Global Average Reference Montage (AvgMnt),

Bipolar Inter-Hemispheric Reference Montage (BIHMnt) and Common Cz

Reference Montage (CzMnt).

2. Spectral normalization: In a bid to find the optimal representation of the

spectral information for the problem, the normalization functions described

in table 5.3 were applied to the PSD prior to the classification.

5.1.4 Properties of the discriminant information

This experimentation block ran a number of tests to describe some of the properties

of the discriminant PSD information. In particular:

1. Spatial distribution: Each EEG channel was evaluated individually to assess

the performance of neural activity from different sensor locations (which vary

in sensitivity to activity from different brain areas).
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Table 5.3: PSD normalization functions. P is a PSD matrix with dimensions NFxNT ,

with NT the number of time points, and pn%(F ) is the n-% percentile applied along the frequency

dimension.

Name Equation Name Equation

powNorm
P∑

∀f

P
prcNorm

P − p5%(F )(P )

p95%(F ) (P )− p5%(F )(P )

normNorm
P√∑
∀f

P 2
iqrNorm

P − p25%(F ) (P )

p75%(F ) (P )− p25%(F ) (P )

zNorm
P − 〈P 〉(F )

std(F )(P )
rNorm

P −median(F )(P )

iqr(F )(P )

2. Frequency distribution: Each frequency was evaluated individually to asses

the performance of different EEG rhythms.

3. Uniqueness of patterns : To evaluate the uniqueness of individual spectral

patterns, experiments varying the number of users NS in the system were

run, so that the stability of the performance with increased NS could be

assessed.

4. Permanence of patterns : This step aimed to judge the independence of the

subject characteristic patterns with respect to time. To do so, Keirn’s and

Yeom’s data sets were cross-validated considering each recording session as an

indivisible unit. That is, for each subject, training and testing sets contained

samples from different sessions. For simplicity, this CV methodology will be

referred to as session-CV.
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5.1.5 Task-independence of the neural signature

The neurophysiological, genetic and biometric avenues of research introduced in

section 2 have been carried out under numerous cognitive tasks, including relaxed

states and stimulus-elicited activity or ERPs, but always considering these tasks in-

dividually. The only multiple-task studies come from the biometric side [48,49,93],

but even these have focussed on finding the design or cognitive task that maxi-

mizes the system’s performance. This should come as no surprise as, historically,

functional brain research has primarily studied differences across task-related or

condition-related activity.

Here we present a completely different approach, as we hypothesize the exis-

tence of a neural pattern homogeneous across tasks and concomitant to the sub-

ject’s identity. To test this idea, we ran the following two experiments in the final

block:

1. Task-CV : The equivalent of experiment 4 in section 5.1.4 was applied to

test independence with respect to tasks. Hence, the system was trained and

tested with disjointed sets of cognitive tasks. Crucially, we executed this

segmentation individually for each subject. As a result, in a given iteration,

a task may have been used to train some subjects and to test others. For

this experiment, K (from K-Folds) was set equal to the number of tasks in

the database, truncated to five when exceeded. .

2. Task-Sess-CV : In the final step, Keirn’s and Yeom’s data sets were tested

with a combined Task-CV and Sess-CV. The system was trained with a set

of cognitive tasks from a single session and tested with the remaining tasks

of the other session. The segmentation was executed individually for each

subject, and therefore we have a similar situation to the previous experiment

(Task-CV ) regarding the distribution of tasks between subjects. For this

experiment, K (from K-Folds) was set equal to 2.



5.1. Methodology 99

5.1.6 Qualitative study

To simplify inspection of the EEG PSD, the spectrograms from selected trials,

sessions, conditions and channels were stacked along their time axis, resulting in a

single, piecewise-continuous (in time) spectrogram (fig. 5.2). This representation

of the data helped to visually confirm the existence of different spectral neural

signatures across individuals. It also helped to understand the effects that the

evaluated parameters have on the signature. Hence, we performed these qualitative

analyses on all experiments, to complement quantitative tests.

5.1.7 Quantitative study

To quantify the observations made during visual inspection of the spectrogram,

we performed a series of classification experiments. Because the aim of such ex-

periments was not to obtain high accuracy rates, we applied a simple design based

on a Bayes classifier.

To this end, we z-normalized PSD coefficients across samples and used them

as input to the classifier. The normalizing factors were computed only with the

training set, and uninteresting filtered frequencies were removed from the analysis.

Different final responses of the Bayes classifier were computed from the sum-

score fusion of NG neighbouring windows, with NG = 1, 2, ..., NW , where NW is

the number of windows extracted from a single trial. Hence, for each NG value,

a total of NW −NG + 1 responses where computed by shifting the fusing scope a

single PSD window to the right each time. This process was done to differentiate

between the effects of the length of the Hamming window LW and the length of

the EEG segment

LG = LW [NG − (1−NG)
Θ

100
], (5.1)

with Θ the window overlap percentage, used to compute a response. When repre-

senting results against LG, intermediate values (not multiples of LW ) were inter-

polated whenever possible for ease of interpretation.
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Table 5.4: Fusion modes used during experimentation.

Mode Description

No-Fusion The system is evaluated using a single PSD coefficient, individually for

each EEG channel.

Freq-Fusion The system is evaluated using all PSD coefficients simultaneously (from

the selected frequency range), but individually for each EEG channel.

Ch-Fusion The system is evaluated using a single PSD coefficient, but combining all

EEG channels.

Full-Fusion The system is evaluated using all PSD coefficients (from the selected

frequency range) from all EEG channels simultaneously.

Four fusion modes were differentiated based on the level of feature fusion (table

5.4):

• Full-Fusion: Coefficients from all frequencies and channels are fused into a

single vector.

• Freq-Fusion: Coefficients from all frequencies are fused into a single vector

and each channel is evaluated individually.

• Ch-Fusion: Coefficients from all channels are fused into a single vector, and

each frequency is evaluated individually.

• No-Fusion: The coefficient from each channel and frequency is evaluated

individually.

For CV, we combined stratified K-Folds and Monte Carlo (MC) techniques in

order to benefit from the stability (lack of bias) of the former and the low-variance

of the latter [152]. To this end, we repeated 10 times a K-Fold process with 5

folds.

For databases where the number of available subjects exceeded the number

used for experimentation (NS), we used a different subset of subjects on each of

the MC repetitions. Such subsets were built in a balanced way, i.e. by trying
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to use each subject the same number of times across the whole experimentation

process. Unless otherwise specified, we used a maximum of NS = 20 subjects as a

compromise between the number of subjects and the number of available databases

able to accommodate NS. The latter was important to avoid, as much as possible,

unexpected interactions between the tested factor and NS.

In addition, to ensure the validity of the results, during the segmentation of

the databases all windows extracted from the same trial were kept in the same

fold. This prevented the inclusion of EEG segments on both training and testing

sets when the window overlap parameter was greater than 0%.

Micro-accuracies were computed for each of the MC repetitions as follows. Let

M(i,j) be the NSxNS confusion matrix of the j-th K-Fold iteration of the i-th MC

repetition, so that Mi =
∑
∀j

M(i,j) is the aggregated confusion matrix for the i-th

MC repetition. Let Ai be the corresponding mean accuracy rate. We converted

accuracy rates to Percentage Reduction of Error (PRE) values for the evaluation

of the results [153]. Specifically, we compared Ai with a random process, such that

PREi =
Ai − 1

NS

1− 1
NS

. (5.2)

The mean (µPRE) and 95% Confidence Interval (CI) of the above PRE values were

then computed and reported.

We use PREs instead of the more common absolute accuracy values for prac-

tical reasons. First, we aimed to shed light on the properties of the discriminant

information within the EEG data, relegating absolute performance to a secondary

role (as long as it is above chance level). This is especially true given that re-

sults were analysed by comparison rather than inspecting isolated values. Second,

PREs as measured here will be 0 if the system performs at chance levels and > 0

otherwise, regardless of the number of subjects included in the analysis. In other

words, the range of values of the results have a common meaning across databases.

This allows for a better representation and more direct interpretation and com-

parison of the results. Having said that, if required, performance values can be
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easily extracted from the given PREs by inverting equation 5.2.

Finally, we differentiated between the following four experimental modes based

on the level of focus (table 5.5):

• 1Task-1Sess : Experiments were run individually for each combination of

session and task.

• 1Task-AllSess : Experiments were run individually for each task, ignoring

session labels during the CV partitioning. Mixing sessions on training and

testing sets is not the standard procedure from a biometric point of view.

However, in the current scenario, there are random factors linked with the

set-up process, such as the exact position of sensors or their contact quality,

which affect the recorded EEG. One way to alleviate the influence of such

factors is to average across sessions. Note that we also executed experiments

cross-validating sessions to keep the study relevant within the biometric field

(section 5.1.4).

• AllTask-1Sess : Experiments were run individually for each session, ignoring

task labels during the CV partitioning. As in the previous case, we also

executed experiments cross-validating tasks (section 5.1.5).

• AllTask-AllSess : Experiments were run over all the available data, ignoring

task and session labels during the CV partitioning.

5.2 Configuration of the PSD: results, discussion

and conclusions

Within the first study block, we analysed the effects of some basic parameters

on the quality of the extracted EEG discriminant information. Specifically, we

considered the number of FFT coefficients (NF ), the length of the spectral window

(LW ) and its overlap (Θ), and the length of the EEG signal used to compute the
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Table 5.5: Focus modes used during experimentation.

Mode Description

1Task-1Sess The system is evaluated using data from a single cognitive

task/condition and a single recorded session.

1Task-AllSess The system is evaluated using data from a single cognitive

task/condition but all recorded sessions.

AllTask-1Sess The system is evaluated using data from all cognitive

tasks/conditions but a single recorded session.

AllTask-AllSess The system is evaluated using data from all cognitive

tasks/conditions and all recorded sessions.

final identification response (LG). We executed full-fusion experiments with all

four focus modes (see tables 5.4 and 5.5).

5.2.1 Spectrogram width and number of FFT coefficients

First, we ran a number of experiments varying the number of FFT coefficients

(NF ), the length of the spectral window (LW ) and the length of the EEG signal

used to compute the final identification response (LG) (Θ was set to 0%). As we

suspected a triple interaction between these parameters, we executed all possible

combinations in a cube like methodology with the following rangesNF = [16, 2048],

LW = [0.1,max(20, LA)] and LG = [LW , LA]; with LA the length of the available

signal.

Results

Overall, a common behaviour was observed across databases. Visually, the PSD

became more stable with longer windows (above 1 second). At the same time,

some EEG traits and details are not apparent until NF is higher than 64 (fig.

5.2). In quantitative terms, representing the µPRE surface of LW against NF

corroborated the qualitative observations (fig. 5.3 and A.1). Overall, the system

reached quasi-optimal performance at the diagonal NF ≈ LW ∗ Fs, with Fs the
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Figure 5.2: PSD with different STFT window length (LW ) and number of FFT

coefficients (NF ). The PSD, in dB scale, corresponds to one of the subjects of BCI2000-

Baseline database. Within each PSD, the missing frequency band around 50 Hz (vertical axis)

was filtered in the pre-processing and manually removed from the analysis. The horizontal axis

(time) is piecewise-continuous and contains all the samples from the subject.

N
F
 [

2
#

c
o
e
fs
]

LW [secs]

P
R

E
 [
%

]

L
W
 [
s
e
c
s
]

LG [secs]

P
R

E
 [
%

]

Figure 5.3: Quantitative analysis of the number of spectral coefficients (NF ), the

SFTF window length (LW ) and the length of the EEG signal (LG). Mean PRE results

obtained with DEAP-Baseline database on an LW vs NF grid with LG = 10 seconds (left) and

an LG vs LW grid with NF = 128 coefficients (right). In both cases, Θ was fixed to 0% and

the results were obtained during the full-fusion AllTask-AllSess experiments. A maximum of 20

subjects was used in each experimental iteration.

sampling frequency (table A.1).

Although less prominent and less homogeneous across databases, an increase

in LG was generally followed by a gain in µPRE values (fig. 5.3 and A.2). In

some instances, such as DEAP and Keirn’s databases, this leap was as high as 10
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percentage points. This could be expected, as increasing LG means more infor-

mation being fed to the system to produce the final response. Overall, we found

the performance peak at LW < LG, i.e. when the available signal was divided

into individually processed segments instead of in a unique long chunk. The only

exceptions to this were DEAP-Playback results of only AllTask-AllSess experi-

ments, and Yeom’s and Zhang’s databases. In the latter pair, the effect might still

be there, but we are unable to see it due to the limited EEG available (only 1

second).

In terms of the stability of the results, databases with fewer than 20 subjects

(i.e., all subjects were used in each iteration of MC) showed, as expected, lower

levels of θPRE. The interaction between the std and the parameters considered

here were not that clear. In general, minimum values of θPRE were located within

the optimal area, i.e. above the NF -LW diagonal, while LG had little or no effect

in this regard.

When comparing results from each of the experimentation modes, the use of

multiple tasks or sessions had no effect other than the expected averaging of µPRE

and the increase of θPRE. The application of ADJUST for artefact rejection in-

creased the amount of discriminant information, which was reflected in both mean

and std PRE values. Absolute performance dropped back to the levels of raw EEG

with the LCF artefact rejection method. In both cases, the effects of NF , LW and

LG remained the same.

Discussion

In terms of the parameters NF and LW , the optimal diagonal NF ≈ LW ∗ Fs

suggests that it is desirable to retain the maximum frequency resolution. This

conflicts with architectures such as [73,77], which focused on the power of relatively

wide spectral bands. At the same time, the relationship between performance and

frequency resolution is in line with the findings of [79] regarding the need for higher

orders of the AR model; and hence better frequency resolutions, to counteract the
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rise in the number of users. According to this, wide spectral bands should only be

used on neurophysiological studies – where brain rhythms are well described – or

as supplementary features into a more complex feature vector.

With no obvious relationship between LG and the system’s performance, a

“maximum” approach could be recommended, i.e. use all available EEG data.

Perhaps, the most interesting effect of LG is its ability to dilate the “optimal

configuration area”, i.e. the set of parameters that yield results similar to the

observed best performance. It is this property which allows to reduce LW and

subsequently NF , maintaining the level of discrimination. A more detailed study

of LW and LG will be presented in sections 5.2.4 and 5.2.5.

5.2.2 Window overlap

Subsequently, the overlap percentage parameter Θ was optimized by testing con-

figurations of Θ, LW and NF , which accounted for the interaction between these

three parameters. In this case, based on the previous experiment, the range of NF

was shrunk to [64, 256] in a bid to reduce the volume of experimentation.

Results

Results were less uniform across data sets and system’s configurations than in the

previous experiment. In general, higher values of overlap yielded similar or better

results (fig. 5.4 and A.3). The most obvious effect of Θ was its ability to widen

the optimal configuration area (as described for LG). The effects of Θ remained

relatively stable across focus modes (1Task-1Sess, 1Task-AllSess, AllTask-1Sess

and AllTask-AllSess) and after the application of the artefact rejection methods.

The most prominent exception was, once again, obtained with the DEAP-Playback

data set during AllTask-AllSess experiments – the behaviour just explained was

observed in 1Task-AllSess experiments.
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BCI2000-Tasks Keirn’s

Figure 5.4: Quantitative analysis of the SFTF window overlap (Θ). Mean PRE

results on a LW vs Θ grid with NF = 128 and LG equal to the maximum EEG available. Results

correspond to BCI2000-Tasks (left) and Keirn’s (right) data sets, during full-fusion AllTask-

AllSess experiments. A maximum of 20 subjects was used in each experimental iteration.

Discussion

A priori, it seems reasonable to use some degree of window overlap, as higher

Θ translates into more information being fed to the system to produce the final

response – similar to LG. However, although results supported this to some degree,

the observed effects are not strong enough to make a final statement in this regard.

With this in mind, we decided to use an overlap of 75% in subsequent experiments.

This is, however, a somehow arbitrary decision, as we have no strong evidence that

this overlap value works better than any other. Therefore, lower overlaps could be

used if, for example, processing time or data volume are a concern in the design

of the system.

5.2.3 Frequency range

Visual inspection of EEG PSD suggests that spectral neural signatures stabilize

for frequencies above 30-40 Hz (fig. 5.2). To explore this further, we system-

atically limited the maximum Fmax and minimum Fmin frequencies in separate

experiments. Once more, to reduce the volume of experimentation, only two con-
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Figure 5.5: Quantitative analysis of the maximum (Fmax) and minimum (Fmin)

cut-off frequencies. Mean and 95% CI of PRE results obtained in full-fusion AllTask-AllSess

experiments with different Fmax (left) and Fmin (right) values, corresponding to Conf-HalfLen

system. A maximum of 20 subjects was used in each experimental iteration.

figurations were tested, named Conf-HalfLen and Conf-FullLen. The latter uses

LW equal to the available EEG signal and hence Θ = 0, while Conf-HalfLen uti-

lizes LW equal to half the available signal and Θ = 75. In both cases, NF was set

to the power of two closest from the right to LW ∗ Fs.

Results

As expected from the observation of PSD representations, the system reached max-

imum performance at Fmax equal 30 or 40 Hz in all databases with the exception

of Yeom’s data set, which reaches it at 50 Hz (fig. 5.5 left). On DEAP databases,

there was a decrease of less than 10 percentage points in PRE when raising Fmax

from 30 to 40 Hz (tables A.2 and A.3). Experiments varying Fmin resulted in a

µPRE curve with two more pronounced increases, one when the first frequencies

are added (between 50 and 60 Hz) and the second one with the last frequencies

– frequencies below 20 or 30 Hz (fig. 5.5 right and tables A.2 and A.3). This

behaviour was also observed after rejecting artefacts with ADJUST and LCF (fig.

A.4 and tables A.4 to A.7).
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Discussion

In line with [81], a high frequency cut-off of 30 or 40 Hz can be established based

on the results. Indeed, most of the systems in the literature have used a max-

imum frequency below 40 Hz (chapter 2). The described results highlight that

architectures using only high frequencies [37, 39] are not necessarily the optimal

approach.

The outlier behaviour in Yeom’s database may be a result of the classifier

capitalizing on differences between users’ artefacts – muscle artefacts have been

identified to overlap with frequencies above 20 Hz [131]. A post-hoc examination

of the spectra from Yeom’s database corroborated the existence of noise at high

frequencies.

Indeed, EEG artefacts have been shown to be subject discriminant and used

successfully for identification [114]. Hence, the performance of systems using fre-

quencies above 20 Hz cannot be considered to be solely based on the users’ neural

signature without a proper artefact analysis. In our case, the exact same be-

haviour was obtained with artefact free databases, as processed by ADJUST and

LCF. In fact, techniques based on ICA have been described as the “more promis-

ing approaches that have been used for attenuating muscle artefact [131]. Hence,

although it is not possible at the moment to be certain about the source of the

performance above 20 Hz, it seems unlikely that it comes from muscle artefacts.

Unfortunately, due to an insufficient number of EEG sensors, we lacked an artefact

free version of Yeom’s database (which we noted had high frequency artefacts) to

further test this.

5.2.4 Review of spectrogram width with optimal parame-

ters

Although previous experiments have shed light onto the optimal value of the spec-

tral window length (LW ), they did not address the issue in a definitive way due
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to the relationship between LW and the other parameters. To circumvent this,

we re-tested a range of window lengths, setting the remaining parameters to their

defined optimal values. That is, NF was set to the maximum power of 2 closest

to LW ∗ Fs, LG was set to the available signal length, Θ was set to 75% whenever

possible (i.e. when LW is small enough to allow multiple windows with 75% over-

lap on the available signal length) and 0% otherwise, and Fmax was set to 40 Hz.

Results obtained with Yeom’s and Zhang’s will be presented but not considered in

the analysis, as they only contain 1 second of EEG.

Results

Across databases, maximum performance was reached at LW between 1 and 2

seconds (fig. 5.6 and table A.8). After this point, performances either stabilised

within the 95% CI or decreased. The main exception encountered was on DEAP-

Playback data set, for which the maximum was reached between 6 and 8 seconds.

The rejection of artefacts reduced the differences between window lengths below

2 seconds, boosting the performance of the shortest windows. On DEAP-Playback

data set, cleaning the EEG shifted the optimal point to earlier in LW , reaching it

between 4 and 6 seconds on ADJUST processed data, and between 2 and 4 seconds

on LCF processed data.

Discussion

Similar behaviour was observed across databases. Overall, we obtained optimal

performances with window lengths 1 or 2 seconds, with the exception of DEAP-

Playback. In addition, the flattening observed on the performance curves for

windows sorter than 2 seconds suggests that these configurations are more sensitive

to noise.
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Raw EEG

ADJUST LCF

Figure 5.6: Quantitative analysis of the STFT window length (LW ). Mean PRE

and 95% CI (shaded area) obtained with different LW . The remaining parameters were set to

their optimal values according to previous experiments. Data correspond to full-fusion set-up

in AllTask-AllSess experiments with raw databases (top) and after the application of ADJUST

(bottom-left) and LCF (bottom-right) processing. A maximum of 20 subjects was used in each

experimental iteration. Refer to figure 5.5 for details on the legend.

5.2.5 Review of EEG segment length with optimal param-

eters

A review similar to the previous was run for the length of the EEG signal used

to compute the final response (LG). We defined here configurations Conf-1s and

Conf-2s. These had Θ = 75% and a LW of 1 and 2 seconds respectively, with NF

and LG set to their optimal values (section 5.2.7). Note that, since the duration

of events in Yeom’s and Zhang’s databases was 1 second, only Conf-HalfLen and
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Conf-FullLen were possible (a 75% overlap as used in Conf-1s in not achievable in

this case). Additionally, in BCI2000-Tasks and Keirn’s databases, configurations

Conf-HalfLen and Conf-2s are equivalent.

Results

In this case, results are remarkably similar across databases, with PRE curves

showing an asymptotic behaviour with increasing LG (fig. 5.7 and A.5). On

databases with EEG signals too sort to show the asymptote itself, the PRE curves

still behave in a way similar to databases with longer signals, clearly suggesting

the presence of such a limit. Overall, the maximum performance is obtained using

all the available EEG.

To study the described behaviour, we fitted the rational model

PRE =
a+ bLG

c+ dLG

, (5.3)

with a-d fitted factors, and used LW = 60 seconds as the maximum PRE point.

Such model can be seen to accommodate well the dynamics of the data. Exceptions

were found on the curves of P. Ullsperger’s database after rejection of artefacts, and

on DEAP-Baseline with Conf-HalfLen system after the application of ADJUST

(fig. A.5). For all data sets (raw and artefact free) and all systems, we found

that [92.5%-95%] of the maximum performance (asymptote) was obtained at LG

between 4 and 6 seconds.

Discussion

An increase in performance with longer EEG recordings is to be expected, as this

translates in more information being fed into the system. Once the system has

enough information to overcome the distortion of noisy segments, the performance

levels out. This asymptotic behaviour has been studied here by means of a 1st-

degree/1st-degree rational model. For the sorter databases (less than 4 seconds),

the amount of data available to fit the model was relatively small, and results
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Conf-1s Conf-2s

Figure 5.7: Quantitative analysis of the EEG segment length (LG). Mean PRE and

95% CI (shaded area) obtained with different LG. Data correspond to full-fusion set-up in

AllTask-AllSess experiments using Conf-1s (left) and Conf-2s (right) systems. A maximum of

20 subjects was used in each experimental iteration. Refer to figure 5.5 for details on the legend.

should be considered accordingly. Having said that, the homogeneity across all

(sort and long) data sets is obvious from the represented curves, which suggest

that, although more experimentation is needed to make a final statement, the

described behaviour may be a good approximation of the true interaction between

performance and LG.

5.2.6 A comparison across systems

To finalize the analysis of the results obtained within this experimentation block,

we compare here the performance of the systems defined in sections 5.2.3 and 5.2.5,

i.e. Conf-HalfLen, Conf-FullLen, Conf-1s and Conf-2s (tables 5.6, A.9 and A.10).

Overall, the fragmentation of the EEG signal into shorter overlapping windows

(between 1 and 2 seconds) outperformed the use of all the EEG signal at once.

DEAP-Playback data set was the main exception, but only in AllTask-AllSess

experiments. Raw and LCF processed P. Ullsperger’s database also performed

better with Conf-FullLen, but by less than 1 and 3 percentage points respectively.

Yeom’s and Zhang’s databases should be considered aside, as they only allow
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Table 5.6: Quantitative results for different configurations. Mean PRE and 95% CI

obtained with different configurations. Data correspond to raw databases tested during full-

fusion AllTask-AllSess experiments. Within data sets, performances statistically different than

the maximum are pointed by * (single tail t-tests with BHFDR adjusted p < 0.05). A maximum

of 20 subjects was used in each experimental iteration. Refer to table 3.2 for details on databases’

code names.

Conf BB BT DB DP

Conf-FullLen 68.79* 88.88 64.11* 95.82

[64.52, 73.06] [87.67, 90.10] [62.58, 65.63] [95.61, 96.04]

Conf-1s 92.74 87.80 92.63* 81.99*

[89.85, 95.62] [85.43, 90.17] [91.69, 93.57] [81.70, 82.27]

Conf-2s 93.16 89.32 93.68 88.51*

[91.60, 94.72] [87.25, 91.40] [93.33, 94.04] [88.26, 88.75]

Conf K P Y Z

Conf-HalfLen - - 52.89* 78.82

- - [52.86, 52.92] [75.26, 82.37]

Conf-FullLen 74.42 94.22 57.47 77.88

[73.68, 75.17] [94.15, 94.30] [57.45, 57.50] [76.05, 79.71]

Conf-1s 73.74* 92.83* - -

[73.57, 73.92] [92.71, 92.94] - -

Conf-2s 74.70 93.72* - -

[73.81, 75.59] [93.61, 93.84] - -

configurations Conf-HalfLen and Conf-FullLen due to the limited amount of EEG

signal available (1 second).

Such behaviour may be explained by the way Conf-1s and Conf-2s process

the data. By breaking the available data into segments, we isolate localized noise

into individual segments, or more precisely, into a set of them as we allow 75%

overlap between windows. At the same time, segments with good quality signal are

also obtained. While noisy segments may yield random outputs from the system,

clean segments will presumably result in accurate responses with high confidences

(scores). When averaging outputs across segments, we expect the response from



5.3. Representation of the time and frequency domains: results, discussion and conclusions 115

clean segments to be selected.

5.2.7 Conclusions

Throughout these experiments, we have defined the optimal configuration of STFT

to maximize subject-discriminant information. In particular, fragmentation of the

EEG signal into shorter overlapping windows (between 1 and 2 seconds) has been

identified as the best overall approach. The spectral domain of each segment should

then be computed without compromising in frequency resolution (NF ≈ LW ∗Fs),

while also keeping in mind that discriminative information was found primarily

under 40 Hz.

With regard to the amount of EEG needed, it is a matter of maximizing the

information fed to the system. Having said that, from our analysis we conclude

that LG = [4, 6] seconds results in performances between 92.5% and 95% of the

maximum achievable by the data, although we can expect this to vary depending

on the quality of the data.

5.3 Representation of the time and frequency

domains: results, discussion and conclusions

Once the optimal configuration of NF , LW , Θ and LG was found, we assessed

the effects of different time and frequency representations. We compared the dis-

criminant information of AvgMnt, BIHMnt and CzMnt montages, as well as the

effects of several PSD normalization methods. In the following experiments, we ex-

ecuted the four focus modes (table 5.5) in full-fusion with the four defined systems

(Conf-HalfLen, Conf-FullLen, Conf-1s and Conf-2s).
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Figure 5.8: Qualitative analysis of EEG montages. PSD (in dB) of a subject from Yeom’s

database computed with BIHMnt (top), AvgMnt (bottom-left) and CzMnt (bottom-right). The

colour bar-code above each PSD represents changes in channels, in the piecewise-continuous time

axis. Each channel’s spectrum (H) is added to the right of the spectrogram using the same colour

scheme as the channel bar-code.

5.3.1 Montages

The above experiments have all been executed with AvgMnt reference. Here, we

evaluate the effects of BIHMnt and CzMnt montages on the EEG discriminant

information compared to AvgMnt.

Results

Qualitatively, differences across montages were quite subtle (fig. 5.8). Overall,

AvgMnt seemed to have slightly more stable spectral patterns. Occasionally,

BIHMnt showed a pronounced loss of information, probably due to highly cor-

related inter-hemispheric channels1.

Quantitative results between and within databases were quite heterogeneous.

1In cases where all rejected sensors cover a common area, e.g left frontal lobe, the result of

the interpolation of the sensors closer to the saggital midline may be extremely correlated with

that of its hemispheric pair, resulting in an almost flat response of the BIHMnt.
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Conf-HalfLen Conf-FullLen

Conf-1s Conf-2s

Figure 5.9: Quantitative analysis of EEG montages with raw data sets. Relative

PRE values between BIHMnt-AvgMnt and between CzMnt-AvgMnt. Boxes show results stacked

across databases. Box limits are 25 and 95 percentiles, while black bars shows maximum and

minimum values after excluding outliers (red crosses). The red line within each box and triangle

markers show median values and their 95% CI. To the right of each box, corresponding mean

PRE values from each database are shown following the legend of figure 5.5. A maximum of 20

subjects was used in each experimental iteration.

In general, mean PRE values between montages were within 5 percentage points

in Conf-1s and Conf-2s systems, and within 10 percentage points in Conf-HalfLen

and Conf-FullLen (fig. 5.9 and tables A.11 to A.13). The application of arte-

fact rejection had virtually no effect on the described overall relationship between

montages, other than defining their differences by reducing the dispersion of the

results (fig. A.6 and A.7, and tables A.11 to A.14)).
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Discussion

The inhomogeneity of the results should come as no surprise. Optimal montages

have been described before as highly dependent on the recording paradigm and

level of noise [154]. Interestingly, BIHMnt, although reducing the volume of data

by almost half, maintained a remarkably similar performance (within 5 or 10 per-

centage points), especially with Conf-1s and Conf-2s systems. This makes it

an attractive option in scenarios where the volume of data is a concern. Across

databases, AvgMnt is the safest option among the tested montages.

5.3.2 Spectral normalization

Next, we normalized the PSD of each window segment with the methods described

in table 5.3. Following previous results, we again used AvgMnt.

Results

In this case, the effect of each normalization varied greatly across system’s con-

figurations. Overall, each had a homogenizing effect on the spectral pattern of

the EEG, especially for frequencies above ∼20 Hz (fig. 5.10). This effect was

particularly strong for prcNorm, iqrNorm and rNorm methods.

Quantitatively, results where again quite heterogeneous (fig. 5.11 and tables

A.15 to A.18). While Keirn’s database always benefited substantially from nor-

malization – with 20 percentage points of µPPRE improvement on average –, the

others showed great variability across systems. Overall, normNorm, prcNorm and

zNorm were the worst performing normalizations. rNorm and, to a lesser extent,

iqrNorm gave equal or better performance than the raw PSD in almost all cases,

especially in Conf-1s and Conf-2s systems.

The rejection of artefacts by ADJUST (fig. A.8 and tables A.19 to A.22) and

LCF (fig. A.9 and tables A.23 to A.26) had a great impact on the relationship

between normalization methods and the raw PSD. In particular, the latter gained
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Figure 5.10: Qualitative analysis of PSD normalization. Conf-2s PSD, in dB, of a

subject from P. Ullsperger’s database. prcNorm, iqrNorm, zNorm and rNorm are cubic root

scaled (c.r.) instead, as they contained negative values.
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Conf-HalfLen Conf-FullLen

Conf-1s Conf-2s

Figure 5.11: Quantitative analysis of PSD normalization. Relative PRE values between

the PSD normalized by each of the methods in table 5.3 and the raw PSD. Results are stacked

across databases. A maximum of 20 subjects was used in each experimental iteration. Refer to

caption of figure 5.9 for details about the meaning of symbols within the image.

the most from the cleaning, which translated in normalization methods being less

beneficial, or even disadvantageous.

Discussion

In line with [34, 39] results, normalization approaches based on magnitudes sen-

sitive to outliers had a negative effect under some configurations. On the other

hand, those based on more robust measurements, such as rNorm and iqrNorm,

boosted the performance in almost all cases, especially with optimal configura-

tions (Conf-1s and Conf-2s). This, together with the modulating behaviour of the

artefact rejection methods, suggests that:

1. the discriminant information is coded within the relationship between spec-

tral coefficients (i.e. the global spectral shape), rather than in the instant
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absolute power of each frequency; and

2. the enhancement observed via robust normalizations is, at least in part, due

to the counteraction of effects from artefacts.

5.3.3 Conclusions

In this experimentation block, we have assessed for the first time the effects of

EEG montages (time representation) on the EEG subject discriminant informa-

tion. Although AvgMnt turned out to be the best performing montage on average

across system’s configurations, the performance of BIHMnt was strikingly simi-

lar, especially when considering the highly reduced data volume of BIHMnt. In

addition, normalizing the spectral coefficients using measurements robust against

outliers reduced the effect of noise and boosted the quality of the data in almost

all cases. Hence, it may be applied as an alternative to artefact rejection methods.

5.4 Properties of the discriminant information:

results, discussion and conclusions

Next, we described some of the properties of the discriminant information identified

in the previous experimentation blocks. Specifically, we studied the spatial and

frequency distribution of the discriminant information, as well as its uniqueness

across individuals and permanence along time.

We evaluated systems Conf-HalfLen, Conf-FullLen, Conf-1s and Conf-2s (sec-

tions 5.2.3 and 5.3) with the raw PSD coefficients and with their rNorm version.

5.4.1 Spatial distribution

The discriminant information of different sensor locations was evaluated through

AllTask-AllSess and AllTask-1Sess experiments in freq-fusion architectures, i.e.

running isolated experiments within sensors.
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Figure 5.12: Quantitative analysis of the spatial distribution of the discriminant

information. Mean PRE values obtained at each location with the REO condition of BCI2000

(top) and DEAP (bottom) data sets when applying the systems Conf-1s (left), Conf-1s rNorm

(centre) and Conf-FullLen (right). Results correspond to freq-fusion ch-focus experiments, with

a maximum of 20 subjects used in each experimental iteration. Refer to fig. A.10 for further

related results.

Results

Looking at the PSD representations, although there were instances of patterns

with large variability across sensors, there were also numerous cases where the

pattern remained relatively equal across channels (fig. 5.8). Quantitative results

showed no clear pattern in the spatial distribution of the performance across data

sets, tasks or systems. In fact, this distribution varied even within conditions.

For example, focusing on the REO condition of BCI2000 and DEAP databases,

we observed a great variability across system configurations as well as between

data sets (fig. 5.12 and A.10). The removal of artefacts brought the performance

between channels closer by boosting those with the worst µPRE values.

Discussion

The lack of uniformity across and within databases, tasks and systems suggests

that there is no obvious ‘most-discriminative’ region. Rather, the homogenizing

effect of removing the artefacts hints that the performance depends more on the
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strengths of the applied system and on the idiosyncrasies of each session’s set-up,

which affects the quality of the signal individually on each channel. This would

explain the lack of consensus in the literature regarding the performance of sensor

locations during subject identification. Looking at research with similar results,

such as in [80–82] or [83–85, 121], they all relied on EEG signals recorded from a

single task and from the same database2.

On the other hand, one has to consider that the systems applied here rely on the

general spectral shape of the EEG. Systems that focus on specific characteristics

of the EEG during a particular task, such as the power of the alpha rhythm during

REC or the P300 amplitude during VEP, can be expected to have a more defined

spatial distribution of the discrimination power.

5.4.2 Frequency distribution

To study the effect of each frequency component, we ran AllTask-AllSess and

AllTask-1Sess experiments with ch-fusion and no-fusion architectures.

Results

In general, quantitative experiments showed noisy µPRE curves idiosyncratic to

each database (fig. 5.13). However, within this variability, we observed some com-

mon characteristics across data sets, the most distinctive being a peak within the

alpha rhythm. After this peak, the PRE raised again passed 15 or 20 Hz, until it

reached the global maximum – in some cases, curves of Keirn’s database decreased

after reaching this maximum. With Conf-FullLen systems, the PRE also increased

to the left of the alpha peak (towards lower frequencies) and reached a local maxi-

mum at 1 Hz. This behaviour was also reproduced in no-fusion experiments within

each channel.

2Because databases are not generally labelled, it is difficult to be certain whether the same

database was used for different analyses. However, the descriptions of the databases suggest that

they used the same database.



124 Chapter 5. EEG time-frequency exploration
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Conf-FullLen Conf-1s Conf-2s

rNorm PSD

Conf-FullLen Conf-1s Conf-2s

Figure 5.13: Quantitative analysis of the discrimination power frequency distribu-

tion. Mean PRE and 95% CI (shaded area) obtained with each frequency (ch-fusion experi-

ments) of raw and rNorm PSD. Curves were smoothed by local regression, using weighted linear

least squares and a first degree polynomial model with a 3 Hz span. A maximum of 20 subjects

was used in each experimental iteration. Refer to figure 5.5 for details on the legend.

The rejection of artefacts had no major effects on the described behaviour

(fig. A.11). The performance of frequencies above the alpha rhythm remained

virtually the same. With Conf-1s and Conf-2s systems, the discrimination power

of frequencies below the alpha peak raised. With ADJUST processed databases,

the gain was as large as 30 percentage points. In some cases, this increase created

another local peak between 1 and 8 Hz.

Discussion

The observed behaviour is in line with those presented in section 5.2.3. They also

agree with other genetic [18, 21] and biometric [77, 82] studies with regard to the
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amount of information within the delta and alpha rhythms.

In addition, our results suggest that frequencies corresponding to the beta

rhythm and up to 40 Hz carry as much discriminant information as the delta and

alpha rhythms. Furthermore, as reported in [87, 99], the high-beta and gamma

band (up to 40 Hz) reached performance levels, on occasion, above those of lower

bands.

5.4.3 Uniqueness

The current experimental step aims to asses the uniqueness of the neural signature.

If this signature is comprised of a finite number of categorical characteristics of

EEG activity, it will only be able to classify subjects into said categories. Hence,

individual discrimination beyond these categories would not be possible. This will

be reflected as a performance slump when the number of subjects in the system

increases.

In order for the system to unequivocally classify among a large number of

individuals, the neural signature must be a continuous characteristic. Thus, we

tested the uniqueness of the neural signature by evaluating the systems with an

increased number of subjects and analysing the dynamics of the obtained PRE

curves.

Results

Differences across subjects in the shape of their EEG spectrum can be easily seen

in the generated visual representations (fig. 5.14).

From quantitative experiments, systems Conf-1s and Conf-2s were the most

robust against the rise in the number of subjects. In particular, their µPRE dropped

less than 10% when increasing the number of users from 5 to 20 (fig. 5.15).

With BCI2000 databases, their performance fell less than 20% between 5 and 100

subjects. The application of ADJUST and LCF artefact rejection attenuated such

decay by as much as 6 percentage points (fig. A.12).
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Figure 5.14: Qualitative analysis of uniqueness. PSD, in dB, of 4 subjects from Yeom’s

database, corresponding to the EEG sensor P3 and a single task (self-representation).

Raw PSD

Conf-FullLen Conf-1s Conf-2s

rNorm PSD

Conf-FullLen Conf-1s Conf-2s

Figure 5.15: Quantitative analysis of uniqueness. Mean PRE and 95% CI (shaded area)

for different numbers of subjects (NS) in the system and each database. Results correspond to

the rNorm system. Refer to figure 5.5 for details on the legend.



5.4. Properties of the discriminant information: results, discussion and conclusions 127

Discussion

Results show that EEG spectral patterns are distinctive enough to discriminate

between 100+ subjects. A PRE of 80%, the lowest observed with Conf-1s and

Conf-2s systems for 100 subjects, represents an accuracy rate of almost 80%. This

is an encouraging result, especially considering that the systems used here are

fairly simple ones. Overall, in line with [19], our results suggest that the neural

signature is comprised of continuous features. In this regard, larger databases are

necessary to find the true potential of the EEG discrimination power.

5.4.4 Permanence

In a bid to evaluate the stability of the EEG subject traits, we ran session-CV

experiments. To allow a direct comparison of results, we also ran extra tests using

normal CV (no Sess-CV ) with a K (from k-folds) equal to the number of sessions.

Results

From the representation of the spectrograms, time seemed to have a moderate to

large effect on the neural signature (fig. 5.16). Quantitatively, median PRE values

decreased less than 5 percentage points on Keirn’s database and between 17 and 22

percentage points on Yeom’s data set when comparing normal and Sess-CV (fig.

5.17 and table A.27). The use of rNorm had opposite effects on both databases,

increasing the difference by ∼10 percentage points in the former and reducing it

by a similar amount in the latter.

Discussion

Genetic and neurophysiological studies have described changes in human EEG

activity across maturation [13]. However, these are long term effects that are

disproportionally relevant to younger ages (until approximately 19-20 years old).

In the short term, the PSD appears to be relatively stable, comparable with other
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Figure 5.16: Qualitative analysis of permanence. PSD in dB of tasks T1 and T2 of one

subject from Keirn’s database. The colour bar-codes above each spectrogram represent changes

in channels and sessions. PSD for each channel and session is attached to the right of the

spectrograms, using the same colour scheme as the channel bar-codes.

Raw PSD
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rNorm PSD
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Figure 5.17: Quantitative analysis of permanence. Relative PRE values between normal

and Sess-CV experiments, obtained with the raw (top) and the rNorm (bottom) PSD of Keirn’s

(K) and Yeom’s (Y) databases. Note that for Keirn’s data set, Conf-HalfLen is equivalent to

Conf-2s. Refer to the caption of figure 5.9 for details on box markings within the image.
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biometric modalities.

The above results are compatible with those obtained by analogous experiments

[43, 72, 92, 111, 125]. For these studies, including the present one, the low number

of subjects and sessions available is an important limiting factor. Having said

that, although a drop in performance is anticipated when train and test sets drift

further apart in time:

1. this can be circumvented with a multi-session or a continuous training ap-

proach,

2. results suggest that the decline may pose a problem no worse than the one

observed on other biometric modalities and

3. this drop would be expected to be lower than the results presented here –

with a single training session, the system is unable to model variations across

time, leaving it more vulnerable to time effects.

5.4.5 Conclusions

Along this experimentation block, we have defined various properties of the dis-

criminant information within the EEG PSD, some of which were obscured by

the lack of consensus across previous research. Specifically, our results suggest

that there is no clear location outperforming others systematically across systems,

databases and cognitive tasks. Hence, we conclude that the relative performance

of individual sensor locations appears to be largely driven by idiosyncrasies of the

recordings set-up and by the characteristics of the system.

Looking at the frequency distribution of the discriminant information, results

hint at the existence of a performance peak within the alpha rhythm. In addition,

the beta rhythm, up to 40 Hz, seemed as much or more discriminant than lower

frequencies. Finally, it should be noted that an extra performance peak may arise

below 5 Hz.



130 Chapter 5. EEG time-frequency exploration

Vitally, our results suggest that this subject-specific information is ‘unique

enough’ to discriminate between a high number of users (> 100) and is relatively

constant along short periods of time. Nevertheless, additional experimentation

with larger databases recorded on multiple sessions – with greater temporal dis-

tances between each session – are needed to make stronger assertions in this regard.

5.5 Task-independence of the neural signature:

results, discussion and conclusions

Finally, we executed a number of experiments specifically designed to test the main

hypothesis of this thesis: the existence of a task-independent neural signature.

This was indeed hinted by S. Sun results on the proposed MTL approach [93] and

by F. Kennet results when trying to identify tasks with the same features used for

subject identification [99]. Here, we ran Task-CV and Task-Sess-CV full-fusion

experiments (section 5.1.5) to directly test the hypothesis. The number of MC

iterations was increased from 10 to 20. To maximize the number of cognitive

tasks and states in each experiment, we replaced the BCI2000-Baseline, BCI2000-

Tasks, DEAP-Baseline and DEAP-Playback data sets with their full counterparts

BCI2000-Full and DEAP-Full.

5.5.1 Task-independence

We searched for evidence of a task-independent neural signature by means of a

Task-CV configuration. We set the number of K (from K-Folds CV) equal to the

number of tasks in the database, truncated to five when exceeded.

We ran an extra experiment using the 1Task-AllSess focus mode with a sim-

ilar K to allow for a better comparison of the results. However, comparisons

between Task-CV and 1Task-AllSess experiments should be considered as hints

as to the nature of their relationship, rather than as absolute values. Even though
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1Task-AllSess confusion matrices were added across cognitive tasks, resulting in a

total number of training and testing samples equal to that of the Task-CV exper-

iments, they come from as many systems as the number of tasks in the database

(one system for each task), as opposed to the single system of Task-CV exper-

iments. Although the final computation of the results considers all samples in

the database, systems are trained and tested with a different number of samples:

1Task-AllSess experiments consider samples from each task at a time, while Task-

CV experiments use all samples simultaneously. Such unbalance will certainly

have unexpected effects on the results.

Results

Through the qualitative analysis, we observed that the general shape of the spec-

trogram, although dynamic, remains relatively stable across cognitive tasks and

states, while substantially different across individuals (fig. 5.18). Shape details

such as the exact position, height and width of the spectral peaks and valleys are

still representative of the subject’s identity, but they seem to be more sensitive to

task variations.

Quantitative results highlighted a similar scenario (fig. 5.19 and 5.20). PRE

values decreased between Task-CV and regular CV by less than 5 percentage

points on average (tables A.28 and A.31). This meant that performance with

Task-CV was well above chance levels in all cases (tables A.30 and A.31). The use

of rNorm PSD had no major effect on this relationship. Neither did the application

of artefact rejection techniques.

Overall, the difference between Task-CV and 1Task-AllSess PREs showed a

big variability across databases and configurations (fig. 5.21 and 5.22). The mean

drop in performance was lower than 10 percentage points. As before, rNorm

and artefact rejection had no major impact on this difference. We observed an

exception in Keirn’s database, for which rNorm reduced the difference by as much

as ∼10 percentage points.
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Figure 5.18: Qualitative analysis of task-independence. Spectral representation, in dB,

of four subjects from BCI2000-Full. The signal corresponds to the C3 sensor, and was obtained

with Conf-1s system. The top colour bar-code represent changes in tasks. Each task’s PSD is

attached to the right of the spectrograms, using the same colour scheme as the task bar-code.

Discussion

If differences in EEG neural signatures were driven predominantly by cognitive

tasks rather than the individual’s identity, the performance of the biometric system

should have experienced a dramatic drop (close to chance levels) in the Task-CV

experiments. Conversely, the obtained stability supports the hypothesis of a task-

independent neural signature. This is especially true when considering that, in the

Task-CV tests, some subjects were evaluated on the training tasks of others.

This does not suggest that the EEG activity is completely homogeneous across

tasks. From the examples provided, task-dependent activity can be easily identi-

fied. However, these variations (A) coexist with task-independent features and/or

(B) are of a smaller magnitude than differences across individuals. Moreover, the

presented quantitative results point to the existence of subject-specific task-specific

information, although of lower discrimination power than the task-independent

one.

In addition to the above experiments, we also tested the BCI2000-Baseline,
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Figure 5.19: Quantitative analysis of the task-independence property. Difference

between PRE values of Task-CV and regular CV full-fusion experiments. A maximum of 20

subjects was used in each experimental iteration. Refer to caption of figure 5.9 for details on

box markings within the image.
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Figure 5.20: Quantitative analysis of the task-independence property with rNorm

systems. Difference between PRE values of Task-CV and regular CV full-fusion experiments.

A maximum of 20 subjects was used in each experimental iteration. Refer to caption of figure

5.9 for details on box markings within the image.

BCI2000-Tasks and DEAP-Playback datasets3. Specifically, from BCI2000-Baseline

results we noticed a remarkably high difference in PRE values between Task-CV

and normal CV or 1Task-AllSess experiments. We concluded that, with a sin-

gle cognitive state for training (BCI2000-Baseline has only two states: REO and

REC), the system is unable to identify the range of discriminative features that

are task-independent. As a result, the system suffers from over fitting and under-

estimates the true potential of the data, similar to what happened with Keirn’s

and Yeom’s database in Sess-CV experiments (section 5.4.4).

5.5.2 Permanence of task-independence

Finally, we ran a double CV experiment on cognitive tasks and sessions to com-

plete the analysis of the EEG traits. As in the previous case, we ran some extra

experiments combining focus modes with CV methods.

3DEAP-Baseline contained a single state and therefore was inappropriate for these experi-

ments.
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Figure 5.21: Task-CV and 1Task-AllSess comparison. Difference in PRE values between

Task-CV and 1Task-AllSess full-fusion experiments. 1Task-AllSess confusion matrices were

added across cognitive tasks. A maximum of 20 subjects was used in each experimental iteration.

Refer to caption of figure 5.9 for details on box markings within the image.
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Figure 5.22: Task-CV and 1Task-AllSess comparison with rNorm systems. Differ-

ence in PRE values between Task-CV and 1Task-AllSess full-fusion experiments. 1Task-AllSess

confusion matrices were added across cognitive tasks. A maximum of 20 subjects was used in

each experimental iteration. Refer to caption of figure 5.9 for details on box markings within the

image.

Results

From qualitative analysis, time has the same effect as described in section 5.4.4

(fig. 5.23). Qualitatively, the effect of time on PRE values remains as described in

the previous experiment, with a drop in performance between Task-Sess-CV and

Sess-CV experiments. In this case, the drop was not greater than 10 percentage

points for Keirn’s database and not greater than 1 percentage point for Yeom’s

data set, except with rNorm Conf-FullLen system (table A.32). Still, the system’s

performance remains higher than chance levels (table 5.7).

Discussion

The fact that the effects of time under Task-Sess-CV remained as in normal Sess-

CV tests, supports the existence of a task-independent neural signature. If the

performance of the previous experiment (section 5.5.1) had been due to peculiar-
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Figure 5.23: Qualitative analysis of the permanence of task-independence. Spectral

representation, in dB, of four subjects from Keirn’s database. The signal corresponds to the C3

sensor, and was obtained with Conf-1s system. The colour bar-codes above the PSDs represent

changes in tasks and sessions. PSD for each task and session is attached to the right of the

spectrograms, using the same colour scheme as the task bar-code.

ities of the set-up rather than to real subject specific features, PRE values would

have slumped to chance levels under Task-Sess-CV.

5.5.3 Conclusions

These results provide evidence of the existence of a task-independent neural sig-

nature. They suggest that the brain activity, as recorded by an EEG equipment,

is more defined by the individual’s identity than it is by the performed task or

experimental condition. Indeed, the EEG spectrogram reveals that part of this

activity is relatively stable across tasks. Specifically, we observed this signature

across motor tasks and resting states (BCI2000-Full), emotional states and REO

(DEAP-Full), problem-solving tasks (Keirn’s), synonyms and non-synonyms AEPs

(P. Ulssperger’s), self and non-self VEP (Yeom’s) and target and non-target VEP

(Zhang’s).

Our findings also serve to expose the difficulties faced by the neuroscience dis-

ciplines, which mainly focus on finding commonalities of brain functioning across
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Table 5.7: Quantitative analysis of the permanence of task-independence. Mean PRE

and 95% CI obtained with Sess-CV experiments and combining Sess-CV with 1Task-AllSess and

Task-CV. Note that for Keirn’s database, Conf-HalfLen is equivalent to Conf-2s. Refer to table

3.2 for details on databases’ code names.

Sess-CV +

Dat. AllTask-AllSess 1Task-AllSess Task-CV

Conf-HalfLen

K 73.29 68.52 69.07

[72.66, 73.92] [67.72, 69.32] [65.82, 72.31]

Y 34.36 35.01 33.11

[33.73, 34.98] [34.52, 35.51] [32.31, 33.91]

Conf-FullLen

K 70.76 56.26 60.15

[70.30, 71.22] [55.32, 57.21] [57.33, 62.97]

Y 35.69 36.36 34.46

[35.21, 36.16] [35.98, 36.74] [33.78, 35.13]

Conf-1s

K 73.33 71.98 68.81

[72.50, 74.17] [71.37, 72.58] [66.36, 71.26]

individuals. An example of this are BCIs, whose ideal system is one that could be

trained offline to differentiate between thought orders and used seamlessly by any

person without further tuning.

5.6 Summary and overall conclusions

In this chapter, we have presented the results of an extensive study of the individ-

ual’s discriminant information within the time-frequency representation of EEG

signals. In doing so, we have used 6 databases with different recorded cognitive

tasks and states. This, together with the performed complementary qualitative

and quantitative analyses, allowed us to distinguish inherent characteristics of the

EEG neural signature from idiosyncrasies of individual data sets. Specifically, we



5.6. Summary and overall conclusions 139

Table 5.8: Quantitative analysis of the permanence of task-independence with

rNorm systems. Mean PRE and 95% CI obtained with Sess-CV experiments and combin-

ing Sess-CV with 1Task-AllSess and Task-CV. Note that for Keirn’s database, Conf-HalfLen is

equivalent to Conf-2s. Refer to table 3.2 for details on databases’ code names.

Sess-CV +

Dat. AllTask-AllSess 1Task-AllSess Task-CV

Conf-HalfLen

K 82.18 78.14 73.58

[81.34, 83.02] [77.41, 78.87] [70.20, 76.97]

Y 42.60 42.97 41.76

[42.46, 42.74] [42.78, 43.16] [41.38, 42.13]

Conf-FullLen

K 76.95 65.51 66.53

[75.96, 77.93] [64.95, 66.08] [63.58, 69.47]

Y 47.73 47.59 46.12

[47.49, 47.97] [47.44, 47.74] [45.64, 46.59]

Conf-1s

K 87.01 83.02 78.19

[86.64, 87.38] [82.20, 83.84] [75.19, 81.19]

ran four experimentation blocks, each with a specific goal, which resulted in the

following synthesized recommendations and conclusions:

1. Configuration of the PSD: recommendations

(a) Record, at least, 5 seconds of EEG to perform the identification.

(b) Divide the EEG into segments between 1 or 2 seconds long.

(c) If data volume and computational speed is not an issue, use some degree

of window overlap.

(d) Compute the spectral representation for each window, using a number of

spectral coefficients similar to the number of samples within the window

to maintain the spectral resolution.



140 Chapter 5. EEG time-frequency exploration

(e) Retain a bandwidth from the lowest frequencies to 30 or 40 Hz.

(f) Perform classifications for each window individually and generate a sin-

gle response by fusing scores.

2. Representation of the time and frequency domains: recommendations

(a) Use AvgMnt as the default montage.

(b) Consider using BIHMnt in cases where processing time or data volume

is a concern.

(c) As a substitute for complex artefact rejection methods, you may nor-

malize the spectral coefficients with a method robust to outliers.

3. Properties of the discriminant information: conclusions

(a) There seems to be no best performing sensor location found across sys-

tems, databases and/or cognitive tasks.

(b) In terms of frequency distribution, there is a performance peak within

the alpha rhythm. Frequencies within the beta rhythm (up to 40 Hz) are

much or more discriminant than lower bands. Frequencies below 8 Hz

may also contain an important amount of discriminant information.

(c) Subject traits within the EEG activity are ‘unique enough’ to discrim-

inate 100+ subjects when an appropriate system configuration is used.

(d) Subject-specific EEG spectral patterns seem to be ‘permanent enough’

to use them as a biometric modality.

(e) From the full discriminant information within EEG spec-

trum, a significant part of it is independent from the ongoing

task.
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Chapter 6

Biometric system implementation

For the final step of the current work, we applied the knowledge gained on the

properties and characteristics of the neural signature to the design of an EEG

biometric verification system. In this chapter, we will describe the architecture

of all the evaluated systems, with special emphasis on those that yielded relevant

results. We will show that the real cepstrums coefficients and the Lineal Prediction

Coefficients (LPC) can code most of the discriminant information within the PSD

of the EEG. We will begin describing the experimentation methodology followed

in this study.

6.1 Methodology

All the experiments ran in this phase implemented a verification paradigm1. This

is arguably more suitable for the biometry in hand than that of classification2, as

in an EEG biometric system, the user’s consent and collaboration will always be

required to proceed. More so than in other biometries, since users need to wear

an EEG device during the process.

1In a verification paradigm, the system is presented with the user’s biometry along with his

or her identity, and it has to decide whether the two pieces of information match or not.
2In a classification paradigm, the system is only presented with the user’s biometry and it

has to decide which registered user it corresponds to, if any.
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As before, experiments combined stratified K-Folds and MC CVmethodologies.

In this case, a subject was randomly selected as the positive class for each MC

iteration. The remaining subjects were therefore treated as impostors. In addition,

we applied an open-set segmentation, where different sets of impostors were used

for training and testing. Hence, impostors were segmented at the subjects level,

using all data from an impostor (all tasks and sessions) either for training or testing

– as opposed to the segmentation of the registered user data, which was done at

the sample level.

To keep these experiments in line with our proposed hypothesis of a task-

independent neural signature, experiments were run on a task-CV basis if a single

session was available, and on a task-sess-CV basis for Keirn’s and Yeom’s data

sets, as described in section 5.1.5. The number of folds (from K-Folds) was set to

2, thus setting half of the data for training and half for testing3, and the number of

MC iteration was fixed to 20 — bare in mind that in each MC iteration a different

subject is used as the positive class. In databases where the number of subjects

was smaller than 20, we repeated the whole K-Fold MC process N times until

20 experiments were executed. For example, for Keirn’s database (5 subjects) we

repeated the whole process 4 times (4 x 5 = 20).

For the computation of results, we proceed as in the previous chapter, i.e.

we aggregated the confusion matrices from each K-Fold and computed average

and 95% CI across MC iterations. In this chapter, we will report accuracy re-

sults (Acc.), defined as the average between Genuine Acceptance Rate (GAR)

or sensitivity (percentage of positive samples correctly classified) and specificity

(percentage of negative samples correctly classified). Receiver Operating Char-

acteristic (ROC) curves, showing False Acceptance Rate (FAR) against GAR for

3For Keirn’s and Yeom’s data sets, where a task-sess-CV is applied. That is, for the positive

class (registered user), only half of the data from one session is used for training, and the opposing

half from the other session for testing. This is done to maintain cognitive tasks crossed between

sets.
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different decision thresholds, will also be provided together with optimal perfor-

mance points.

6.2 Baseline design

Our baseline design was derived entirely from the findings of chapter 5. The EEG

signal was first divided into 75%-overlapped windows of length 2 seconds – except

for Yeom’s and Zhang’s databases, for which 0.5-second windows were used. We

then applied a Hamming window and computed the PSD coefficients of each of

these segments. Next, we built a feature vector for each window by concatenating

the 1-to-40 Hz spectral coefficients from all the EEG channels. An LDC was used

for classification. For each sample, the final score was obtained by averaging the

scores of each of the overlapped windows.

We relied on the normalization of the spectral coefficients by rNorm (table 5.3)

as an alternative to artefact rejection algorithms (section 5.3.2). The application

of any of the methods described in section 4 to a practical system is not straight

forward. Firstly, the computation of the BSS model requires large volumes of data

and is computationally expensive. Secondly, BSS model need to be trained for each

recording session, i.e. each time the user put on the EEG cap, which makes the

previous point even more troublesome. Hence, although possible to some degree,

the adaptation of these techniques to be suitable for the current problem is out of

the scope of this work.

Results

As it was the case in the experiments of section 5.3.2, the application of rNorm

had mixed effects on the system’s performance (table 6.1). On average, rNorm

had a neutral or positive effect on performance and/or stability. However, this

effect was not statistically significant (t-test; df = 38; p < 0.05), except on DEAP-

Full dataset, for which rNorm boosted performance by 12 percentage points and
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Table 6.1: Accuracy results of the baseline system. Mean and 95% CI accuracy values

obtained with the baseline design using the raw and rNorm PSD coefficients. Within data

sets, performances statistically lower than the maximum are pointed by * (single tail t-tests

with df = 38 and BHFDR adjusted p < 0.05). A maximum of 20 subjects was used in each

experimental iteration. Refer to table 3.2 for details on databases’ code names.

System BF DF K

Raw 80.52 82.79* 66.47

[77.82, 83.23] [78.54, 87.04] [61.65, 71.30]

rNorm 82.75 94.70 62.99

[79.22, 86.27] [92.05, 97.36] [60.95, 65.03]

System P Y Z

Raw 81.99 68.72 77.58

[77.83, 86.14] [64.41, 73.03] [72.18, 82.98]

rNorm 84.61 72.81 71.13

[80.36, 88.86] [68.85, 76.77] [66.87, 75.39]

reduced CI by 3 points.

The benefits of rNorm were more easily seen in the obtained ROC curves, es-

pecially for lower values of FAR (fig. 6.1 and 6.2). With BCI2000-Full, DEAP-Full

and P. Ullsperger’s data sets, rNorm systems reported higher GAR for FARs below

10%. The opposite was true for Keirn’s database, whose ROC curve was closer to

chance levels with the rNorm system. Results of Yeom’s data set remained virtu-

ally unaltered by rNorm. Finally, we observed mixed effects in Zhang’s database

case, where the rNorm system gave worst results for FARs above 1% and better

below that point.

Discussion

These results reinforced the conclusions of section 5.3.2 regarding rNorm, which

may have a positive effect on the system’s performance. After inspecting the
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Raw PSD rNorm PSD

Figure 6.1: ROC curves of the baseline design. Mean ROC curves and std (shaded area)

obtained with the raw (left) and rNorm (right) PSD coefficients. A maximum of 20 subjects was

used in each experimental iteration. The dotted red diagonal line represents chance accuracy

levels, while the black dashed diagonal line represents EER points.

Raw PSD rNorm PSD

Figure 6.2: ROC curves of the baseline design with logarithmic FAR axis. Mean ROC

curves and std (shaded area) obtained with the raw (left) and rNorm (right) PSD coefficients.

A maximum of 20 subjects was used in each experimental iteration. Refer to fig. 6.1 for legend

details.
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validation results4 of Zhang’s database, we concluded that the system may have

suffered from over fitting with the application of rNorm. To maximize the potential

of subsequent systems, we continued to consider both versions of the PSD (raw

and rNorm).

6.3 Feature extraction methods: results, discus-

sion and conclusions

Once the baseline had been set, we explored the use of different descriptors to

characterize the discriminant information. In chapter 5, we identified the overall

shape of the EEG’s spectrum as the source of the discriminant information. Hence,

we considered the application of cepstral analysis and spectral envelope coefficients.

6.3.1 Cepstral coefficients

Cepstral coefficients have been extensively used on signal processing problems

[155]. The Real Cepstrums (RCeps) (usually just called cepstrums) are defined as

C(q) = |FFT−1(log(|FFT (X(t))|2))|2, (6.1)

where X(t) is a signal. Here, we delimited the cepstral analysis to the frequencies

in [1, 40] Hz. In addition, following our previous results, we performed FFT−1

to the raw and rNorm PSD. Finally, we configured FFT−1 to compute the same

number of coefficients as in the FFT step.

The cepstral space codes the broad shape of the spectrum in the lower que-

frencies (first coefficients), and its details and periodicity in higher quefrencies. As

we have previously concluded that the discriminant information is coded in the

overall shape of the spectrum, we expected to find the bulk of the discriminative

4Unless otherwise specified, the term “validation results” refer to the results obtained with

the training set. As we are not directly dealing with the optimization of parameters during

training, there is no need to have a disjoint validation set.
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RCeps rNorm-RCeps

Figure 6.3: Performance of RCepsP% system with increasing number of coefficients.

Mean accuracy values and 95% CI (shaded area) obtained with the first P% of the real raw (left)

and rNorm (right) cepstral coefficients. A maximum of 20 subjects was used in each experimental

iteration. Refer to fig. 6.1 for legend details.

power in the first few coefficients. To test this, we designed a system that used the

first P% of the computed coefficients (RCepsP%), and configured it with different

values of P .

Results

Across databases and normalization conditions, maximum performance was achieved

at different values of P (fig. 6.3). Having said that, the majority of the configura-

tions gave performances close the maximum (tables A.33 to A.35). On BCI2000-

Full, Keirn’s and Zhang’s databases, using too many cepstral coefficients translated

on a lost of performance. This was especially acute on Keirn’s and Zhang’s data

sets, whose accuracy dropped ∼ 20 percentage points.

Looking at the ROC curves of the RCepsP% from raw PSD, we noticed a steady

improvement of the GAR for lower FARs peaking at P = 20% (fig. 6.4). After

that point, the GARs oscillated, regaining the maximum values in some cases but

not in others. The rNorm-RCeps showed a poorer performance for lower FAR

points than the raw RCeps (A.13).
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RCeps5% RCeps10%

RCeps20% RCeps30%

Figure 6.4: ROC curves of RCepsP% systems coefficients with logarithmic FAR

axis. Mean ROC curves and std (shaded area) obtained with different P values. A maximum

of 20 subjects was used in each experimental iteration. Refer to fig. 6.1 for legend details.

Discussion

As with the baseline experiment, results were not fully homogeneous across databases

and systems, hindering the selection of the optimal configuration point. We chose

to retain 20% of the cepstrums for the remaining experiments, and rejected the

application of rNorm.

6.3.2 Spectral envelope coefficients

The coefficients of an AR model (or LPC) have been a popular choice for subject

characterization within the EEG biometric identification literature (chapter 2).
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This model predicts samples of a time series as a function of the past p observations,

where p is the order of the system. This is typically defined as

X[t] = c+

p∑

i=1

ϕiX[t− i] + ǫt, (6.2)

with c a constant, ϕi the parameters of the model and ǫt white noise. The above

can also be seen as the output of an all-pole Infinite Impulse Response (IIR) system

with noise presented at its input. Therefore, the LPC describe the spectral shape

of the modelled signal. The higher the order of the model, the more detailed the

description.

As with the cepstrums, we would like to capture the overall shape of the spec-

trogram and discard irrelevant details from each sample. Hence, we expected to

find a peak in accuracy with increased order N (LPCN). Once an optimal order

was fixed, we explored the use of other representation forms of the LPC. Specif-

ically: RC and Line Spectral Pairs (LSP), which have been identified as robust

against noise. In addition, we also tested the performance of the model’s fitting

error ǫ.

Results

Overall, results show a behaviour similar to that of the cepstrums, with high varia-

tion of the optimal point (fig. 6.5) and great number of configurations performing

similar to the optimal (tables A.37 and A.38). An accuracy within 1.5 percentage

points to the maximum is reached at order 8. Orders above this had no effect

on the performance of the system, except on Zhang’s database, whose accuracy

decreased abruptly passed order 25.

The tendency was less clear when looking at GAR for lower FARs, with large

variation across databases. Having said that, a steady increase in GAR was ob-

served in all cases up to order 8, followed by oscillating performances. In some

cases, the maximum GARs were obtained with higher orders; e.g. LPC20 for

BCI2000-Full database and LPC40 for DEAP-Full data set.
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Figure 6.5: Performance of LPCN systems. Mean and 95% CI (shaded area) verification

accuracy obtained with different values of N . A maximum of 20 subjects was used in each

experimental iteration. Refer to fig. 6.1 for legend details.

LPC2 LPC4

LPC6 LPC8

Figure 6.6: ROC curves of LPCN systems coefficients with logarithmic FAR axis.

Mean ROC curves and std (shaded area) obtained with different N . A maximum of 20 subjects

was used in each experimental iteration. Refer to fig. 6.1 for legend details.
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Table 6.2: Results of spectral envelope coefficients. Mean and 95% CI verification

accuracy of LPC8, RC8, LSP8 and the ǫ8. Within data sets, performances statistically lower

than the maximum are pointed by * (single tail t-tests with df = 38 and BHFDR adjusted

p < 0.05). A maximum of 20 subjects was used in each experimental iteration. Refer to table

3.2 for details on databases’ code names.

System BF DF K

LPC8 96.01 96.82 79.10

[95.04, 96.99] [95.66, 97.97] [72.03, 86.18]

RC8 95.72 96.52 77.29

[94.66, 96.77] [95.00, 98.04] [70.94, 83.63]

LSP8 95.27 97.91 78.77

[93.31, 97.24] [97.18, 98.63] [69.77, 87.78]

ǫ8 81.86* 73.29* 64.27*

[78.44, 85.27] [68.51, 78.08] [59.08, 69.46]

System P Y Z

LPC8 89.88 74.73 93.93

[85.49, 94.26] [69.57, 79.88] [92.19, 95.66]

RC8 85.47 73.50 93.14

[79.73, 91.21] [67.98, 79.03] [90.51, 95.77]

LSP8 88.35 74.79 94.03

[83.25, 93.45] [69.02, 80.57] [92.31, 95.75]

ǫ8 80.97* 62.02* 81.15*

[77.01, 84.92] [57.69, 66.35] [76.29, 86.01]

Comparing the accuracy of 8-order LPC, RC, LSP and ǫ, only ǫ8 performed

substantially worse than the rest (table 6.2). LPC8, RC8 and LSP8 resulted in

virtually equivalent performances. Inspecting the ROC curves at lower FAR values,

LPC8 produced, on average, best GAR (fig. 6.7).

Discussion

From the above results, we conclude that an order of 8 is a good compromise

between accuracy and feature dimensionality, and is sufficient to characterize the
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LPC8 RC8

LSP8 ǫ8

Figure 6.7: ROC curves for different spectral envelope coefficients. Mean and std

(shaded area) ROC curves obtained with LPC8, RC8, LSP8 and ǫ8. A maximum of 20 subjects

was used in each experimental iteration. Refer to fig. 6.1 for legend details.

discriminant spectral shape of the EEG activity. In addition, LPC8 will be used

in future designs, as there was no clear benefit from the application of the more

computationally expensive RC8 and LSP8.

These results contradict some of the conclusions in the literature. R.B. Paran-

jape et. al. concluded that an increase in the order of the AR model is necessary

to bear with the rise in the number of users [79]. Even with only 5 subjects,

they reported an increase in classification accuracy of 7 percentage points when

moving from order 9 to 15. In addition, Campisi’s team found RC to outperform

LPC [81, 111]. These discrepancies may be due to differences in the experimenta-

tion methodology: classification versus verification experiments, differences in the
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systems’ architectures, and/or idiosyncrasies of the databases.

6.3.3 Other evaluated features

In addition to the described features, we also tested the following ones5:

• Time statistics of feature vectors: We computed several statistical measure-

ments across time (across windows of the STFT) and used the results as

inputs to the LDC. Specifically, we computed the mean, std, kurtosis, skew-

ness and the percentiles 5, 25, 50 (median), 75 and 95. Mean and median

statistics performed at a level similar to, or worse than, the original system,

while the remaining measurements performed relatively poor. In addition,

ROC curves showed a poorer behaviour away from the EER point. Having

said that, as with the BIHMnt in section 5.3.1, this method has the advan-

tage of reducing the number of vectors to be evaluated, as the NW windows

are converted into a single vector. Thus, it might be considered in cases

where the volume of data or the processing speed is a concern.

• Feature statistics of feature vectors: We computed the statistics just de-

scribed, but across features within each sample instead of across time. Hence,

the number of windows remained the same and the length of the feature

vector was reduced to one (the static value). In this case, results were sub-

stantially worse than that of the original systems.

• APS of bands: We divided the PSD into bands and computed the powers

within each band. Results were significantly worse than that of the baseline

system; i.e. based on the full PSD vector.

5Since these features yielded worse or equivalent performances with a more complex design,

their results are not reported in detail here.
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6.3.4 Conclusions

Overall, the first design step showed some encouraging results (table 6.3). Per-

formance of the baseline design were already above 80% for all databases except

Yeom’s. RCeps and LPC clearly outperformed the PSD coefficients in all cases

and the rNorm-PSD in 3 out of 6 cases. This was particularly interesting consid-

ering the dimensionality reduction of the feature vector of the former two systems

compared to the PSD and rNorm-PSD. Based on the results, RCeps20% and LPC8

features were considered on subsequent design.

6.4 Other evaluated designs

A number of different architectures were evaluated in addition to the ones described

so far. However, as they all yielded worse or equal performances with a more

complex design, their results are not reported in detail here. In particular, the

following designs were tested:

• Feature fusion: We fused RCeps20% and LPC8 in a single vector and fed

it to the LDC. This fusion performed similarly to the individual features

RCeps20% and LPC8, which evidenced the high level of correlation between

the information extracted by both methods.

• Fusion of statistical measurements: We combined the statistical measure-

ments described in section 6.3.3 taken from RCeps20% or LPC8 in a single

feature vector. The fusion of time-statistics performed similar to, or worse

than, the individual mean and median vectors. On the other hand, the con-

catenation of the feature-statistics, i.e. taken within each vector instead of

across time, produced a remarkable increase in accuracy compared to indi-

vidual statistics. In some cases there were more than 10 percentage points of

improvement. Therefore, we considered the fusion of feature-statistics to the

original RCeps20% or LPC8 vectors. Based on R. Palaniappan’s results [51]
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Table 6.3: Results of selected configurations. Mean and 95% CI results of the selected

configurations of PSD, RCeps and LPC systems. A maximum of 20 subjects was used in each

experimental iteration. Refer to table 3.2 for details on databases’ code names.

System BF DF K

PSD 80.52* 82.79* 66.47*

[77.82, 83.23] [78.54, 87.04] [61.65, 71.30]

rNorm-PSD 82.75* 94.70 62.99*

[79.22, 86.27] [92.05, 97.36] [60.95, 65.03]

RCeps20% 95.73 97.59 80.06

[94.56, 96.90] [96.12, 99.05] [73.97, 86.16]

rNorm-RCeps20% 93.04* 97.42 80.11

[90.99, 95.09] [95.67, 99.17] [75.66, 84.55]

LPC8 96.01 96.82 79.10

[95.04, 96.99] [95.66, 97.97] [72.03, 86.18]

System P Y Z

PSD 81.99* 68.72* 77.58*

[77.83, 86.14] [64.41, 73.03] [72.18, 82.98]

rNorm-PSD 84.61 72.81 71.13*

[80.36, 88.86] [68.85, 76.77] [66.87, 75.39]

RCeps20% 89.19 73.94 93.18

[85.55, 92.83] [69.04, 78.84] [90.54, 95.82]

rNorm-RCeps20% 85.12 75.37 86.92*

[80.18, 90.07] [71.41, 79.33] [82.93, 90.91]

LPC8 89.88 74.73 93.93

[85.49, 94.26] [69.57, 79.88] [92.19, 95.66]

we were expecting this to improve the system’s accuracy. Nevertheless, once

more, results were similar to or worse than those of the original systems. The

enhancement observed by Palaniappan may therefore be due to a suboptimal

extraction of the AR coefficients (he used EEG segments of 0.5 seconds).

• Score fusion of RCeps20% and LPC8 individual systems: This performed

equal to, or worse than, the feature fusion version.
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• Multi-window length: Throughout chapter 2 we used systems with different

STFT window lengths (LW ). We considered the possibility that these con-

figurations extracted uncorrelated discriminant information, and created a

design based on multiple sub-systems with different LW fused at score level.

Results were equal to or worse than those obtained with the original systems.

• Projection methods: We applied PCA, LDA and ICA to all the described

architectures. This was not a bid to reduce the data dimensionality, but

rather an attempt to present the discriminant information to the classifier

in a more suitable way, in the hope of boosting the performance and/or

improve the stability of the system. We applied such projection techniques

to the features of each sensor individually (as sensor experts) and to the

vector containing the features from all sensors. In both cases, results were

similar or worst than those of the original systems.

• Score fusion of sensor experts: This architecture contained as many sub-

systems as EEG sensors. The LDC scores obtained for all sensors were then

averaged to build the final response. We evaluated this with all the described

systems. In all cases, results were similar to those of the original systems.

• Non-lineal classifiers: In the classification phase, we evaluated the perfor-

mance of RBF-SVM and ANN. The kernel and cost parameters of the former

were optimized applying a CV procedure within the training data. To avoid

any over fitting, this inner CV followed the same principle as the one used for

testing, meaning different subjects were used as impostors during training

and validation. Similarly, multiple configurations of the hidden layers were

evaluated for the ANN. In both cases, we only managed to equal the results

of LDC. Interestingly, the optimization of the RBF-SVM parameters showed

a clear tendency to create a linear model, rather than a non-linear one.
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Table 6.4: Results obtained when testing with all the available subjects. Mean and

95% CI results of RCeps20% and LPC8 systems. Although results of DEAP-Full, Keirn’s, P.

Ullsperger’s and Yeom’s data sets remained the same as before – as they contain less or equal

to 20 subjects –, they are replicated here for ease of inspection. Refer to table 3.2 for details on

databases’ code names.

System BF DF K

RCEPS 95.40 97.59 80.06

[94.70, 96.10] [96.12, 99.05] [73.97, 86.16]

LPC 95.42 96.82 79.10

[94.79, 96.05] [95.66, 97.97] [72.03, 86.18]

System P Y Z

RCEPS 89.19 73.94 91.58

[85.55, 92.83] [69.04, 78.84] [89.30, 93.87]

LPC 89.88 74.73 93.24

[85.49, 94.26] [69.57, 79.88] [91.53, 94.94]

6.5 Experiments using all the available subjects

Finally, we re-evaluated the best performing systems – i.e. RCeps20% and LPC8

with an LDC classifier – with all the subjects of BCI2000-Full and Zhang’s data

sets. That is, 100 subjects of BCI2000-Full database and 30 subjects for Zhang’s

data set.

Results

Surprisingly, results remained virtually equal despite the increase in the number

of subjects: from 20 to 100 in the case of BCI2000-Full data set, and from 20 to

30 in the case of Zhang’s database (table 6.4).

After inspecting the ROC curves (tab. 6.5, fig. 6.8 and 6.9), we concluded

that both RCeps20% and LPC8 systems maximized their potential; i.e. obtained

accuracy values close to their EER. The only notable exception was P. Ullsperger’s

data set, which underperformed on both systems by ∼5 percentage points. The
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Table 6.5: Optimal ROC points obtained when testing with all the available sub-

jects. Refer to table 3.2 for details on databases’ code names.

Feature BF DF K P Y Z

RCeps20% 96.85 97.99 80.71 94.42 76.19 93.21

LPC8 96.06 96.89 79.36 94.46 75.61 94.02

RCeps20% LPC8

Figure 6.8: ROC curves obtained when testing with all the available subjects. Mean

ROC curves and std (shaded area) of RCeps20% and LPC8 systems. Refer to fig. 6.1 for legend

details.

obtained (reported) accuracy corresponds to a sensitivity of 99% and a specificity

of 78% and 79% for RCeps20% and LPC8 respectively. Therefore, the system

underestimated the threshold, resulting in a sub-optimal configuration situated to

the right of the EER point.

On BCI2000-Full and DEAP-Full databases, RCeps20% and LPC8 systems

showed a strong performance, reflected in their ROC curves. GAR was above

88% for an FAR of 1% (table 6.6), and above 82% for an FAR of 0.5% (table 6.7).

Experiments with Zhang’s database resulted on a GAR above 80% for 1% FAR,

and 55% for 0.5% FAR. The remaining data sets had relatively poor performances

at these FAR values.
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RCeps20% LPC8

Figure 6.9: ROC curves with logarithmic FAR axis obtained when testing with

all the available subjects. Mean ROC curves and std (shaded area) of RCeps20% and LPC8

systems. Refer to fig. 6.1 for legend details.

Table 6.6: GAR for an FAR of 1% obtained when testing with all the available

subjects. Mean and std of GAR obtained with RCeps20% and LPC8 systems. Results computed

with all the available subjects for each database. Refer to table 3.2 for details on databases’ code

names.

System BF DF K

RCeps20% 93.17 96.11 24.05

[91.54, 94.80] [93.44, 98.77] [12.82, 35.28]

LPC8 88.49 90.04 21.61

[86.17, 90.81] [85.37, 94.72] [9.70, 33.52]

System P Y Z

RCeps20% 0.00 16.01 63.18

[0.00, 34.03] [7.06, 24.95] [52.79, 73.58]

LPC8 73.54 14.27 69.65

[59.48, 87.60] [6.26, 22.28] [60.74, 78.57]
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Table 6.7: GAR for an FAR of 0.5% obtained when testing with all the available

subjects. Mean and std of GAR obtained with RCeps20% and LPC8 systems. Results computed

with all the available subjects for each database. Refer to table 3.2 for details on databases’ code

names.

System BF DF K

RCeps20% 89.83 94.32 17.92

[87.43, 92.24] [90.51, 98.13] [8.75, 27.09]

LPC8 82.08 85.53 16.16

[79.05, 85.11] [78.68, 92.37] [5.64, 26.68]

System P Y Z

RCeps20% 0.00 10.33 49.44

[0.00, 29.37] [2.70, 17.97] [38.29, 60.58]

LPC8 64.89 8.83 54.86

[48.05, 81.73] [2.33, 15.32] [45.17, 64.56]

Discussion

Overall, we obtained relatively good and stable accuracy results across systems

and databases. Although BCI2000, Keirn’s, Yeom’s and Zhang’s databases have

also been used by other authors, a direct comparison between our results and

those within the state of the art is impossible due numerous reasons (tables 6.8

to 6.11). In addition to differences in the number of subjects and tasks used and

in the applied experimentation methodology, the following two factors should be

considered:

Firstly, the design proposed here is a generalised one. Unlike most of the

systems presented by other authors, we have designed the system using multiple

databases and selected the collective optimal configurations – these configurations

were not necessarily optimal for individual data sets. Hence, our system is not

tuned to maximize the performance within a single data set, but to work well

across multiple scenarios. In fact, the performance of the three largest databases

are within 6 percentage points within each other, suggesting that this level of
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Table 6.8: Comparison of results obtained with BCI2000 database. Columns corre-

spond to the publication reference (Ref.), the number of subjects used (# Subj.), the task used

(Task), the CV method applied (CV method), and the success rate (Succ.). In addition, NIt

refers to the number of MC iterations. For completeness, classification results from table A.30

are also shown, these correspond to the analysis of chapter 5.

Ref. # Subj. Task CV method Succ.

Classification experiments

[64] 109 REO and REC K-Fold; K = 5 100%

[62] 18 T4 (section 2.3.5) K-Folds; K = 3 96.5%

This 20 All Open-set; Task-CV ; K-Fold +

MC; K = 5 + NIt = 20

84.88%

Verification experiments

[63] 109 REO Unspecified 95.6% (from EER)

This 100 All Open-set; Task-CV ; K-Fold +

MC; K = 2 + NIt = 20

95.42%

discrimination is indeed a property of the neural signature and not due to idiosyn-

crasies of the data. This is also supported by the observed stability of the results

when increasing the number of subjects (from 20 to 100 for BCI2000-Full).

Secondly, our proposed approach on a task-independent neural signature rep-

resents a more complex problem than that of task-specific identification via EEG.

As highlighted in chapter 5, task-specific neural activity carries extra discrimi-

nant information, which systems from other architectures may potentially exploit,

hence, obtaining higher overall performances. We will present in chapter 7 an ar-

gument in favour of our approach, regardless of its inherent increase in difficulty.

In addition, on Keirn’s and Yeom’s data sets, sessions were also crossed between

training and testing sets (task-sess-CV ), a practice that was not generally followed

in the literature.

The relatively lower performance observed in some cases when compared with

other works, and the pronounced decline on GAR for lower values of FAR in all

but BCI2000-Full and DEAP-Full data sets, may be due to several reasons:
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Table 6.9: Comparison of results obtained with Keirn’s database. For more results

on this database, refer to tables 2.10 and 2.11. Refer to table 6.8 for a description of the table’s

columns. For completeness, classification results from table 5.8 are also shown, these correspond

to the analysis of chapter 5.

Ref. # Subj. Task CV method Succ.

Classification experiments

[49] 5 All on MTL K-Folds; K = 2 100%

This 5 All Open-set; Task-Sess-CV ; K-Fold

+ MC; K = 5 + NIt = 20

88.55%

Verification experiments

[48,51] 5 Task 3 K-Fold; K = 2 100% (from EER)

[51] 5 Task 1 K-Fold; K = 2 80% (from EER)

This 5 All Open-set; Task-Sess-CV ; K-Fold

+ MC; K = 2 + NIt = 20

80.06%

Table 6.10: Comparison of results obtained with Yeoms’s database. Refer to table 6.8

for a description of the table’s columns. For completeness, classification results from table 5.8

are also shown, these correspond to the analysis of chapter 5.

Ref. # Subj. Task CV method Succ.

Classification experiments

This 10 All Open-set; Task-Sess-CV ; K-Fold + MC; K = 2 +

NIt = 20

52.96%

Verification experiments

[109] 10 All K-Fold; K = 10 86.10%

This 10 All Open-set; Task-Sess-CV ; K-Fold + MC; K = 2 +

NIt = 20

74.73%
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Table 6.11: Comparison of results obtained with Zhang’s database. For more results

on these database, refer to tables tables 2.6 to 2.8. Refer to table 6.8 for a description of the

table’s columns. For completeness, classification results from table A.30 are also shown, these

correspond to the analysis of chapter 5.

Ref. # Subj. Task CV method Succ.

Classification experiments

[37,39] 20 All (ignored) Leave-One-Out 100%

[34,36,40] 20 All (ignored) K-Folds; K = 2 99.06%

[44]* 20 All (ignored) K-Folds; K = 3 92.80%

This 20 All Task-CV ; K-Fold + MC; K = 3 +

NIt = 20

75.90%

Verification experiments

This 20 All Open-set; Task-CV ; K-Fold + MC;

K = 2 + NIt = 20

93.24%

*: The pool of users contained 10 healthy subjects and 10 alcoholics.

Keirn’s and Yeom’s databases were tested under the task-sess-CV paradigm,

which is arguably more difficult than the task-CV one. This is especially true

when considering that a single session is used for training which in turn leaves the

system prone to detecting the idiosyncrasies of that specific recording session. We

can expect higher accuracy values when more sessions are available for training,

allowing the system to reject session idiosyncrasies [43, 72, 92,125].

Performance on Keirn’s and P. Ullsperger’s databases was certainly affected by

the reduced number of available subjects (only 5 subjects). Following the described

experimentation methodology, 1 subject is designated as the registered user and

only 2 subjects are used as impostors for training, with the other 2 utilized for

testing. With such a small number of impostors, we can expect the system’s

performance to be more sensitive to the idiosyncrasies of each CV partition.

The above should also be considered, to a lesser degree, for Yeom’s database,

which only has 10 subjects. In addition, this dataset contains EEG from two MZ
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twins. How these subjects are distributed among the registered and impostors sets

should be presumed to have a major impact on the test result.

Finally, in the case of Yeom’s and Zhang’s databases, the systems’ performance

was certainly compromised by the length of the EEG segments (only 1 second).

This forced us to use a window length LW of 0.5 seconds, as opposed to the optimal

1 or 2 seconds found in chapter 5.

6.6 Conclusions

In this chapter, we have evaluated multiple methods and system architectures in a

bid to exploit the identity traits within the time-frequency representation of EEG

activity. Overall, we have found that RCeps20% and LPC8 are the best performing

characteristics across databases from those tested. Adding any extra feature and

fusing RCeps20% and LPC8 in various ways had a neutral or negative effect on the

system’s accuracy, as did the application of non-linear classification algorithms

such as ANN and RBF-SVM.

Specifically, we conclude that:

1. The information extracted by RCeps and LPC is highly correlated, as ev-

idenced by the fact that fusing them had no effect on the system’s perfor-

mance.

2. The problem of verification based on RCeps or LPC features is a linear

problem, as evidenced by the fact that the evaluated non-linear algorithms

only equalled the performance of LDC.

3. RCeps and LPC can encode most of the discrimination power of the EEG’s

spectrum, as evidenced by the fact that all the systems tested performed

worse than, or similarly to, those based solely on RCeps or LPC – including

systems that fused different measurements of the spectral data.
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The information coded in RCeps20% and LPC8 is remarkably discriminant and

robust. Hence, to improve the design of the overall system, it may be more produc-

tive to search for the required extra discrimination power in sources other than the

spectral shape of individual sensors, or to apply a more sophisticated preprocessing

stage.

We may also conclude that the observed errors are probably not due to weak-

nesses in these features, but mainly due to intrinsic properties of the data, such as

the number of subjects available or perturbations of the EEG signal. We suggest

that this should be solved at the recording stage in a live system, for example,

requiring 5 seconds of clean EEG signal to perform the verification.
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Chapter 7

Discussion, advances and future

steps

“It’s much more interesting to live

not knowing than to have answers

which might be wrong.”

Richard Feynman

In this final chapter, we will discuss the obtained results and give arguments in

favour of the proposed approach to the problem of EEG biometric identification.

We will also highlight the advances in the field driven by this work. Finally, we

will provide some possible future research steps in line with the obtained results.

7.1 Discussion on the task-independent neural

signature

Throughout this research, we have provided evidence supporting the hypothesis

presented in section 1.1, i.e.:



168 Chapter 7. Discussion, advances and future steps

There exists, within human EEG activity, a task-independent pattern con-

comitant to the individual’s identity.

In addition, we have used this property to successfully build a system capable

of differentiating individuals via their EEG activity, irrespective of cognitive state.

Such a system would not have succeed without the existence of task-independent,

discriminant information.

Note that this research is fundamentally different to previously published neu-

rophysiological and biometric studies. Let us consider iris and gait recognition

systems as analogous examples. While the former uses properties ‘inherent’1 to

the individual, the latter focuses on how the individual performs a given task.

Hence, we could argue that task-specific studies are closer in nature to describing

idiosyncratic activity during cognitive processing. In contrast, our research on

task-independent characteristics, tries to describe identity in and of itself. Hav-

ing said that, it is very probable that previous studies have also been processing,

inadvertently, part of the task-independent signature.

The origin of this neural signature is unclear. Given that it is independent of

the recorded condition, we may associate it with unconscious processes working

uninterruptedly in the background, similar to M.E. Raichle’s et. al. concept of a

‘default mode of brain function’ [156–158]. Such concept hypotheses the existence

of an intrinsic activity which “instantiates the maintenance of information for

interpreting, responding to and even predicting environmental demands”. The

default mode is not completely suppressed when the subject engages in a task,

but rather attenuated: “Its functions are spontaneous and virtually continuous,

being attenuated only when we engage in goal-directed actions” [157]. This is in

line with the observation that the presented neural signature is a dynamic pattern

across conditions. The task-independence property arises from the fact that such

1Strictly speaking, irises are not inherent parts of an individual, as a subject can still be

without them.



7.2. Discussion on the task-independent EEG biometric approach 169

fluctuations have a smaller magnitude than differences across subjects. Hence,

we can interpret these fluctuations as task specific activity superimposing the

default mode. Interestingly, when talking about the continuity of the default mode,

M.E. Raichle et. al. noticed its relationship with the individual’s ‘self’: “This

is consistent with the continuity of a stable, unified perspective of the organism

relative to its environment (a ‘self ’)” [157].

Another possible explanation is that the signature is purely due to the structure

of the neural networks, and has nothing to do with their underlying cognitive

processes. Given the nature of the electrical fields and their propagation through

the skull, two networks with identical functionality but different organization will

produce different EEG signals. Accordingly, the EEG neural signature would be

broadly defined by the disposition of networks within the brain, with cognitive

processes playing a modulating role.

As is typically the case, the solution is probably neither of the above proposi-

tions, but a combination of both.

7.2 Discussion on the task-independent EEG bio-

metric approach

To date, the approach followed in the literature has been based on the analysis of

EEG from isolated conditions. Even when the system was fed with signals from

multiple tasks, they were usually labelled with the task itself, so that systems

could differentiate amongst them and exploit task-specific information (MTL).

In a recent publication, Campisi’s team expanded on the idea of an acquisition

protocol, where users were asked to perform a particular task while their EEG was

recorded for identification/verification [11]. Specifically, they have focussed their

efforts mainly on REC and REO conditions [64, 81,82,111]:

Within this paradigm subjects are typically seated in a comfortable



170 Chapter 7. Discussion, advances and future steps

chair with both arms resting, in a dimly lit or completely dark room.

Generally, external sounds and noise are minimized to favour the re-

laxed state of the subjects. Participants are asked to perform a few

minutes of resting state with eyes closed or eyes open, avoiding any

focusing or concentration, but staying awake and alert. ( [11])

T. Pham’s et. al. went a step further and proposed a system which assigns

specific tasks to groups of subjects [118]. By identifying the performed task during

verification, they can effectively reduce the problem’s complexity by a factor of N ,

where N is the number of considered tasks.

It is undeniable that performing these tasks during the verification of a user’s

identity is, in many real scenarios, cumbersome. For example, if this modality

is to be integrated with the biometric passport, performing “a simple ‘resting

state’ protocol” (as described by Campisi’s team [11]) is completely impractical. In

addition, this biometry will almost certainly find an application within other BCIs,

which originally intended for different purposes other than subject identification.

For example, a recent patent issued by Google embeds the identification of the

user within a multi-sensor diagnostic system [110].

To overcome these difficulties, we have proposed a completely new approach

where subjects are not asked to perform any specific task. Instead, the system is

tuned to extract the subject’s task-independent neural signature. This will leave

the subject free to perform any other operations. For example, in an airport

border control, the EEG activity could be collected while the users present their

passport, introduce any required information, and/or provide any other biometry.

In a general purpose BCI, the verification of the user’s identity could take place

in the background invisibly. As a result, the security procedure will not interfere

with the user experience of the system. Moreover, verification checks could happen

continuously or periodically, again, without interfering in the operation of the

device.



7.3. Generated knowledge 171

7.3 Generated knowledge

In this work, we have researched the state of the art in EEG identification biometry

and, to a lesser degree, equivalent genetic and neurophysiological studies (chapter

2). When published in May 2014 [159], this research was the first of its kind 2.

In it, we identified a general lack of consensus on several fundamental questions,

such as the frequency and space distribution of the discriminant information, and

the conditions to optimise its extraction.

In a bid to shed light on those questions, we conducted an in depth analysis of

the time-frequency representation of the EEG (chapter 5). Such study presents a

number of innovations with respect to previously published research:

• We proposed a visual representation of the data, based on the concatena-

tion of EEG spectrograms, and provided visual evidence of the existence of

subject traits within the EEG PSD.

• Through such representation, we ran qualitative analyses complementing the

quantitative ones. This approach proved to be vital for the interpretation of

the results.

• We performed the experiments on 6 databases, ultimately divided into 10

different data sets of varying characteristics. These included resting stages,

motor real and imagery tasks, problem solving tasks, VEPs, and AEPs.

Such variability allowed us to differentiate between idiosyncratic and com-

mon EEG behaviours and to extract robust conclusions on the general prop-

erties of the neural signature.

• In addition, one of the databases used was composed of AEPs. On previous

biometric studies, VEPs were the only ERPs used.

• We executed the analysis on a carefully designed incremental methodology.

We assessed each parameter individually to understand its effects on the

2Campisi’s team published a similar work around the same date [11]
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problem. Whenever possible, we used three versions of each data set: a raw

version and two artefact free versions processed with automatic tools.

• We identified the optimal conditions to extract the subject-specific informa-

tion within the time-frequency representation of the EEG data through the

STFT.

Again, when published in 2015, this was the first comprehensive analysis of

the properties of the subject traits within the time-frequency representation of the

EEG [160].

Next, we evaluated the proposed hypothesis through two dedicated experiments

(section 5.5). As a result, we have provided, for the first time, evidence

of the existence of a task-independent neural signature . This suggests

that neural activity, as recorded via EEG, is primarily determined by the subjects

identity rather than by the performed tasks. We anticipate this finding will open

a new set of experimental possibilities within brain research fields. Genetic and

neurophysiological studies could use this neural signature to further the under-

standing of the EEG inheritance model, differentiating between task-independent

and task-dependent activity. Through targeted experiments, it could also be used

in the study of neuroplasticity, neurodegenerative diseases or the default mode of

brain function. Overall, it represents a step forward in the understanding of the in-

dividual differences in brain activity, which will, in turn, help in the understanding

of the commonalities.

Finally, we applied our findings to the design of a task-independent EEG bio-

metric verification system (chapter 6). We identified RCeps20% and LPC8 as two

very powerful descriptors capable of coding most of the discriminant information

within the spectral shape of the EEG signal. Although LPC had been a popular

choice within the literature, this is the first work to use RCeps3. Moreover, thanks

to our previous analysis of the EEG data, we were also able to explain in detail

3P. Nguyen et. al. used mel-cepstrums instead of real-cepstrums [44].
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why these two features perform so well and to understand its behaviour across

different configurations.

In addition to the above innovations, we have also presented here a new method-

ology for the rejection of EEG artifacts: LCF (chapter 4). This was developed at

the Psychology Department of the College of Human Health and Science, Swansea

University (Wales, UK). This methodology was applied to obtain an artefact free

version of the data sets for subsequent experiments.

7.4 Future research

The main weakness of the presented research and, for that matter, the related stud-

ies in the literature, is the size and nature of the databases used for experimenta-

tion. In addition, this research has also been limited by the number of conditions

within each database. Specifically, we observed the task-independent signature

across motor tasks, relaxation and resting states (BCI2000-Full), emotional states

and REO (DEAP-Full), problem-solving tasks and relaxation (Keirn’s), synonyms

and non-synonyms AEPs (P. Ulssperger’s), self and non-self VEP (Yeom’s) and

target and non-target VEP (Zhang’s). We suggest that focus should be placed on

collecting a database with: 100+ subjects, 20+ sessions during a minimum time

span of 1 year, and 20+ recording conditions – including relaxation states, motor

and problem-solving tasks and various ERPs. This will, without doubt, represent

a major step forward in the understanding of the neural signature.

At the same time, different sources of discriminant information within EEG

activity should be explored and combined with the spectral shape information

described here. Some of these sources have already been proposed in the literature,

such as blink signals [161] or inter-sensor spectral coherence [64]. However, they

will benefit from a description to the level of that provided in the current study.

A multidisciplinary study of the genetics and neurophysiology of the presented

task-independent signature, carried out on a database composed of families as
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well as MZ and DZ twins, would be valuable to determine the extent to which

this neural signature is defined by nature and nurture. This will also help in

understanding the origin of such a pattern. From a biometric point of view, it will

be vital for the discrimination of twins, to identify non-genetic traits.

For studies that focus on the identification of EEG activity commonalities

across clinical patients, the reported evidence of a neural signature may suggest

new ways of analysing and/or interpreting their data. For example, a condition

may have effects idiosyncratic for each individual, that may be more easily identi-

fiable as changes or disruptions in the subject’s neural signature.

Overall, we expect the task-independence property of the reported neural sig-

nature to be key for the study, design and implementation of future BCIs.
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Appendix A

Supplementary results and

statistical tests

To avoid cluttering the text with figures and tables, we only inserted the most

representative examples. Here, we provide supplementary results and statistical

tests. A description of the figures and tables below, beyond that of their captions,

can be found in the corresponding section of the main text.

On cases were statistical tests were performed, we always ran targeted indepen-

dent t-tests. To adjust the p-value for the typical increase of Type I error in mul-

tiple testing, we applied the Benjamini-Hochberg False Discovery Rate (BHFDR)

method across all the obtained values. This is, within an experiment (e.g. EEG

montage evaluation), we simultaneously adjusted all the p-values obtained with

all the considered databases, systems and conditions. This approach was preferred

over analysis of variance (ANOVA) due to the high number of variables involved in

the experiments and the strong n-way interactions exhibited – especially between

the variables “database”, “database mode” (raw or artefact free) and “system” –,

which hindered the interpretation of the results.
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Figure A.1: Mean PRE results obtained with each database on an LW vs NF grid.

LG was set to the length of the available EEG on each database (table 3.2) and Θ = 0%. Results

correspond to full-fusion no-focus experiments. A maximum of 20 subjects was used in each

experimental iteration. Refer to section 5.2.1 for a description of the results.



177

Table A.1: Independent t-test analysis of the NF ≈ LW ∗Fs diagonal. H0: µPRE(A) =

µPRE(B). H1: µPRE(A) > µPRE(B). With A and B representing the conditions above and

below the diagonal NF ≈ LW ∗ Fs respectively. Refer to table 3.2 for details on databases’ code

names, and to section 5.2.1 for a description of the results.

(a) Results with raw data sets.

Dat. t df p-value SE r

BB 20.65 598 < 0.001 1.05 1.00

BT 13.39 388 < 0.001 1.06 1.00

DB 18.93 738 < 0.001 1.27 1.00

DP 2.07 738 < 0.05 0.86 1.00

K 18.13 388 < 0.001 0.41 1.00

P 17.16 388 < 0.001 1.24 1.00

Y 6.66 238 < 0.001 1.19 1.00

Z 7.80 248 < 0.001 1.44 1.00

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r

BB 17.75 598 < 0.001 1.07 1.00

BT 10.52 388 < 0.001 0.71 1.00

DB 16.80 738 < 0.001 1.35 1.00

DP 7.33 738 < 0.001 0.60 1.00

P 12.23 388 < 0.001 0.83 1.00

Z 8.95 248 < 0.001 1.39 1.00

(c) Results with LCF processed data sets.

Dat. t df p-value SE r

BB 16.86 598 < 0.001 1.15 1.00

BT 11.24 388 < 0.001 0.83 1.00

DB 18.73 738 < 0.001 1.39 1.00

DP 7.15 738 < 0.001 0.55 1.00

P 9.11 388 < 0.001 0.90 1.00

Z 9.11 248 < 0.001 1.48 1.00
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Figure A.2: Mean PRE results obtained with each database on an LG vs LW grid.

In all cases, NF = 128 coefficients and Θ = 0%. Results correspond to the full-fusion no-focus

experiments. A maximum of 20 subjects was used in each experimental iteration. Refer to

section 5.2.1 for a description of the results.
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BCI2000-Baseline BCI2000-Tasks

DEAP-Baseline DEAP-Playback

Keirn’s P. Ulssperger’s

Yeom’s Zhang’s

Figure A.3: µPRE results obtained with each database on an LW vs Θ grid. LG was

set to the length of the available EEG on each database (table 3.2) and NF = 128 coefficients.

Results correspond to full-fusion no-focus experiments. A maximum of 20 subjects was used in

each experimental iteration. Refer to section 5.2.1 for a description of the results.
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Table A.2: Independent t-test analysis of Fmax and Fmin with Conf-HalfLen system.

H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B conditions specified on

top of each cell as (A) − (B). Refer to table 3.2 for details on databases’ code names, and to

section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 3.75 18 < 0.01 1.39 0.64 -0.05 18 0.97 1.14 -0.01

BT 3.99 18 < 0.01 1.53 0.67 0.42 18 0.71 1.28 0.09

DB 12.02 18 < 0.001 0.52 0.94 -8.66 18 < 0.001 0.49 -0.89

DP -4.85 18 < 0.001 0.08 -0.74 -22.14 18 < 0.001 0.12 -0.98

K 10.31 18 < 0.001 0.64 0.92 0.84 18 0.44 0.72 0.18

P 77.62 18 < 0.001 0.07 1.00 15.74 18 < 0.001 0.07 0.96

Y 123.21 18 < 0.001 0.02 1.00 232.71 18 < 0.001 0.02 1.00

Z 26.22 18 < 0.001 0.74 0.99 8.44 18 < 0.001 1.01 0.88

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 2.63 18 < 0.05 1.78 0.51

BT 2.79 18 < 0.05 1.95 0.53

DB 14.14 18 < 0.001 0.57 0.95

DP 53.59 18 < 0.001 0.16 1.00

K 15.17 18 < 0.001 0.59 0.96

P 48.32 18 < 0.001 0.13 1.00

Y 191.48 18 < 0.001 0.03 1.00

Z 3.33 18 < 0.01 1.83 0.60
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Table A.3: Independent t-test analysis of Fmax and Fmin with Conf-FullLen system.

H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B conditions specified on

top of each cell as (A) − (B). Refer to table 3.2 for details on databases’ code names, and to

section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 3.78 18 < 0.01 2.31 0.65 -0.04 18 0.97 2.59 -0.01

BT 2.57 18 < 0.05 2.36 0.50 1.11 18 0.31 2.53 0.24

DB 9.42 18 < 0.001 0.95 0.90 -1.50 18 0.17 1.12 -0.32

DP 11.21 18 < 0.001 0.11 0.93 -14.68 18 < 0.001 0.11 -0.96

K 21.00 18 < 0.001 0.28 0.98 2.38 18 < 0.05 0.33 0.47

P 33.49 18 < 0.001 0.09 0.99 4.49 18 < 0.001 0.06 0.71

Y -8.85 18 < 0.001 0.02 -0.89 146.21 18 < 0.001 0.02 1.00

Z 6.11 18 < 0.001 2.51 0.81 3.84 18 < 0.01 2.21 0.65

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 4.71 18 < 0.001 1.20 0.73

BT 6.14 18 < 0.001 1.49 0.81

DB 26.76 18 < 0.001 0.99 0.99

DP 62.45 18 < 0.001 0.14 1.00

K 19.48 18 < 0.001 0.42 0.97

P 44.72 18 < 0.001 0.14 1.00

Y 232.57 18 < 0.001 0.03 1.00

Z 3.41 18 < 0.01 2.03 0.61
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ADJUST LCF

Figure A.4: Quantitative analysis of the maximum (Fmax) and minimum (Fmin)

cut-off frequencies with artefact free data sets. Mean and 95% CI of PRE results obtained

in full-fusion no-focus experiments with different Fmax (top) and Fmin (bottom) values. Results

correspond to ADJUST (left) and LCF (right) pre-processed databases, tested with the Conf-

HalfLen system. A maximum of 20 subjects was used in each experimental iteration. Refer to

figure 5.5 for details on the legend, and to section 5.2.3 for a description of the results.
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Table A.4: Independent t-test analysis of Fmax and Fmin with ADJUST processed

data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B conditions

specified on top of each cell as (A)− (B). Refer to section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 2.23 18 < 0.05 1.55 0.45 -0.56 18 0.61 1.23 -0.12

BT 3.65 18 < 0.01 1.50 0.63 1.08 18 0.32 1.17 0.24

DB 12.74 18 < 0.001 0.46 0.94 -3.87 18 < 0.01 0.44 -0.65

DP 8.61 18 < 0.001 0.06 0.89 -23.23 18 < 0.001 0.05 -0.98

P 70.43 18 < 0.001 0.06 1.00 -4.47 18 < 0.001 0.06 -0.71

Z 20.87 18 < 0.001 0.91 0.98 9.14 18 < 0.001 1.02 0.90

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 3.48 18 < 0.01 1.68 0.61

BT 2.73 18 < 0.05 2.08 0.52

DB 9.44 18 < 0.001 0.32 0.90

DP 32.97 18 < 0.001 0.12 0.99

P 29.35 18 < 0.001 0.13 0.99

Z 4.82 18 < 0.001 1.38 0.73
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Table A.5: Independent t-test analysis of Fmax and Fmin with Conf-FullLen system

and ADJUST processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B).

With A and B conditions specified on top of each cell as (A)− (B). Refer to table 3.2 for details

on databases’ code names, and to section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 2.58 18 < 0.05 2.63 0.50 0.04 18 0.97 2.85 0.01

BT 4.23 18 < 0.001 2.16 0.69 0.77 18 0.48 2.46 0.17

DB 12.31 18 < 0.001 1.00 0.94 3.31 18 < 0.01 1.05 0.60

DP 11.92 18 < 0.001 0.08 0.94 -26.73 18 < 0.001 0.04 -0.99

P 41.59 18 < 0.001 0.07 0.99 -18.49 18 < 0.001 0.06 -0.97

Z 11.71 18 < 0.001 1.29 0.93 6.96 18 < 0.001 1.17 0.84

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 3.07 18 < 0.01 2.28 0.57

BT 2.56 18 < 0.05 2.57 0.50

DB 15.76 18 < 0.001 0.89 0.96

DP 27.13 18 < 0.001 0.13 0.99

P 46.62 18 < 0.001 0.08 1.00

Z 8.56 18 < 0.001 0.93 0.89
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Table A.6: Independent t-test analysis of Fmax and Fmin with Conf-HalfLen system

and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With

A and B conditions specified on top of each cell as (A) − (B). Refer to table 3.2 for details on

databases’ code names, and to section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 2.96 18 < 0.05 1.12 0.55 0.93 18 0.39 1.13 0.20

BT 4.72 18 < 0.001 1.07 0.73 1.16 18 0.29 1.08 0.25

DB 9.68 18 < 0.001 0.54 0.91 -7.36 18 < 0.001 0.39 -0.85

DP 7.33 18 < 0.001 0.05 0.85 -11.95 18 < 0.001 0.06 -0.94

P 63.38 18 < 0.001 0.09 1.00 -37.98 18 < 0.001 0.08 -0.99

Z 14.37 18 < 0.001 1.11 0.95 13.26 18 < 0.001 0.86 0.95

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 4.54 18 < 0.001 1.39 0.71

BT 2.55 18 < 0.05 1.90 0.49

DB 9.71 18 < 0.001 0.38 0.91

DP 77.13 18 < 0.001 0.07 1.00

P 35.04 18 < 0.001 0.17 0.99

Z 5.85 18 < 0.001 1.22 0.79
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Table A.7: Independent t-test analysis of Fmax and Fmin with Conf-FullLen system

and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With

A and B conditions specified on top of each cell as (A) − (B). Refer to table 3.2 for details on

databases’ code names, and to section 5.2.3 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(Fmax = 30Hz)− (Fmax = 20Hz) (Fmax = 40Hz)− (Fmax = 30Hz)

BB 3.30 18 < 0.01 2.12 0.59 -0.05 18 0.97 2.08 -0.01

BT 2.94 18 < 0.05 2.86 0.55 0.59 18 0.59 2.69 0.13

DB 8.95 18 < 0.001 1.12 0.89 5.26 18 < 0.001 0.88 0.76

DP 10.67 18 < 0.001 0.07 0.92 -4.97 18 < 0.001 0.05 -0.74

P 48.59 18 < 0.001 0.08 1.00 -18.14 18 < 0.001 0.08 -0.97

Z 9.44 18 < 0.001 1.35 0.90 7.02 18 < 0.001 1.25 0.84

(Fmin = 10Hz)− (Fmin = 20Hz)

BB 2.69 18 < 0.05 2.66 0.52

BT 4.77 18 < 0.001 2.00 0.73

DB 10.85 18 < 0.001 0.77 0.92

DP 34.39 18 < 0.001 0.12 0.99

P 49.77 18 < 0.001 0.11 1.00

Z 5.66 18 < 0.001 1.23 0.78
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Table A.8: Independent t-test analysis of LW . H0: µPRE(A) = µPRE(B). H1:

µPRE(A) 6= µPRE(B). With A and B conditions specified on top of each cell as (A) − (B).

Refer to table 3.2 for details on databases’ code names, and to section 5.2.4 for a description of

the results.

(a) Results with raw data sets.

Dat. t df p-value SE r t df p-value SE r

(LW = 1s)− (LW = 0.5s) (LW = 2s)− (LW = 1s)

BB 3.36 18 < 0.01 1.58 0.60 0.21 18 0.84 1.01 0.05

BT 3.09 18 < 0.05 1.68 0.57 1.09 18 0.35 1.39 0.24

DB 14.32 18 < 0.001 0.51 0.95 4.12 18 < 0.01 0.43 0.68

DP 54.50 18 < 0.001 0.16 1.00 40.22 18 < 0.001 0.17 0.99

K 14.80 18 < 0.001 0.10 0.96 2.15 18 0.08 0.34 0.43

P 31.59 18 < 0.001 0.07 0.99 16.51 18 < 0.001 0.06 0.97

Y 198.11 18 < 0.001 0.02 1.00 - - - - -

Z -2.00 18 0.09 0.85 -0.41 - - - - -

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r t df p-value SE r

(LW = 1s)− (LW = 0.5s) (LW = 2s)− (LW = 1s)

BB 1.96 18 0.09 1.21 0.40 -1.33 18 0.25 0.67 -0.29

BT 2.53 18 < 0.05 1.00 0.49 0.56 18 0.64 0.92 0.12

DB 5.84 18 < 0.001 0.45 0.79 -0.97 18 0.40 0.44 -0.21

DP 39.95 18 < 0.001 0.08 0.99 16.18 18 < 0.001 0.09 0.96

P 21.10 18 < 0.001 0.17 0.98 12.40 18 < 0.001 0.08 0.94

Z -0.24 18 0.83 1.31 -0.05 - - - - -

(c) Results with LCF processed data sets.

Dat. t df p-value SE r t df p-value SE r

(LW = 1s)− (LW = 0.5s) (LW = 2s)− (LW = 1s)

BB 1.76 18 0.13 1.49 0.37 1.50 18 0.20 0.91 0.32

BT 2.08 18 0.08 1.09 0.42 -0.40 18 0.74 0.81 -0.09

DB 10.29 18 < 0.001 0.24 0.92 0.63 18 0.60 0.33 0.14

DP 43.08 18 < 0.001 0.08 0.99 32.00 18 < 0.001 0.05 0.99

P 36.37 18 < 0.001 0.16 0.99 22.71 18 < 0.001 0.12 0.98

Z -1.43 18 0.22 1.01 -0.31 - - - - -
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Figure A.5: Quantitative analysis of the EEG segment length (LG) with artefact free

data sets. Mean PRE and 95% CI (shaded area) obtained with different LG. Data corresponds

to full-fusion set-up on no-focus experiments using Conf-1s (left) and Conf-2s (right) systems.

A maximum of 20 subjects was used in each experimental iteration. Refer to figure 5.7 for details

on the legend, and to section 5.2.5 for a description of the results.
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Table A.9: Quantitative results for different configurations with ADJUST processed

data sets. Mean PRE and 95% CI obtained with different configurations. Data corresponds

full-fusion no-focus experiments. Within data sets, performances statistically different than the

maximum are pointed by * (single tail t-tests with BHFDR adjusted p > 0.05). A maximum of

20 subjects was used in each experimental iteration. Refer to table 3.2 for details on databases’

code names, and to section 5.2.6 for a description of the results.

Conf BB BT DB DP

Conf-FullLen 70.74* 68.26* 70.42* 98.06

[67.62, 73.85] [63.24, 73.29] [68.28, 72.56] [97.96, 98.16]

Conf-1s 94.89 94.37 98.63 95.83*

[93.02, 96.77] [93.16, 95.57] [97.92, 99.35] [95.66, 96.01]

Conf-2s 95.11 89.32* 98.00 97.16*

[93.62, 96.59] [86.69, 91.94] [97.34, 98.66] [97.05, 97.27]

Conf K P Y Z

Conf-HalfLen - - - 79.51

- - - [78.31, 80.71]

Conf-FullLen - 96.01* - 78.30

- [95.90, 96.13] - [76.93, 79.67]

Conf-1s - 95.79* - -

- [95.63, 95.95] - -

Conf-2s - 96.65 - -

- [96.61, 96.69] - -
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Table A.10: Quantitative results for different configurations with LCF processed

data sets. Mean PRE and 95% CI obtained with different configurations. Data corresponds to

full-fusion no-focus experiments. Within data sets, performances statistically different than the

maximum are pointed by * (single tail t-tests with BHFDR adjusted p > 0.05). A maximum of

20 subjects was used in each experimental iteration. Refer to table 3.2 for details on databases’

code names, and to section 5.2.6 for a description of the results.

Conf BB BT DB DP

Conf-FullLen 67.26* 65.74* 68.42* 98.70

[63.23, 71.29] [59.82, 71.65] [67.30, 69.54] [98.55, 98.85]

Conf-1s 93.16 93.47 98.84 96.80*

[91.32, 94.99] [92.66, 94.29] [98.60, 99.08] [96.58, 97.03]

Conf-2s 94.00 89.79* 98.95 98.18*

[92.40, 95.60] [87.73, 91.85] [98.45, 99.45] [98.10, 98.26]

Conf K P Y Z

Conf-HalfLen - - - 72.53

- - - [71.42, 73.64]

Conf-FullLen - 92.24 - 71.94

- [92.13, 92.35] - [70.54, 73.33]

Conf-1s - 87.06* - -

- [86.88, 87.24] - -

Conf-2s - 89.63* - -

- [89.54, 89.71] - -
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Conf-HalfLen Conf-FullLen

Conf-1s Conf-2s

Figure A.6: Quantitative analysis of EEG montages with ADJUST processed data

sets. Relative PRE values between BIHMnt-AvgMnt and between CzMnt-AvgMnt. Results are

stacked across databases. Refer to caption of figure 5.9 for details about the meaning of symbols

within the image, and to section 5.3.1 for a description of the results.
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Conf-HalfLen Conf-FullLen

Conf-1s Conf-2s

Figure A.7: Quantitative analysis of EEG montages with LCF processed data sets.

Relative PRE values between BIHMnt-AvgMnt and between CzMnt-AvgMnt. Results are stacked

across databases. Refer to caption of figure 5.9 for details about the meaning of symbols within

the image, and to section 5.3.1 for a description of the results.
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Table A.11: Independent t-test analysis of EEG montages with Conf-HalfLen sys-

tem. H0: µPRE(A)−µPRE(B) ≥ 10. H1: µPRE(A)−µPRE(B) < 10. With A and B montages

specified on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’ code names,

and to section 5.3.1 for a description of the results.

(a) Results with raw data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BT 5.94 18 < 0.001 1.92 0.80 4.51 18 < 0.001 1.99 0.71

K 13.09 18 < 0.001 0.52 0.95 - - - - -

Y 137.44 18 < 0.001 0.02 1.00 703.62 18 < 0.001 0.02 1.00

Z 1.14 18 0.15 1.91 0.25 -2.10 18 1.00 1.89 -0.42

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BT 8.59 18 < 0.001 1.40 0.89 5.81 18 < 0.001 1.45 0.79

Z 2.69 18 < 0.01 1.15 0.51 0.93 18 0.20 1.41 0.20

(c) Results with LCF processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BT 8.21 18 < 0.001 1.41 0.88 6.67 18 < 0.001 1.09 0.83

Z 8.16 18 < 0.001 0.88 0.88 2.21 18 < 0.05 0.84 0.44
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Table A.12: Independent t-test analysis of EEG montages with Conf-FullLen sys-

tem. H0: µPRE(A)−µPRE(B) ≥ 10. H1: µPRE(A)−µPRE(B) < 10. With A and B montages

specified on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’ code names,

and to section 5.3.1 for a description of the results.

(a) Results with raw data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 6.64 18 < 0.001 2.36 0.83 4.12 18 < 0.001 2.50 0.68

BT 4.38 18 < 0.001 1.79 0.70 3.41 18 < 0.01 2.32 0.61

DB -16.43 18 1.00 1.02 -0.96 1.58 18 0.07 0.93 0.33

DP 50.58 18 < 0.001 0.14 1.00 70.95 18 < 0.001 0.13 1.00

K 17.27 18 < 0.001 0.40 0.97 - - - - -

P 144.91 18 < 0.001 0.06 1.00 165.98 18 < 0.001 0.06 1.00

Y 59.51 18 < 0.001 0.02 1.00 493.04 18 < 0.001 0.02 1.00

Z 1.68 18 0.06 1.50 0.35 0.22 18 0.45 1.28 0.05

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 6.16 18 < 0.001 2.40 0.81 4.62 18 < 0.001 2.20 0.72

BT 4.81 18 < 0.001 2.77 0.73 3.28 18 < 0.01 2.49 0.59

DB -14.48 18 1.00 1.13 -0.96 -4.48 18 1.00 1.41 -0.71

DP 142.71 18 < 0.001 0.06 1.00 138.50 18 < 0.001 0.07 1.00

P 194.77 18 < 0.001 0.06 1.00 108.34 18 < 0.001 0.08 1.00

Z 2.84 18 < 0.01 0.82 0.54 2.87 18 < 0.01 1.31 0.54

(c) Results with LCF processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 6.62 18 < 0.001 2.04 0.83 4.33 18 < 0.001 2.30 0.70

BT 4.34 18 < 0.001 3.00 0.70 2.00 18 < 0.05 3.08 0.41

DB -25.49 18 1.00 0.80 -0.98 -3.48 18 1.00 0.88 -0.61

DP 115.38 18 < 0.001 0.08 1.00 114.60 18 < 0.001 0.08 1.00

P 214.05 18 < 0.001 0.06 1.00 61.42 18 < 0.001 0.13 1.00

Z 4.31 18 < 0.001 1.03 0.69 2.68 18 < 0.01 1.24 0.51
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Table A.13: Independent t-test analysis of EEG montages with Conf-1s system. H0:

µPRE(A) − µPRE(B) ≥ 5. H1: µPRE(A) − µPRE(B) < 5. With A and B montages specified

on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’ code names, and to

section 5.3.1 for a description of the results.

(a) Results with raw data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 4.64 18 < 0.001 1.45 0.72 3.89 18 < 0.001 1.53 0.66

BT 3.95 18 < 0.001 1.29 0.66 3.29 18 < 0.01 1.32 0.59

DB 3.40 18 < 0.01 0.60 0.61 0.39 18 0.38 0.67 0.09

DP 21.96 18 < 0.001 0.17 0.98 11.44 18 < 0.001 0.16 0.93

K 25.27 18 < 0.001 0.11 0.98 - - - - -

P 77.75 18 < 0.001 0.08 1.00 96.16 18 < 0.001 0.06 1.00

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 5.48 18 < 0.001 1.09 0.77 4.84 18 < 0.001 1.06 0.73

BT 7.05 18 < 0.001 0.83 0.84 3.17 18 < 0.01 1.06 0.58

DB 9.79 18 < 0.001 0.39 0.91 -1.42 18 0.97 0.70 -0.30

DP 6.42 18 < 0.001 0.10 0.82 10.87 18 < 0.001 0.09 0.92

P 83.94 18 < 0.001 0.08 1.00 16.99 18 < 0.001 0.11 0.97

(c) Results with LCF processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 8.88 18 < 0.001 1.00 0.89 4.06 18 < 0.001 1.36 0.67

BT 12.21 18 < 0.001 0.56 0.94 5.20 18 < 0.001 0.89 0.76

DB 48.50 18 < 0.001 0.11 1.00 3.07 18 < 0.01 0.29 0.57

DP 14.19 18 < 0.001 0.13 0.95 8.17 18 < 0.001 0.12 0.88

P 108.47 18 < 0.001 0.10 1.00 -70.03 18 1.00 0.10 -1.00
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Table A.14: Independent t-test analysis of EEG montages with Conf-2s system. H0:

µPRE(A) − µPRE(B) ≥ 5. H1: µPRE(A) − µPRE(B) < 5. With A and B montages specified

on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’ code names, and to

section 5.3.1 for a description of the results.

(a) Results with raw data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 5.62 18 < 0.001 1.19 0.78 5.22 18 < 0.001 1.06 0.76

BT 3.33 18 < 0.01 1.92 0.60 2.00 18 < 0.05 1.99 0.41

DB 20.34 18 < 0.001 0.32 0.98 4.83 18 < 0.001 0.32 0.73

DP -0.04 18 0.55 0.14 -0.01 17.33 18 < 0.001 0.16 0.97

K 3.45 18 < 0.01 0.52 0.61 - - - - -

P 62.72 18 < 0.001 0.08 1.00 86.75 18 < 0.001 0.06 1.00

(b) Results with ADJUST processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 7.10 18 < 0.001 0.80 0.85 6.81 18 < 0.001 0.83 0.84

BT 5.01 18 < 0.001 1.40 0.75 2.36 18 < 0.05 1.45 0.47

DB 16.79 18 < 0.001 0.29 0.97 2.62 18 < 0.05 0.46 0.50

DP 28.49 18 < 0.001 0.07 0.99 32.24 18 < 0.001 0.08 0.99

P 121.33 18 < 0.001 0.05 1.00 62.62 18 < 0.001 0.05 1.00

(c) Results with LCF processed data sets.

Dat. t df p-value SE r t df p-value SE r

(BIHMnt) - (AvgMnt) (CzMnt) - (AvgMnt)

BB 7.77 18 < 0.001 1.00 0.87 4.81 18 < 0.001 1.07 0.73

BT 4.66 18 < 0.001 1.41 0.72 2.08 18 < 0.05 1.09 0.42

DB 10.58 18 < 0.001 0.32 0.92 0.40 18 0.38 0.39 0.09

DP 28.21 18 < 0.001 0.10 0.99 25.21 18 < 0.001 0.11 0.98

P 163.33 18 < 0.001 0.05 1.00 8.35 18 < 0.001 0.12 0.88
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Table A.15: Independent t-test analysis of PSD normalization with Conf-HalfLen

system. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B normalization

methods (table 5.3) specified on top of each cell as (A) − (B). Refer to table 3.2 for details on

databases’ code names, and to section 5.3.2 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BT 1.74 18 0.12 1.72 0.36 -6.13 18 < 0.001 2.14 -0.81

K 54.42 18 < 0.001 0.38 1.00 42.65 18 < 0.001 0.40 0.99

Y -128.03 18 < 0.001 0.02 -1.00 -527.09 18 < 0.001 0.02 -1.00

Z -0.78 18 0.47 2.17 -0.17 -3.17 18 < 0.01 2.28 -0.58

(powNorm) - (Raw) (prcNorm) - (Raw)

BT -2.18 18 0.05 2.00 -0.44 -3.46 18 < 0.01 2.19 -0.61

K 57.44 18 < 0.001 0.37 1.00 41.62 18 < 0.001 0.41 0.99

Y -160.27 18 < 0.001 0.02 -1.00 -621.81 18 < 0.001 0.02 -1.00

Z -0.81 18 0.45 2.16 -0.18 -4.07 18 < 0.01 2.34 -0.67

(rNorm) - (Raw) (zNorm) - (Raw)

BT 2.40 18 < 0.05 1.71 0.47 -5.41 18 < 0.001 2.06 -0.77

K 55.04 18 < 0.001 0.38 1.00 48.90 18 < 0.001 0.36 1.00

Y -106.26 18 < 0.001 0.02 -1.00 -460.96 18 < 0.001 0.02 -1.00

Z -1.56 18 0.15 2.31 -0.33 -4.32 18 < 0.001 2.65 -0.69
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Table A.16: Independent t-test analysis of PSD normalization with Conf-FullLen

system. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B normalization

methods (table 5.3) specified on top of each cell as (A) − (B). Refer to section 5.3.2 for a

description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB 3.47 18 < 0.01 2.44 0.61 -6.53 18 < 0.001 2.05 -0.83

BT 4.44 18 < 0.001 2.10 0.70 -6.19 18 < 0.001 2.39 -0.81

DB 4.70 18 < 0.001 0.99 0.72 -22.92 18 < 0.001 0.88 -0.98

DP -4.09 18 < 0.01 0.11 -0.67 -57.68 18 < 0.001 0.13 -1.00

K 109.22 18 < 0.001 0.19 1.00 49.84 18 < 0.001 0.32 1.00

P -10.61 18 < 0.001 0.05 -0.92 -132.35 18 < 0.001 0.07 -1.00

Y 74.08 18 < 0.001 0.01 1.00 -536.16 18 < 0.001 0.02 -1.00

Z -2.24 18 < 0.05 1.33 -0.45 -7.47 18 < 0.001 1.16 -0.86

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -0.78 18 0.47 2.44 -0.17 -3.56 18 < 0.01 2.28 -0.62

BT -2.00 18 0.07 2.34 -0.41 -4.94 18 < 0.001 2.34 -0.74

DB -10.41 18 < 0.001 0.82 -0.92 -12.12 18 < 0.001 0.88 -0.94

DP -23.69 18 < 0.001 0.12 -0.98 -37.80 18 < 0.001 0.11 -0.99

K 103.00 18 < 0.001 0.20 1.00 84.94 18 < 0.001 0.20 1.00

P -81.67 18 < 0.001 0.07 -1.00 -94.12 18 < 0.001 0.06 -1.00

Y -105.72 18 < 0.001 0.02 -1.00 -378.87 18 < 0.001 0.03 -1.00

Z -1.82 18 0.10 1.24 -0.38 -7.51 18 < 0.001 1.15 -0.86

(rNorm) - (Raw) (zNorm) - (Raw)

BB 5.21 18 < 0.001 2.30 0.76 -0.29 18 0.79 2.20 -0.06

BT 5.62 18 < 0.001 2.07 0.78 -1.95 18 0.08 2.24 -0.40

DB 10.76 18 < 0.001 1.01 0.92 -10.49 18 < 0.001 0.82 -0.92

DP -1.59 18 0.15 0.11 -0.34 -48.75 18 < 0.001 0.17 -1.00

K 113.23 18 < 0.001 0.19 1.00 56.26 18 < 0.001 0.29 1.00

P -19.76 18 < 0.001 0.04 -0.98 -153.96 18 < 0.001 0.07 -1.00

Y 56.61 18 < 0.001 0.02 1.00 -440.68 18 < 0.001 0.02 -1.00

Z -2.48 18 < 0.05 1.35 -0.48 -8.79 18 < 0.001 1.49 -0.89
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Table A.17: Independent t-test analysis of PSD normalization with Conf-1s system.

H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B normalization methods

(table 5.3) specified on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’

code names, and to section 5.3.2 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -1.02 18 0.35 1.59 -0.22 -2.01 18 0.07 1.94 -0.41

BT 1.36 18 0.21 1.45 0.29 -4.44 18 < 0.001 1.45 -0.70

DB 11.77 18 < 0.001 0.46 0.93 7.70 18 < 0.001 0.59 0.86

DP 87.60 18 < 0.001 0.16 1.00 57.31 18 < 0.001 0.18 1.00

K 59.29 18 < 0.001 0.38 1.00 54.63 18 < 0.001 0.39 1.00

P 15.49 18 < 0.001 0.06 0.96 -16.68 18 < 0.001 0.09 -0.97

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -0.80 18 0.45 1.70 -0.18 -2.43 18 < 0.05 1.86 -0.48

BT -0.95 18 0.38 1.49 -0.21 -2.93 18 < 0.05 1.43 -0.55

DB 12.85 18 < 0.001 0.45 0.94 8.57 18 < 0.001 0.52 0.89

DP 106.52 18 < 0.001 0.13 1.00 73.02 18 < 0.001 0.14 1.00

K 60.89 18 < 0.001 0.38 1.00 49.64 18 < 0.001 0.41 1.00

P -6.99 18 < 0.001 0.07 -0.84 -21.10 18 < 0.001 0.09 -0.98

(rNorm) - (Raw) (zNorm) - (Raw)

BB -1.06 18 0.33 1.64 -0.23 -1.16 18 0.29 2.05 -0.25

BT 2.23 18 < 0.05 1.29 0.45 -3.33 18 < 0.01 1.80 -0.60

DB 10.61 18 < 0.001 0.50 0.92 -1.65 18 0.13 0.58 -0.35

DP 103.14 18 < 0.001 0.14 1.00 66.51 18 < 0.001 0.15 1.00

K 54.98 18 < 0.001 0.41 1.00 48.76 18 < 0.001 0.41 1.00

P 13.20 18 < 0.001 0.07 0.95 -81.67 18 < 0.001 0.07 -1.00



200 Appendix A. Supplementary results and statistical tests

Table A.18: Independent t-test analysis of PSD normalization with Conf-2s system.

H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With A and B normalization methods

(table 5.3) specified on top of each cell as (A)− (B). Refer to table 3.2 for details on databases’

code names, and to section 5.3.2 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -0.73 18 0.49 0.93 -0.16 -2.51 18 < 0.05 1.17 -0.49

BT 1.74 18 0.12 1.72 0.36 -6.13 18 < 0.001 2.14 -0.81

DB 11.13 18 < 0.001 0.32 0.93 -4.31 18 < 0.001 0.39 -0.69

DP 79.21 18 < 0.001 0.11 1.00 49.56 18 < 0.001 0.13 1.00

K 54.42 18 < 0.001 0.38 1.00 42.65 18 < 0.001 0.40 0.99

P -2.83 18 < 0.05 0.07 -0.53 -57.83 18 < 0.001 0.07 -1.00

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -1.18 18 0.28 1.21 -0.25 -2.12 18 0.06 1.14 -0.43

BT -2.18 18 0.05 2.00 -0.44 -3.46 18 < 0.01 2.19 -0.61

DB 10.47 18 < 0.001 0.29 0.92 5.67 18 < 0.001 0.32 0.78

DP 70.37 18 < 0.001 0.12 1.00 55.76 18 < 0.001 0.13 1.00

K 57.44 18 < 0.001 0.37 1.00 41.62 18 < 0.001 0.41 0.99

P -38.51 18 < 0.001 0.07 -0.99 -25.39 18 < 0.001 0.08 -0.98

(rNorm) - (Raw) (zNorm) - (Raw)

BB -0.28 18 0.79 0.94 -0.06 -1.98 18 0.08 1.15 -0.40

BT 2.40 18 < 0.05 1.71 0.47 -5.41 18 < 0.001 2.06 -0.77

DB 13.50 18 < 0.001 0.28 0.95 -5.48 18 < 0.001 0.38 -0.77

DP 76.17 18 < 0.001 0.12 1.00 47.22 18 < 0.001 0.12 1.00

K 55.04 18 < 0.001 0.38 1.00 48.90 18 < 0.001 0.36 1.00

P 3.63 18 < 0.01 0.07 0.63 -117.75 18 < 0.001 0.08 -1.00
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Figure A.8: Quantitative analysis of PSD normalization with ADJUST processed

data sets. Relative PRE values between the PSD normalized by each of the methods in table

5.3 and the raw PSD. Results are stacked across databases. A maximum of 20 subjects was used

in each experimental iteration. Refer to caption of figure 5.9 for details about the meaning of

symbols within the image, and to section 5.3.2 for a description of the results.



202 Appendix A. Supplementary results and statistical tests

Table A.19: Independent t-test analysis of PSD normalization with Conf-HalfLen

system and ADJUST processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6=
µPRE(B). With A and B normalization methods (table 5.3) specified on top of each cell as

(A) − (B). Refer to table 3.2 for details on databases’ code names, and to section 5.3.2 for a

description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BT 0.27 18 0.80 1.37 0.06 -5.47 18 < 0.001 1.29 -0.77

Z -3.46 18 < 0.01 1.38 -0.61 -6.70 18 < 0.001 1.34 -0.83

(powNorm) - (Raw) (prcNorm) - (Raw)

BT -1.02 18 0.35 1.39 -0.22 -3.05 18 < 0.01 1.31 -0.56

Z -2.87 18 < 0.05 1.08 -0.54 -7.67 18 < 0.001 1.60 -0.86

(rNorm) - (Raw) (zNorm) - (Raw)

BT 1.01 18 0.35 1.25 0.22 -2.84 18 < 0.05 1.56 -0.54

Z -4.79 18 < 0.001 1.15 -0.73 -9.09 18 < 0.001 1.26 -0.90
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Table A.20: Independent t-test analysis of PSD normalization with Conf-FullLen

system and ADJUST processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6=
µPRE(B). With A and B normalization methods (table 5.3) specified on top of each cell as

(A) − (B). Refer to table 3.2 for details on databases’ code names, and to section 5.3.2 for a

description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB 3.54 18 < 0.01 1.86 0.62 -7.36 18 < 0.001 2.17 -0.85

BT 5.04 18 < 0.001 2.41 0.75 -4.28 18 < 0.001 2.51 -0.69

DB -0.69 18 0.52 1.07 -0.15 -18.95 18 < 0.001 1.13 -0.97

DP -20.92 18 < 0.001 0.07 -0.98 -39.00 18 < 0.001 0.09 -0.99

P -12.40 18 < 0.001 0.06 -0.94 -56.39 18 < 0.001 0.09 -1.00

Z -4.69 18 < 0.001 0.77 -0.72 -10.62 18 < 0.001 0.85 -0.92

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -1.50 18 0.17 2.03 -0.32 -3.75 18 < 0.01 2.17 -0.64

BT 1.44 18 0.19 2.34 0.31 -2.02 18 0.07 2.46 -0.41

DB -18.84 18 < 0.001 1.07 -0.97 -20.05 18 < 0.001 1.04 -0.98

DP -21.97 18 < 0.001 0.08 -0.98 -32.30 18 < 0.001 0.08 -0.99

P -29.46 18 < 0.001 0.06 -0.99 -37.19 18 < 0.001 0.08 -0.99

Z -3.67 18 < 0.01 0.92 -0.63 -10.24 18 < 0.001 0.86 -0.92

(rNorm) - (Raw) (zNorm) - (Raw)

BB 6.04 18 < 0.001 1.86 0.80 0.50 18 0.64 2.01 0.11

BT 5.30 18 < 0.001 2.48 0.76 1.29 18 0.24 2.57 0.28

DB 4.13 18 < 0.001 1.25 0.68 -9.22 18 < 0.001 1.03 -0.90

DP -11.79 18 < 0.001 0.09 -0.93 -31.06 18 < 0.001 0.08 -0.99

P -11.80 18 < 0.001 0.07 -0.94 -61.42 18 < 0.001 0.09 -1.00

Z -6.33 18 < 0.001 0.76 -0.82 -13.28 18 < 0.001 0.92 -0.95
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Table A.21: Independent t-test analysis of PSD normalization with Conf-1s system

and ADJUST processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B).

With A and B normalization methods (table 5.3) specified on top of each cell as (A)−(B). Refer

to table 3.2 for details on databases’ code names, and to section 5.3.2 for a description of the

results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -2.24 18 < 0.05 0.94 -0.45 -3.09 18 < 0.01 1.33 -0.57

BT -1.77 18 0.11 0.77 -0.37 -5.23 18 < 0.001 0.82 -0.76

DB 0.30 18 0.78 0.35 0.07 -4.90 18 < 0.001 0.45 -0.74

DP 27.89 18 < 0.001 0.09 0.99 2.52 18 < 0.05 0.12 0.49

P -8.26 18 < 0.001 0.09 -0.88 -60.10 18 < 0.001 0.10 -1.00

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -1.56 18 0.15 0.98 -0.33 -3.24 18 < 0.01 1.35 -0.59

BT -1.94 18 0.08 0.71 -0.40 -3.75 18 < 0.01 0.86 -0.64

DB -0.27 18 0.80 0.39 -0.06 -5.46 18 < 0.001 0.42 -0.77

DP 17.57 18 < 0.001 0.09 0.97 5.66 18 < 0.001 0.09 0.78

P -27.35 18 < 0.001 0.09 -0.99 -56.75 18 < 0.001 0.09 -1.00

(rNorm) - (Raw) (zNorm) - (Raw)

BB -2.57 18 < 0.05 0.92 -0.50 -2.23 18 < 0.05 0.99 -0.45

BT -1.69 18 0.13 0.66 -0.35 -3.08 18 < 0.01 0.90 -0.57

DB -2.53 18 < 0.05 0.33 -0.49 -7.07 18 < 0.001 0.45 -0.85

DP 30.71 18 < 0.001 0.09 0.99 -0.90 18 0.41 0.11 -0.20

P 2.74 18 < 0.05 0.08 0.52 -24.44 18 < 0.001 0.09 -0.98



205

Table A.22: Independent t-test analysis of PSD normalization with Conf-2s system

and ADJUST processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B).

With A and B normalization methods (table 5.3) specified on top of each cell as (A)−(B). Refer

to section 5.3.2 for a description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -2.28 18 < 0.05 1.29 -0.45 -3.71 18 < 0.01 1.49 -0.64

BT 0.27 18 0.80 1.37 0.06 -5.47 18 < 0.001 1.29 -0.77

DB -3.03 18 < 0.01 0.35 -0.56 -6.50 18 < 0.001 0.40 -0.82

DP 33.11 18 < 0.001 0.05 0.99 -10.53 18 < 0.001 0.08 -0.92

P -52.40 18 < 0.001 0.04 -1.00 -119.74 18 < 0.001 0.05 -1.00

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -2.58 18 < 0.05 1.23 -0.50 -3.28 18 < 0.01 1.35 -0.59

BT -1.02 18 0.35 1.39 -0.22 -3.05 18 < 0.01 1.31 -0.56

DB 0.00 18 1.00 NaN 0.00 -3.24 18 < 0.01 0.42 -0.59

DP 12.77 18 < 0.001 0.07 0.94 -1.17 18 0.28 0.07 -0.25

P -33.15 18 < 0.001 0.05 -0.99 -81.89 18 < 0.001 0.04 -1.00

(rNorm) - (Raw) (zNorm) - (Raw)

BB -1.90 18 0.09 1.36 -0.39 -2.54 18 < 0.05 1.43 -0.49

BT 1.01 18 0.35 1.25 0.22 -2.84 18 < 0.05 1.56 -0.54

DB -0.80 18 0.45 0.39 -0.18 -7.64 18 < 0.001 0.44 -0.86

DP 32.45 18 < 0.001 0.06 0.99 -2.18 18 0.05 0.07 -0.44

P -36.44 18 < 0.001 0.04 -0.99 -113.20 18 < 0.001 0.04 -1.00
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Figure A.9: Quantitative analysis of PSD normalization with LCF processed data

sets. Relative PRE values between the PSD normalized by each of the methods in table 5.3 and

the raw PSD. Results are stacked across databases. A maximum of 20 subjects was used in each

experimental iteration. Refer to caption of figure 5.9 for details about the meaning of symbols

within the image, and to section 5.3.2 for a description of the results.
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Table A.23: Independent t-test analysis of PSD normalization with Conf-HalfLen

system and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6=
µPRE(B). With A and B normalization methods (table 5.3) specified on top of each cell as

(A) − (B). Refer to table 3.2 for details on databases’ code names, and to section 5.3.2 for a

description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BT -3.76 18 < 0.01 1.09 -0.64 -8.53 18 < 0.001 1.20 -0.89

Z -8.21 18 < 0.001 0.88 -0.88 -10.71 18 < 0.001 1.14 -0.92

(powNorm) - (Raw) (prcNorm) - (Raw)

BT -4.73 18 < 0.001 1.14 -0.73 -7.40 18 < 0.001 1.16 -0.86

Z -5.52 18 < 0.001 1.21 -0.78 -14.54 18 < 0.001 1.10 -0.96

(rNorm) - (Raw) (zNorm) - (Raw)

BT -3.22 18 < 0.01 1.05 -0.58 -5.46 18 < 0.001 1.10 -0.77

Z -9.38 18 < 0.001 0.92 -0.90 -17.32 18 < 0.001 0.90 -0.97
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Table A.24: Independent t-test analysis of PSD normalization with Conf-FullLen

system and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6=
µPRE(B). With A and B normalization methods (table 5.3) specified on top of each cell as

(A) − (B). Refer to table 3.2 for details on databases’ code names, and to section 5.3.2 for a

description of the results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB 2.71 18 < 0.05 2.64 0.52 -7.52 18 < 0.001 2.20 -0.86

BT 2.60 18 < 0.05 3.07 0.50 -3.33 18 < 0.01 3.25 -0.60

DB 0.29 18 0.79 0.73 0.06 -29.70 18 < 0.001 0.69 -0.99

DP -14.90 18 < 0.001 0.08 -0.96 -24.12 18 < 0.001 0.14 -0.98

P 9.18 18 < 0.001 0.07 0.90 -84.10 18 < 0.001 0.12 -1.00

Z -6.35 18 < 0.001 0.84 -0.82 -12.43 18 < 0.001 0.84 -0.94

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -1.47 18 0.18 2.19 -0.31 -3.89 18 < 0.01 2.12 -0.66

BT 0.64 18 0.55 3.06 0.14 -2.49 18 < 0.05 2.89 -0.49

DB -23.23 18 < 0.001 0.65 -0.98 -25.64 18 < 0.001 0.78 -0.99

DP -13.96 18 < 0.001 0.09 -0.95 -31.48 18 < 0.001 0.08 -0.99

P -26.60 18 < 0.001 0.09 -0.99 -61.34 18 < 0.001 0.08 -1.00

Z -4.99 18 < 0.001 0.91 -0.74 -11.87 18 < 0.001 0.91 -0.94

(rNorm) - (Raw) (zNorm) - (Raw)

BB 4.81 18 < 0.001 2.40 0.73 -0.54 18 0.61 2.22 -0.12

BT 3.88 18 < 0.01 3.03 0.65 0.64 18 0.55 3.21 0.14

DB 8.76 18 < 0.001 0.68 0.89 -9.25 18 < 0.001 0.83 -0.90

DP -14.46 18 < 0.001 0.07 -0.96 -23.99 18 < 0.001 0.13 -0.98

P 7.12 18 < 0.001 0.07 0.85 -70.31 18 < 0.001 0.07 -1.00

Z -6.95 18 < 0.001 0.88 -0.84 -13.27 18 < 0.001 0.99 -0.95
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Table A.25: Independent t-test analysis of PSD normalization with Conf-1s system

and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With

A and B normalization methods (table 5.3) specified on top of each cell as (A) − (B). Refer

to table 3.2 for details on databases’ code names, and to section 5.3.2 for a description of the

results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -2.21 18 < 0.05 1.52 -0.44 -4.08 18 < 0.01 1.15 -0.67

BT -1.70 18 0.12 1.14 -0.36 -4.86 18 < 0.001 1.09 -0.74

DB -1.57 18 0.15 0.20 -0.33 -2.55 18 < 0.05 0.25 -0.49

DP 13.01 18 < 0.001 0.11 0.95 -4.73 18 < 0.001 0.11 -0.73

P 62.57 18 < 0.001 0.11 1.00 -83.13 18 < 0.001 0.11 -1.00

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -1.70 18 0.12 1.30 -0.36 -3.90 18 < 0.01 1.32 -0.66

BT -2.13 18 0.06 0.96 -0.43 -4.17 18 < 0.001 1.11 -0.68

DB 0.68 18 0.52 0.31 0.15 0.00 18 1.00 0.27 0.00

DP 6.97 18 < 0.001 0.11 0.84 -7.83 18 < 0.001 0.11 -0.87

P 6.56 18 < 0.001 0.11 0.83 -45.83 18 < 0.001 0.14 -1.00

(rNorm) - (Raw) (zNorm) - (Raw)

BB -1.92 18 0.08 1.59 -0.40 -2.77 18 < 0.05 1.14 -0.53

BT -2.07 18 0.06 0.96 -0.42 -3.59 18 < 0.01 1.04 -0.63

DB -0.93 18 0.39 0.34 -0.20 -6.49 18 < 0.001 0.37 -0.82

DP 14.92 18 < 0.001 0.11 0.96 -5.49 18 < 0.001 0.11 -0.78

P 57.93 18 < 0.001 0.11 1.00 8.09 18 < 0.001 0.09 0.88
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Table A.26: Independent t-test analysis of PSD normalization with Conf-2s system

and LCF processed data sets. H0: µPRE(A) = µPRE(B). H1: µPRE(A) 6= µPRE(B). With

A and B normalization methods (table 5.3) specified on top of each cell as (A) − (B). Refer

to table 3.2 for details on databases’ code names, and to section 5.3.2 for a description of the

results.

Dat. t df p-value SE r t df p-value SE r

(iqrNorm) - (Raw) (normNorm) - (Raw)

BB -3.66 18 < 0.01 0.95 -0.63 -3.94 18 < 0.01 1.51 -0.66

BT -3.76 18 < 0.01 1.09 -0.64 -8.53 18 < 0.001 1.20 -0.89

DB -1.77 18 0.11 0.42 -0.37 -5.62 18 < 0.001 0.45 -0.78

DP 6.65 18 < 0.001 0.07 0.83 -27.17 18 < 0.001 0.06 -0.99

P 52.26 18 < 0.001 0.08 1.00 -123.42 18 < 0.001 0.07 -1.00

(powNorm) - (Raw) (prcNorm) - (Raw)

BB -4.09 18 < 0.01 0.91 -0.68 -3.35 18 < 0.01 1.36 -0.60

BT -4.73 18 < 0.001 1.14 -0.73 -7.40 18 < 0.001 1.16 -0.86

DB -6.04 18 < 0.001 0.33 -0.80 -1.31 18 0.23 0.32 -0.28

DP 1.42 18 0.19 0.06 0.30 -16.25 18 < 0.001 0.05 -0.96

P -12.34 18 < 0.001 0.10 -0.94 -29.09 18 < 0.001 0.10 -0.99

(rNorm) - (Raw) (zNorm) - (Raw)

BB -2.25 18 < 0.05 1.08 -0.45 -2.54 18 < 0.05 1.35 -0.49

BT -3.22 18 < 0.01 1.05 -0.58 -5.46 18 < 0.001 1.10 -0.77

DB -1.00 18 0.35 0.32 -0.22 -11.87 18 < 0.001 0.42 -0.94

DP 15.67 18 < 0.001 0.05 0.96 -10.61 18 < 0.001 0.07 -0.92

P 51.86 18 < 0.001 0.07 1.00 -44.47 18 < 0.001 0.06 -0.99
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Figure A.10: Quantitative analysis of the spatial distribution of the discriminant

information. Mean PRE values obtained at each location with the REO condition of BCI2000

(left) and DEAP (right) data sets when applying each system with and without rNorm. Results

correspond to freq-fusion ch-focus experiments, with a maximum of 20 subjects used in each

experimental iteration. Refer to section 5.4.1 for a description of the results.
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ADJUST

Conf-FullLen Conf-1s Conf-2s

LCF

Conf-FullLen Conf-1s Conf-2s

Figure A.11: Quantitative analysis of the discrimination power frequency distribu-

tion with artefact free data sets. Mean PRE and 95% CI (shaded area) obtained with each

frequency (ch-fusion experiments). Curves where smoothed by local regression, using weighted

linear least squares and a first degree polynomial model with a 3 Hz span. Graphs correspond to

results obtained with the raw PSD of ADJUST (top) and LCF (bottom) processed databases. A

maximum of 20 subjects was used in each experimental iteration. Refer to figure 5.5 for details

on the legend, and to section 5.4.2 for a description of the results.
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Figure A.12: Quantitative analysis of uniqueness with artefact free data sets. Mean

PRE and 95% CI (shaded area) for different numbers of subjects (NS) in the system and each

database (refer to figure 5.5 for details on the legend). Graphs correspond to results obtained

with the raw PSD of ADJUST (top) and LCF (bottom) processed databases. Refer to figure 5.5

for details on the legend, and to section 5.4.3 for a description of the results.
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Table A.27: Independent t-test of permanence with raw data sets. H0: µPRE(A) =

µPRE(B). H1: µPRE(A) > µPRE(B). With A the regular CV procedure (no sess-CV ) and B

the sess-CV procedure. Refer to table 3.2 for details on databases’ code names, and to section

5.4.4 for a description of the results.

(a) Results of Conf-HalfLen system – equivalent to Conf-2s for Keirn’s data set.

Dat. t df p-value SE r t df p-value SE r

Raw PSD rNorm PSD

K 2.99 18 < 0.01 1.69 0.56 20.13 18 < 0.001 0.68 0.98

Y 45.01 18 < 0.001 0.39 1.00 66.52 18 < 0.001 0.12 1.00

(b) Results of Conf-FullLen system.

Dat. t df p-value SE r t df p-value SE r

Raw PSD rNorm PSD

K 3.70 18 < 0.01 1.01 0.64 24.94 18 < 0.001 0.62 0.98

Y 59.98 18 < 0.001 0.36 1.00 72.95 18 < 0.001 0.15 1.00

(c) Results of Conf-1s system.

Dat. t df p-value SE r t df p-value SE r

Raw PSD rNorm PSD

K -0.09 18 0.54 1.09 -0.02 27.00 18 < 0.001 0.30 0.99
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Table A.28: Independent t-test of task-independence with raw data sets. H0:

µPRE(A) − µPRE(B) ≥ 5. H1: µPRE(A) − µPRE(B) < 5. A and B are specified on top of

each cell as (A) − (B). Refer to table 3.2 for details on databases’ code names, and to section

5.5.1 for a description of the results.

(a) Results with raw systems.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

BF -3.06 38 < 0.01 0.62 -0.44 -2.64 38 < 0.01 0.70 -0.38

DF - - - - - -36.35 38 < 0.001 0.08 -0.99

K -21.96 38 < 0.001 0.19 -0.96 -24.12 38 < 0.001 0.16 -0.97

P - - - - - -120.84 38 < 0.001 0.04 -1.00

Y -93.57 38 < 0.001 0.04 -1.00 -78.54 38 < 0.001 0.03 -1.00

Z -0.47 38 0.36 0.87 -0.07 0.44 38 0.71 1.63 0.07

Conf-1s Conf-2s

BF -2.56 38 < 0.01 0.90 -0.38 -3.06 38 < 0.01 0.62 -0.44

DF -41.50 38 < 0.001 0.11 -0.99 -50.18 38 < 0.001 0.08 -0.99

K -69.19 38 < 0.001 0.06 -1.00 -21.96 38 < 0.001 0.19 -0.96

P -57.49 38 < 0.001 0.08 -0.99 -124.02 38 < 0.001 0.04 -1.00

(b) Results with rNorm systems.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

BF -3.97 38 < 0.001 0.48 -0.53 -2.50 38 < 0.01 0.64 -0.37

DF - - - - - -34.94 38 < 0.001 0.08 -0.98

K -23.45 38 < 0.001 0.14 -0.97 -14.08 38 < 0.001 0.19 -0.91

P - - - - - -103.16 38 < 0.001 0.05 -1.00

Y -112.36 38 < 0.001 0.03 -1.00 -73.08 38 < 0.001 0.05 -1.00

Z 0.30 38 0.66 0.81 0.05 0.50 38 0.71 1.94 0.08

Conf-1s Conf-2s

BF -2.83 38 < 0.01 0.76 -0.41 -3.97 38 < 0.001 0.48 -0.53

DF -40.82 38 < 0.001 0.07 -0.99 -62.60 38 < 0.001 0.05 -0.99

K -13.36 38 < 0.001 0.18 -0.90 -23.45 38 < 0.001 0.14 -0.97

P -70.83 38 < 0.001 0.07 -1.00 -90.54 38 < 0.001 0.06 -1.00
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Table A.29: Independent t-test of task-independence with artefact free data sets.

H0: µPRE(A)− µPRE(B) ≥ 5. H1: µPRE(A)− µPRE(B) < 5. A and B are specified on top of

each cell as (A) − (B). Refer to table 3.2 for details on databases’ code names, and to section

5.5.1 for a description of the results.

(a) Results with ADJUST processed databases.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

BF -3.65 38 < 0.001 0.76 -0.50 -3.46 38 < 0.001 0.64 -0.48

DF - - - - - -46.46 38 < 0.001 0.07 -0.99

P - - - - - -64.94 38 < 0.001 0.07 -1.00

Z -0.81 38 0.24 0.56 -0.13 2.43 38 0.99 0.45 0.36

Conf-1s Conf-2s

BF -5.22 38 < 0.001 0.61 -0.64 -3.65 38 < 0.001 0.76 -0.50

DF -78.65 38 < 0.001 0.05 -1.00 -84.59 38 < 0.001 0.04 -1.00

P -50.75 38 < 0.001 0.09 -0.99 -109.08 38 < 0.001 0.05 -1.00

(b) Results with LCF processed databases.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

BF -6.13 38 < 0.001 0.45 -0.70 -3.97 38 < 0.001 0.59 -0.53

DF - - - - - -57.61 38 < 0.001 0.07 -0.99

P - - - - - -72.74 38 < 0.001 0.07 -1.00

Z -0.18 38 0.47 1.03 -0.03 2.25 38 0.99 0.69 0.34

Conf-1s Conf-2s

BF -3.54 38 < 0.001 0.90 -0.49 -6.13 38 < 0.001 0.45 -0.70

DF -117.53 38 < 0.001 0.04 -1.00 -93.63 38 < 0.001 0.04 -1.00

P -24.66 38 < 0.001 0.17 -0.97 -49.02 38 < 0.001 0.10 -0.99
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Table A.30: Quantitative results of task-independence with raw data sets. Mean

PRE and 95% CI obtained in task-CV experiments. A maximum of 20 subjects was used in each

experimental iteration. Refer to table 3.2 for details on databases’ code names, and to section

5.5.1 for a description of the results.

(a) Results with raw systems.

Dat. Conf-HalfLen Conf-FullLen Conf-1s Conf-2s

BF 83.07 82.21 81.85 83.07

[82.13, 84.01] [81.10, 83.33] [80.50, 83.20] [82.13, 84.01]

DF - 94.89 94.34 97.03

- [94.78, 95.00] [94.18, 94.50] [96.92, 97.14]

K 73.49 73.10 73.23 73.49

[73.40, 73.59] [72.96, 73.25] [73.13, 73.33] [73.40, 73.59]

P - 94.19 92.64 93.70

- [94.14, 94.24] [92.55, 92.73] [93.65, 93.75]

Y 51.25 55.17 - -

[51.18, 51.31] [55.10, 55.23] - -

Z 74.63 70.93 - -

[73.28, 75.98] [68.11, 73.74] - -

(b) Results with rNorm systems.

Dat. Conf-HalfLen Conf-FullLen Conf-1s Conf-2s

BF 83.91 82.94 84.08 83.91

[83.13, 84.70] [82.00, 83.88] [82.94, 85.22] [83.13, 84.70]

DF - 92.81 95.17 96.26

- [92.73, 92.90] [95.06, 95.28] [96.19, 96.32]

K 93.31 92.14 93.59 93.31

[93.10, 93.52] [91.86, 92.42] [93.32, 93.85] [93.10, 93.52]

P - 93.73 93.75 94.16

- [93.69, 93.77] [93.66, 93.84] [94.11, 94.21]

Y 49.79 57.23 - -

[49.73, 49.86] [57.14, 57.33] - -

Z 68.74 67.95 - -

[67.55, 69.93] [64.70, 71.20] - -
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Table A.31: Quantitative results of task-independence with artefact free data sets.

Mean PRE and 95% CI obtained in task-CV experiments. A maximum of 20 subjects was used

in each experimental iteration. Refer to table 3.2 for details on databases’ code names, and to

section 5.5.1 for a description of the results.

(a) Results with ADJUST processed data sets.

Dat. Conf-HalfLen Conf-FullLen Conf-1s Conf-2s

BF 87.77 86.31 88.09 87.77

[86.66, 88.89] [85.27, 87.35] [87.18, 89.00] [86.66, 88.89]

DF - 95.49 96.84 97.97

- [95.42, 95.56] [96.77, 96.92] [97.90, 98.03]

P - 95.82 95.39 96.84

- [95.69, 95.94] [95.27, 95.50] [96.78, 96.90]

Z 74.32 71.46 - -

[73.45, 75.20] [70.76, 72.16] - -

(b) Results with ADJUST processed data sets.

Dat. Conf-HalfLen Conf-FullLen Conf-1s Conf-2s

BF 87.78 86.06 88.19 87.78

[87.07, 88.49] [85.14, 86.98] [86.79, 89.59] [87.07, 88.49]

DF - 96.51 98.22 98.32

- [96.43, 96.59] [98.19, 98.26] [98.25, 98.38]

P - 92.15 86.43 89.95

- [92.10, 92.20] [86.10, 86.77] [89.80, 90.11]

Z 67.85 63.74 - -

[66.39, 69.31] [62.55, 64.93] - -
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Table A.32: Independent t-test of the permanence of the task-independence prop-

erty with raw data sets. H0: µPRE(A)−µPRE(B) ≤ C. H1: µPRE(A)−µPRE(B) > C. With

A and B corresponding to conditions Task-Sess-CV and Task-CV respectively. The threshold

C is set to 10 for Keirn’s database (K) and to 1 for Yeom’s database (Y). Refer to section 5.5.2

for a description of the results.

(a) Results with raw systems.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

K -3.65 38 1.00 1.58 -0.50 0.44 38 0.46 1.37 0.07

Y 0.51 38 0.45 0.49 0.08 0.58 38 0.44 0.40 0.09

Conf-1s Conf-2s

K -4.43 38 1.00 1.24 -0.57 -3.65 38 1.00 1.58 -0.50

(b) Results with rNorm systems.

Dat. t df p-value SE r t df p-value SE r

Conf-HalfLen Conf-FullLen

K -0.84 38 0.89 1.66 -0.13 0.28 38 0.52 1.48 0.04

Y -0.82 38 0.89 0.19 -0.13 2.43 38 < 0.05 0.25 0.36

Conf-1s Conf-2s

K -0.82 38 0.89 1.44 -0.13 -0.84 38 0.89 1.66 -0.13
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Table A.33: Accuracy results of RCepsP% systems and raw PSD coefficients (Part

A). Mean and 95% CI accuracy values obtained with different values of P . Within data sets,

performances statistically lower than the maximum are pointed by * (single tail t-tests with df =

38 and BHFDR adjusted p < 0.05). A maximum of 20 subjects was used in each experimental

iteration. Refer to table 3.2 for details on databases’ code names, and to section 6.3.1 for a

description of the results

System BF DF K

RCeps5% 96.02 97.17 79.14

[95.30, 96.75] [95.88, 98.45] [71.17, 87.10]

RCeps10% 95.89 97.75 80.81

[94.85, 96.93] [96.39, 99.10] [74.63, 87.00]

RCeps20% 95.73 97.59 80.06

[94.56, 96.90] [96.12, 99.05] [73.97, 86.16]

RCeps30% 94.67 96.80 79.64

[92.20, 97.15] [94.42, 99.19] [72.78, 86.51]

RCeps40% 96.15 96.69 79.85

[94.77, 97.53] [94.01, 99.37] [74.43, 85.26]

RCeps50% 93.43* 97.29 76.75

[91.75, 95.11] [95.62, 98.96] [71.07, 82.44]

RCeps75% 91.46* 94.70 73.05

[88.02, 94.90] [90.85, 98.55] [67.71, 78.39]

RCeps100% 88.73* 95.83 59.06*

[84.94, 92.52] [93.20, 98.45] [55.80, 62.32]
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Table A.34: Accuracy results of RCepsP% systems and raw PSD coefficients (Part

B). Mean and 95% CI accuracy values obtained with different values of P . Within data sets,

performances statistically lower than the maximum are pointed by * (single tail t-tests with df =

38 and BHFDR adjusted p < 0.05). A maximum of 20 subjects was used in each experimental

iteration. Refer to table 3.2 for details on databases’ code names, and to section 6.3.1 for a

description of the results

System P Y Z

RCeps5% 88.80 70.92 92.42

[84.04, 93.57] [65.78, 76.06] [89.84, 95.01]

RCeps10% 89.16 71.93 92.78

[84.90, 93.43] [66.77, 77.08] [90.58, 94.97]

RCeps20% 89.19 73.94 93.18

[85.55, 92.83] [69.04, 78.84] [90.54, 95.82]

RCeps30% 89.17 74.46 90.01

[85.75, 92.58] [69.64, 79.29] [86.89, 93.14]

RCeps40% 87.58 74.53 87.91

[83.65, 91.51] [69.93, 79.13] [83.10, 92.73]

RCeps50% 89.27 74.59 89.57

[85.81, 92.72] [69.85, 79.33] [85.85, 93.30]

RCeps75% 89.57 74.94 84.48*

[86.57, 92.56] [70.23, 79.66] [79.10, 89.87]

RCeps100% 88.07 74.62 82.81*

[84.36, 91.79] [69.69, 79.55] [79.10, 86.52]
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Table A.35: Accuracy results of RCepsP% systems and rNorm PSD coefficients

(Part A). Mean and 95% CI accuracy values obtained with different values of P . Within data

sets, performances statistically lower than the maximum are pointed by * (single tail t-tests

with df = 38 and BHFDR adjusted p < 0.05). A maximum of 20 subjects was used in each

experimental iteration. Refer to table 3.2 for details on databases’ code names, and to section

6.3.1 for a description of the results

System BF DF K

RCeps5% 92.95 96.16 79.05

[91.34, 94.57] [94.38, 97.93] [71.17, 86.94]

RCeps10% 94.95 97.40 78.75

[93.27, 96.62] [95.78, 99.03] [72.35, 85.15]

RCeps20% 93.04 97.42 80.11

[90.99, 95.09] [95.67, 99.17] [75.66, 84.55]

RCeps30% 92.05* 97.11 77.80

[90.18, 93.91] [95.21, 99.00] [73.29, 82.31]

RCeps40% 91.53* 95.72 75.87

[89.08, 93.97] [92.49, 98.95] [71.02, 80.71]

RCeps50% 89.23* 96.72 75.54

[87.11, 91.34] [94.42, 99.02] [70.64, 80.44]

RCeps75% 83.94* 95.26 69.97*

[80.47, 87.42] [91.83, 98.69] [66.33, 73.60]

RCeps100% 82.45* 93.87 58.41*

[78.65, 86.26] [90.25, 97.50] [56.25, 60.58]



223

Table A.36: Accuracy results of RCepsP% systems and rNorm PSD coefficients

(Part B). Mean and 95% CI accuracy values obtained with different values of P . Within data

sets, performances statistically lower than the maximum are pointed by * (single tail t-tests

with df = 38 and BHFDR adjusted p < 0.05). A maximum of 20 subjects was used in each

experimental iteration. Refer to table 3.2 for details on databases’ code names, and to section

6.3.1 for a description of the results

System P Y Z

RCeps5% 86.38 70.36 85.85

[82.11, 90.66] [65.69, 75.04] [82.75, 88.94]

RCeps10% 86.69 72.15 87.81

[82.58, 90.81] [67.69, 76.62] [83.52, 92.09]

RCeps20% 85.12 75.37 86.92

[80.18, 90.07] [71.41, 79.33] [82.93, 90.91]

RCeps30% 88.15 77.08 84.78

[84.82, 91.48] [72.83, 81.34] [80.38, 89.17]

RCeps40% 86.29 76.46 83.02

[81.83, 90.75] [72.02, 80.90] [78.67, 87.37]

RCeps50% 86.56 76.57 77.15*

[82.82, 90.30] [72.04, 81.10] [71.99, 82.32]

RCeps75% 86.55 76.50 74.42*

[83.07, 90.03] [71.64, 81.36] [68.41, 80.43]

RCeps100% 85.70 76.52 73.35*

[81.54, 89.86] [71.96, 81.07] [68.00, 78.69]
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RCeps5% RCeps10%

RCeps20% RCeps30%

Figure A.13: ROC curves of RCepsP% systems coefficients with logarithmic FAR

axis. Mean ROC curves and std (shaded area) obtained with different configurations of

RCepsP%. A maximum of 20 subjects was used in each experimental iteration. Refer to fig.

6.1 for legend details.
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Table A.37: Accuracy results of LPCN systems (Part A). Mean and 95% CI accuracy

values obtained with different values of N . Within data sets, performances statistically lower

than the maximum are pointed by * (single tail t-tests with df = 38 and BHFDR adjusted

p < 0.05). A maximum of 20 subjects was used in each experimental iteration. Refer to table

3.2 for details on databases’ code names, and to section 6.3.2 for a description of the results

System BF DF K

AR2 90.09* 91.02* 75.90

[87.37, 92.81] [88.64, 93.39] [68.12, 83.68]

AR4 94.09 94.76* 77.60

[92.61, 95.58] [92.61, 96.92] [68.77, 86.43]

AR6 94.93 97.12 76.94

[93.39, 96.47] [96.12, 98.12] [68.98, 84.90]

AR8 96.01 96.82 79.10

[95.04, 96.99] [95.66, 97.97] [72.03, 86.18]

AR10 95.67 96.48 80.31

[94.26, 97.07] [94.73, 98.23] [73.33, 87.29]

AR15 95.83 97.43 79.75

[94.36, 97.30] [96.25, 98.62] [72.66, 86.85]

AR20 96.10 96.78 79.97

[95.05, 97.15] [94.79, 98.76] [72.81, 87.12]

AR25 95.34 97.95 79.31

[93.99, 96.68] [96.77, 99.13] [72.21, 86.41]

AR30 95.64 97.51 80.45

[94.58, 96.71] [95.94, 99.08] [73.53, 87.38]

AR40 94.44 98.04 79.60

[93.08, 95.80] [97.03, 99.05] [73.18, 86.01]

AR50 93.17* 97.82 77.97

[91.50, 94.85] [96.63, 99.01] [71.10, 84.84]
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Table A.38: Accuracy results of LPCN systems (Part B). Mean and 95% CI accuracy

values obtained with different values of N . Within data sets, performances statistically lower

than the maximum are pointed by * (single tail t-tests with df = 38 and BHFDR adjusted

p < 0.05). A maximum of 20 subjects was used in each experimental iteration. Refer to table

3.2 for details on databases’ code names, and to section 6.3.2 for a description of the results

System P Y Z

AR2 85.87 69.88 89.98*

[81.20, 90.55] [63.99, 75.77] [87.34, 92.62]

AR4 87.51 73.69 91.19

[83.54, 91.48] [68.22, 79.16] [88.00, 94.38]

AR6 87.94 74.17 93.92

[83.45, 92.43] [69.49, 78.85] [92.49, 95.35]

AR8 89.88 74.73 93.93

[85.49, 94.26] [69.57, 79.88] [92.19, 95.66]

AR10 88.41 75.17 92.03

[84.33, 92.49] [70.21, 80.13] [89.35, 94.71]

AR15 89.95 75.78 91.93

[86.95, 92.95] [70.76, 80.80] [89.53, 94.34]

AR20 88.88 76.28 90.08

[85.87, 91.89] [71.28, 81.28] [86.50, 93.66]

AR25 88.41 75.22 90.05

[84.18, 92.64] [70.35, 80.10] [86.52, 93.58]

AR30 89.51 76.05 83.07*

[86.26, 92.76] [71.39, 80.71] [78.77, 87.36]

AR40 88.54 75.66 80.48*

[85.16, 91.92] [70.71, 80.60] [76.06, 84.90]

AR50 89.18 75.69 80.30*

[85.74, 92.61] [70.64, 80.73] [75.02, 85.57]
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Appendix B

Career development

Since at least half of my training has taken place outside the subject of this thesis,

but during the time span of my Ph.D., I would like to go through those that were

part of my doctoral training. Note that, although strictly outside the scope of this

thesis, they are research related exercises and therefore had a direct influence on

the thesis. Finally, I will also enumerate the work directly related to this thesis.

B.1 Non-thesis specific development

In September 2008, I enrolled in the Division of Digital Signal Processing at Uni-

versity Institute for Technological Development and Innovation in Communica-

tions (IDeTIC), University of Las Palmas de Gran Canaria (ULPGC) (Spain) as

a researcher trainee for the development of a face recognition biometric system

applied to videos, under the supervision of Dr Carlos M. Travieso. This led in

January 2010 to my B.S. final year project, titled “Study, design and implementa-

tion of a biometric face recognition system for TV videos. BioSFaRV (Biometric

System for Face Recognition from Videos)”, which in turn resulted in my first

publication [162].

I was then fortunate to continue my training with Travieso, now supervisor of

my Ph.D. thesis. I undertook my my M.Sc. on Intelligent Systems and Numerical
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Applications in Engineering at IUSIANI, ULPGC (Spain) between September 2009

and December 2010. Having used an existing face detection tool with BioSFaRV, I

had the opportunity to develop a tool of my own as a master thesis titled “Study,

design and implementation of a face detection system based on color contours”,

under the supervision of Dr. Modesto Castrillón Santana.

At the same time, I continued working on the problem of face biometrics with

Travieso, mainly as part of the research project “Research of Face Recognition

Biometric Systems Applied to the Hotel Industry”, financed under the “Programa

Innova Canarias 2020”. This culminated in several publications in international

conferences and journals as well as book chapters [163–173].

My training continued with the supervision of several students during their

final year projects and during their trainee periods at IDeTIC. In addition, I

participated in applications for research funding, as well as on the elaboration of

subsequent progress reports, and I was part of the management and submission-

review teams of several international scientific events and journals.

I was also able to work on some of the other biometric modalities studied in

the group, which helped extend my knowledge and insight of signal processing

techniques. Most notably, I had the opportunity to join the project “Labora-

torio de Sistemas y Autómatas Inteligentes en Biodiversidad”, financed by the

Spanish Agency for International Development Cooperation (AECID), Minister

of Foreign Affairs and Cooperation (MAEC), Government of Spain, focussed on

the application of biometric technologies for the conservation of the biodiversity.

Again, a number of publications resulted from these collaborations, including two

patents [174–187].

B.2 Thesis specific development

All the training just described was vital for the execution of this thesis. The

processing of EEG data posed a completely new challenge, especially considering
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that the group had no direct experience with it. While exploring the required

concepts and techniques, my understanding of what meticulous research entailed

has evolved, and I have learned to be extremely critical with my own work.

In January 2014 I joined the Psychology Department of the College of Human

Health and Science, Swansea University (Wales, UK). Under the supervision of

Dr. Christoph T. Weidemann, I recorded and processed EEG data and supervised

other graduate and post-graduate students. This proved to be an important step

forward in my training, especially considering that this group’s expertise is from

the other end of the spectrum within the neuroscience disciplines. There, I further

developed my understanding of the processing and analysis of EEG data, and I

gained new insights into research methodologies adopted by behavioural sciences

such as experimental psychology.

From the research undertaken in this thesis, the following articles have arisen:

• “Electroencephalogram subject identification: A review”, published in the

Journal of Expert Systems with Applications on May 2014 [159].

• “EEG Biometric Identification: A Thorough Exploration of the Time-Frequency

Domain”, published in the Journal of Neural Engineering on 2015 [160].

• “Real Cepstrums on Electroencephalogram Biometric Identification”, pub-

lished in the IC3-2015 International Conference on Contemporary Comput-

ing on August 2015 [160].

• “A Task-Independent Neural Signature: Our Brain’s Fingerprint”, work in

progress.

• “Localized Component Filtering to Boost Electroencephalogram Artifact Re-

jection”, work in progress.

• “My Mind, My Identity: a Task-Independent Neural Signature for Biometric

Verification”, work in progress.
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Acronyms

ADJUST Automatic EEG artifact Detection based on the Joint Use of Spatial and Temporal

features

AEP Auditory Evoked Potentials

ANN Artificial Neural Network

ANOVA analysis of variance

ApEn Approximate Entropy

APS Absolute Power Spectrum

AR Auto-Regressive

ARMA AR Moving Average

AvgMnt Common Global Average Reference Montage

BCI Brain Computer Interface

BHFDR Benjamini-Hochberg False Discovery Rate

BIHMnt Bipolar Inter-Hemispheric Reference Montage

BP Back Propagation algorithm of an ANN

BSS Blind Source Separation

CG Computational Geometry based classifier

CI Confidence Interval

COH Spectral Coherence

CV Cross-Validation

CzMnt Common Cz Reference Montage

DDBB Database

DBI Davies Bouldin Index
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DWT Discrete Wavelet Transform

DZ Dizygotic

EEG Electroencephalogram

EER Equal Error Rate

ENN Elman ANN

ERP Event Related Potential

ERS Event Related Spectrogram

Eucl. Euclidean metric

FA-ANN Fuzy ARTMAP ANN

FAR False Acceptance Rate

FAPR False Acceptance Power Rate

FASTER Fully Automated Statistical Thresholding for EEG artifact Rejection

FFT Fast Fourier Transform

FIR Finite Impulse Response

FRPR False Rejection Power Rate

GA Genetic Algorithms

GAR Genuine Acceptance Rate

GMM Gaussian Mixture Model

HP High-Pass

HTER Half Total Error Rate

IC Independent Component

ICA Independent Component Analysis

ICAW Wavelet enhanced ICA

IH Inter-Hemispheric

IIR Infinite Impulse Response

JADE Joint Approximate Diagonalization of Eigenmatrices

kNN k-Nearest Neighbour

LCF Localized Component Filtering
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LDA Linear Discriminant Analysis

LDC Linear Discriminant Classifier

lSVM Linear SVM

LPC Lineal Prediction Coefficients

LSP Line Spectral Pairs

LVQ-ANN Linear Vector Quantization ANN

Manh. Manhattan metric

mAR Multivariate AR

MC Monte Carlo

MFCC Mel-Frequency Cepstral Coefficients

MTL Multi Task Learning

MUSIC Multiple Signal Classification

MZ Monozygotic

Norm. Normalized

PCA Principal Component Analysis

Manh. Manhattan metric

mAR Multivariate AR

MFCC Mel-Frequency Cepstral Coefficients

MTL Multi Task Learning

MUSIC Multiple Signal Classification

MZ Monozygotic

Norm. Normalized

NR Applied for noise reduction

OCC One Class Classifier

PCA Principal Component Analysis

PRE Percentage Reduction of Error

PSD Power Spectrum Density

RC Reflection Coefficients
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RCeps Real Cepstrums

REC Resting with Eyes Closed

REO Resting with Eyes Open

RB-ENN Resilient BP-ENN

RBF Radial Basis Function

ROC Receiver Operating Characteristic

SCBI Second Order Blind Separation

SD-FIR Sum Difference FIR filter

SFA-ANN Simplified FA-NN

std standard deviation

STFT Short Time Fourier Transform

Succ. Success rate

SVM Support vector machine

TAPR True Acceptance Power Rate

TRPR True Rejection Power Rate

VEP Visual Evoked Potential
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Caṕıtulo 1

Introducción

El presente documento es un resumen del original, titulado

“My Mind, My Self, My Identity: A Task-Independent Neu-

ral Signature for Biometric Identification”. Aśı pues, se cen-

tra en enumerar las conclusiones principales de cada uno de

los caṕıtulos, sin detallar los procedimientos de experimenta-

ción ni los resultados obtenidos. A su vez, no se presentarán

imágenes ni tablas, sino que se hará referencia a las mismas

del documento original.

La búsqueda de rasgos genéticos en el electroencefalograma (EEG) ha recibi-

do especial atención por parte de la comunidad cient́ıfica casi desde las primeras

grabaciones del EEG humano, tomadas por Hans Verger en 1924 [1]. El descifra-

do de este mapa genotipo-fenotipo permitirá el desarrollo de herramientas para

el estudio, el diagnóstico y el diagnóstico temprano de muchas enfermedades, es-

pecialmente aquellas que afectan al cerebro [2, 3]. Dichas herramientas, basadas
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en medidas cuantitativas del EEG, estarán más próximas a la función genética

que la tradicional interpretación de pruebas cognitivas [2]. A su vez, permitirán

el seguimiento de pacientes y la evaluación de tratamientos también de manera

cuantitativa.

La comprensión de los rasgos genéticos del EEG abrirá las puertas al desarrollo

de sistemas biométricos de seguridad. En esta era de abundancia de la informa-

ción y redes de comunicación, la biometŕıa se ha erigido como una de las mejores

soluciones, si no la mejor, para controlar el acceso a información y/o zonas restrin-

gidas. Estos sistemas se basan en caracteŕısticas irreproducibles e intransferibles

de la fisioloǵıa humana, tales como la huellas dactilares o los rasgos faciales.

La identificación de sujetos basada en el EEG es una disciplina relativamente

joven, que encuentra sus oŕıgenes en avances de los estudios genéticos y neurofi-

siológicos nombrados al inicio. Un sistema biométrico del EEG es especialmente

atractivo debido a su potencial robustez y a la dificultad de falseamiento de la

biometŕıa. Las contraseñas serán más dif́ıciles de robar dado que los usuarios no

tendrán que realizar ninguna acción reveladora, como la introducción de la misma

a través de un teclado. Incluso en el caso de robo el sistema puede estar progra-

mado para responder, no al significado semántico de la contraseña, sino a rasgos

del EEG espećıficos del individuo. Estos rasgos son imposibles o extremadamente

dif́ıciles de reproducir por otro individuo. Además, si a un usuario se le fuerza a

introducir su contraseña, el sistema puede monitorizar y responder a los niveles

elevados de estrés u otros cambios en la actividad normal del EEG y bloquear el

acceso.

Actualmente, la principal desventaja de la biometŕıa del EEG es la inconvenien-

cia del método de captura de datos. Los aparatos de EEG, aunque estrictamente

no invasivos, son relativamente más invasivos que otras biometŕıas. En el caso de

equipos cĺınicos o de investigación, la preparación de las sesiones de grabación
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puede ser una ardua tarea que requiere de la aplicación de gel conductivo sobre el

cuero cabelludo del usuario y de múltiples comprobaciones y ajustes de la calidad

de la señal. Dicho esto, la proliferación de dispositivos EEG de consumo que re-

ducen substancialmente los tiempos de preparación y hacen uso de tecnoloǵıas de

sensores secos, han facilitado en gran medida la tarea de captura. Aunque estos

dispositivos actualmente sufren de una menor calidad de la señal, cabe esperar que

avances futuros en el campo de los sensores solventen gradualmente esta desven-

taja.

El presente trabajo es un estudio de los rasgos individuales del EEG, y más

concretamente de aquellos en la representación tiempo-frecuencia del EEG. Dicho

estudio está motivado por:

La importancia de comprender el mapa genotipo-fenotipo de la actividad

neuronal, el cual llevará a importantes avances en los campos de la medicina

y la psicoloǵıa.

El potencial de la identificación biométrica del EEG, especialmente para

sistemas que requieren métodos de seguridad robustos y para aquellos que

ya integran cualquier forma de Interfaz Cerebro Ordenador (BIC), tales como

dispositivos de monitorización y/o diagnóstico remotos y juegos.

1.1. Hipótesis

En este trabajo se presentan evidencias respaldando la siguiente hipótesis:

Existe en el electroencefalograma humano, un patrón concomitante a la

identidad del individuo e independiente del estado cognitivo.

La primera parte de esta hipótesis: “... concomitante a la identidad del indivi-
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duo...”, se refiere a actividad neuronal definida por el fenotipo del sujeto, y por lo

tanto, única entre individuos.

La segunda parte: “... independiente del estado cognitivo”, se refiere a la per-

sistencia de dicha actividad en los distintos estados mentales y condiciones de

grabación. Persistente no en el sentido estricto, sino de forma que las variaciones

entre tareas sean de menor magnitud que las diferencias entre firmas neuronales

de individuos.

1.2. Estructura del documento

Este trabajo ha sido llevado a cabo en cuatro etapas bien diferenciadas que

definen los distintos caṕıtulos del presente documento:

1. Estado del arte: (Caṕıtulo 2) Dado que se trata ésta de una modalidad

biométrica relativamente joven, la literatura no contaba con una recopila-

ción de los avances más importantes en el área. Además, el estado del arte

se caracterizaba por la ausencia de una metodoloǵıa estructurada, lo cual

dificultó la extracción de un argumento lógico. Los autores hab́ıan centrado

sus esfuerzos en la aplicación de nuevos algoritmos y arquitecturas, sin antes

comprender las propiedades básicas de la información procesada, o basándo-

se en estudios genéticos y neurofisiológicos que analizan el EEG desde un

punto de vista distinto al de la biometŕıa.

2. Recolección de bases de datos de EEG públicas: (Caṕıtulo 3) En un

intento por identificar propiedades comunes intŕınsecas de la firma neuronal

y no idiosincrásicas de los datos, se hizo uso de 6 bases de datos públicas de

distinta naturaleza. El conjunto de bases de datos usadas incluye: estados de

relajación, tareas motoras y de resolución de problemas, potenciales evocados

(ERPs) y emociones evocadas.
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3. Exploración del EEG en tiempo-frecuencia: (Caṕıtulo 5) Con el fin de

suplir los puntos débiles detectados en el estado del arte, una parte importan-

te de esta investigación se dirigió al análisis en profundidad de la información

discriminatoria contenida en el espacio tiempo-frecuencia del EEG. Para ello,

se llevaron a cabo numerosos experimentos, cada uno diseñado para evaluar

una única propiedad o un pequeño conjunto de ellas, bajo condiciones con-

troladas.

4. Implementación de un sistema biométrico: (Caṕıtulo 6) Finalmente,

los avances logrados durante la exploración de los rasgos individuales del

EEG, se aplicaron en el diseño de un sistema de verificación biométrico ba-

sado en el EEG.

En paralelo a las etapas descritas, se realizó un estudio de las técnicas de

corrección de artefactos del EEG durante una estancia en el Departamento de

Psicoloǵıa, Facultad de Ciencia y Salud Humana, Universidad de Swansea (Gales,

Reino Unido). Dicha investigación concluyó en la propuesta de una nueva técnica

de eliminación de artefactos: Filtrado Localizado de Componentes (LCF)

(caṕıtulo 4). Esta técnica se aplicó finalmente en el preprocesado de las bases de

datos.

El documento cierra con disertaciones sobre las posibles fuentes fisiológicas de

la firma neuronal independiente del estado cognitivo y su aplicación en el campo

de la biometŕıa, aśı como con una recopilación de las innovaciones producidas en

el presente trabajo y una serie de propuestas de potenciales ĺıneas de investigación

futuras (caṕıtulo 7).
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Caṕıtulo 2

Estado del arte: revisión completa

En este caṕıtulo se recoge una revisión completa del estado del arte en iden-

tificación biométrica del EEG. Además de la evolución de dicha modalidad desde

1980 al 2015, también se presentan los principales avances de estudios genéticos

y neurofisiológicos relacionados. Aśı mismo, se propone una categorización de los

métodos aplicados basada en los estados cognitivos empleados durante la experi-

mentación. Se identifican y nombran las bases de datos más usadas en la literatura,

algunas de las cuales son de dominio público, con el fin de facilitar la comparación

de resultados entre éstas y futuras investigaciones. Se muestra que, aunque muchas

preguntas básicas siguen sin una respuesta clara, se ha identificado la existencia

de información discriminatoria de la identidad en el EEG, la cual puede ser usa-

da como biometŕıa. Finalmente, se recomienda la aplicación de estrategias tales

como el entrenamiento multi-sesión, la fusión de señales de distintos electrodos y

frecuencias,y el uso de Clasificadores Lineales Discriminadores (LDC) y Máquinas

de Vectores Soporte (SVM).

En general, el proceso de identificación es más complicado de lo anticipado

puesto que se apoya sobre rasgos del EEG complejos y heterogéneos. Éstos son,

a su vez, el resultado de elaborados modelos de herencia que hacen el proceso de
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identificación extremadamente sensible a variables como el tiempo, la frecuencia, la

localización de sensores, las condiciones de grabación y la arquitectura del sistema.

En particular, este caṕıtulo se centra en encontrar respuestas a las siguientes

preguntas:

¿Cuáles son los rasgos del sujeto localizados en el EEG?

¿Dónde se localizan estos rasgos en el cerebro?

¿Dónde se localizan estos rasgos en la frecuencia?

¿Son constantes a lo largo del tiempo?

¿Son constantes a lo largo de las diferentes tareas cognitivas?

¿Cuáles son las mejores estrategias de diseño?

2.1. Uso de individuos no-sanos para la evalua-

ción de sistemas

Algunos estudios en la literatura hacen uso de bases de datos que incluyen

individuos no-sanos además de sanos. Por ejemplo, los trabajos [4–9] hacen uso

de pacientes alcohólicos. El problema de esta práctica es que el alcoholismo afecta

a diversos aspectos de la actividad cerebral [2, 3], como las ondas alfa [10]. De

esta manera, el problema de clasificación queda dividido de manera efectiva en

dos: identificación entre sujetos sanos e identificación entre sujetos no-sanos; y los

resultados sufren de sobre-estimación del rendimiento del sistema.

Aśı pues, para despejar cualquier duda, trabajos de biometŕıa futuros que hagan

uso de bases de datos con sujetos sanos y no-sanos, deben incluir un análisis

espećıfico que corrobore que los parámetros de identificación no están afectados

por la condición del sujeto, es decir, que no existen correlación.
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2.2. ¿Cuáles son los rasgos del sujeto localizados

en el EEG?

Existen suficientes evidencias que confirman la existencia de información refe-

rente a la identidad del individuo contenida en el EEG. Qué rasgos son estos, por el

momento, está menos claro. Estudios genéticos y neurofisiológicos afirman que la

potencia y la frecuencia de pico de las ondas alfa presentan la mayor heredabilidad,

seguidas por las ondas beta [11,12].

Sin embargo, estas caracteŕısticas por śı mismas fueron insuficientes para ob-

tener buenas tasas de identificación en los estudios de biometŕıa, lo que forzó la

exploración y uso de nuevos descriptores. En general, los resultados sugieren que

es en la forma global del espectro donde está codificada la identidad del sujeto.

2.3. ¿Dónde se localizan estos rasgos en el cere-

bro?

Múltiples estudios concluyeron que las fuentes óptimas de información discri-

minatoria se localizan en las regiones occipitales, temporales y parietales durante

estados relajados con ojos cerrados (REC) [13–16]. Esto concuerda con los resul-

tados de estudios genéticos, en los que se describen las ondas alfa como altamente

determinadas genéticamente. Bajo estados de relajación con ojos abiertos (REO),

se concluye que son las regiones anteriores del cerebro las que proporcionan la

máxima información discriminatoria [16–20].

La balanza se inclina de nuevo hacia regiones occipitales en experimentos con

Potenciales Visuales Evocados (VEPs) [21]. Esto puede atribuirse al aumento de

la activación en estas áreas durante VEPs. Yeom’s et. al. mostraron que cuando el

procedimiento de experimentación hace uso de la personalidad y de imágenes del
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propio usuario, las zonas frontales del cerebro vuelven a ser las más discriminatorias

[22, 23]. Lo anterior sigue concordando con la relativa activación de las regiones

cerebrales, dado que el “camino visual” describe el flujo de información/activación

desde áreas posteriores hacia anteriores a medida que el cerebro interpreta la escena

[24].

De los estudios con múltiples estados cognitivos, tan solo Yang et. al. conside-

raron el factor espacial [25]. Sus resultados muestran que áreas parietales cercanas

a los lóbulos temporales contienen la información más discriminatoria. A pesar

de ello, sus resultados fueron obtenidos con una base de datos extremadamente

pequeña (tan sólo 3 usuarios).

La diferencia de rendimiento entre hemisferios está aún menos clara. Existen

estudios tanto biométricos como neurofisiológicos que concluyen que no existen

diferencias significativas entre ambos hemisferios [17–19, 26]. Al mismo tiempo,

otros trabajos concluyeron que dicha diferencia śı existe, y que es el hemisferio

derecho el que supera al izquierdo [20,27,28].

La falta de unanimidad en este sentido dificulta la extracción de conclusiones.

Algunas de estas variaciones pueden ser explicadas por la propiedades del fun-

cionamiento del cerebro humano y por los algoritmos aplicados. Por ejemplo, los

sistemas especializados en ERPs funcionan mejor en regiones occipitales probable-

mente debido a que el complejo ERP es más fácilmente extráıdo de estas áreas.

Aśı mismo, la discrepancia de resultados y conclusiones también puede ser debida

a idiosincrasias de las bases de datos usadas en cada estudio.



2.4. ¿Dónde se localizan estos rasgos en la frecuencia? 11

2.4. ¿Dónde se localizan estos rasgos en la fre-

cuencia?

El factor frecuencia ha recibido mucha menos atención que el factor espacio.

Esto se debe, en gran medida, a que los autores se centraron en información ya

localizada en una parte espećıfica del espectro, basándose en estudios previos o en

su propia experiencia.

En experimentos con REC, estudios neurofisiológicos y biométricos concluyeron

que las ondas alfa y delta son las mas discriminatorias, seguidas por las ondas teta y

beta [11,12,15,26]. Dentro del rango de las ondas alfa, la sección media ha superado

las partes primera y última en algunos experimentos [29, 30]. En ocasiones, las

ondas teta también han sido descritas como las más discriminatorias [31].

En el resto de experimentos, las altas frecuencias han producido mejores tasas

de clasificación en la mayoŕıa de los casos [32–36].

2.5. ¿Son constantes a lo largo del tiempo?

Estudios genéticos y neurofisiológicos han descrito cambios en el EEG humano

durante la maduración, algunos de los cuales están relacionados con rasgos here-

ditarios [10]. Dichos cambios pueden ser ignorados en sistemas biométricos para

adultos, puesto que se ralentizan pasados los primeros 19 o 20 años de desarrollo.

En cuanto a periodos de tiempo más cortos, hasta 1 año, estudios genéticos y

neurofisiológicos han descrito la Densidad Espectral de Potencia (PSD) del EEG

como altamente estable [37]. Sin embargo, a excepción del análisis cualitativo de

I. Nakanishi et. al. [38], todos los estudios biométricos han contradicho esto en

mayor o menor medida. S. Marcel y J.D.R. Milla fueron los primeros en observar

una cáıda en el rendimiento del sistema a medida que las sesiones de entrenamiento
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y test se distanciaban en el tiempo [39]. Estudios sobre los efectos de la dieta y los

ritmos circadianos han revelado cuan sensibles pueden ser estos sistemas a cambios

en el EEG producidos por situaciones cotidianas, como la ingesta de café o cambios

fisiológicos diarios [40–42].

Algunos autores proponen la aplicación de estrategias de entrenamiento multi-

sesión para contrarrestar dicha cáıda [7, 43,44].

2.6. ¿Son constantes a lo largo de las diferentes

tareas cognitivas?

A excepción del análisis estad́ıstico de Kennet [32], todos los estudios biométri-

cos han observado diferencias en el rendimiento de los sistemas cuando éstos son

alimentados con EEG de distintos estados cognitivos. Los primeros resultados de

Palaniappan sugirieron que los estados cognitivos más demandantes produćıan un

mejor rendimiento [45]. Sin embargo, posteriores trabajos del mismo autor resul-

taron en conclusiones totalmente opuestas [46].

Esta disparidad, incluso entre trabajos llevados a cabo por el mismo grupo de

investigación, dificulta la extracción de una narrativa consistente. Incluso compa-

rando entre el movimiento de las manos derecha e izquierda, se encuentran estudios

cuyas conclusiones abarcan todos los posibles resultados [6, 28,33,39,47,48].

Por otro lado, parece claro que los sistemas extraen algún tipo de información

espećıfica a la tarea realizada. Los resultados de Palaniappan mostraron que la

fusión de información proveniente de las tareas con mayor y menor información

discriminante de manera individual, produćıa los mejores resultados. Esta hipótesis

está en ĺınea con los resultados de S. Sun sobre el Entrenamiento Multi-Tarea

(MTL) [47].
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2.6.1. ¿Cuáles son las mejores estrategias de diseño?

Los descriptores explorados en la literatura pueden dividirse en dos grandes gru-

pos: “generales” y “espećıficas”. La mayoŕıa de las publicaciones usan caracteŕısti-

cas del primer grupo, las cuales describen el EEG de manera general. Aśı pues,

la información discriminatoria no se presenta de manera directa, sino que se en-

cuentra “escondida” entre mucha otra información no relevante. Los ejemplos más

importantes son los coeficientes de modelos Auto-Regresivos (AR) y de la PSD. En

estos casos, es el clasificador o el selector de caracteŕısticas quien debe encontrar

y extraer la información correcta.

Descriptores “espećıficos” incluyen la potencia de pico y su frecuencia, aśı como

caracteŕısticas de los complejos ERP. En estos casos, la información discrimina-

toria se presenta de manera más directa al clasificador, facilitando aśı su labor.

Este grupo de caracteŕısticas han sido las más utilizadas en estudios con disposi-

tivos EEG de consumo, principalmente debido a su baja complejidad y velocidad

de procesado. Aunque los descriptores espećıficos han obtenido peores resultados

que los generales, éstos han aumentado el rendimiento de los segundos en fusión.

Por ejemplo, R. Palaniappan mejoró su diseño al incluir medidas de potencia de

diferentes sub-bandas de frecuencia a los coeficientes AR, a pesar de que dichas

medidas fueron extráıdas directamente de estos coeficientes AR [49].

Aśı mismo, el uso de información proveniente de múltiples electrodos, ondas

y estados cognitivos aumenta el rendimiento del sistema. También lo hacen la

aplicación de técnicas de reducción de ruido y de herramientas de clasificación

tales como LDC y SVM.
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2.7. Conclusiones

A partir del extenso estudio del estado del arte realizado, se concluye que el

EEG, y en particular su distribución espectral, contiene rasgos caracteŕısticos de la

identidad del sujeto. Estos rasgos pueden ser usados en un sistema de identificación

biométrica, en especial aquellos extráıdos de las ondas alfa.

Quizás, uno de los hechos más sorprendentes es el grado de disparidad en las

conclusiones entre estudios. Esto puede ser consecuencia de la complejidad del mo-

delo hereditario que gobierna los rasgos del EEG, y de la cantidad de variables que

afectan al rendimiento del sistema. Aśı pues, el problema de identificación a partir

del EEG es sensible a numerosos factores, tales como: la localización espacial de

electrodos, las bandas de frecuencia, el tiempo, los estados cognitivos, la condición

de los sujetos y, por supuesto, la arquitectura del sistema aplicado. En muchos

casos, la alta especialización de los sistemas, diseñados para un problema muy

concreto, ha acentuado dicha sensibilidad. Un ejemplo de ésto puede encontrarse

en los resultados obtenidos por K. Das et. al. y S.K. Yeom et. al. con VEPs. El

primero concluyó que la información discriminatoria se localiza en el lóbulo oc-

cipital del cerebro, entre 120 y 200 milisegundos después de la presentación del

est́ımulo [21]. Por otro lado, S.K. Yeom et. al. concluyeron que la información más

discriminatoria se encontraba en regiones anteriores del cerebro, a partir de 250 ms

después de la presentación del est́ımulo [22,23]. Estas diferencias en tiempo y loca-

lización son, probablemente, debidas a que, a pesar de que ambos estudios usaron

VEPs, cada uno de ellos se centraba en distinta información dentro de los mismos.

De los resultados considerados aqúı se desprende que: la combinación de múlti-

ples electrodos, ondas y estados cognitivos aumenta el rendimiento del sistema,

y las estrategias de entrenamiento multi-sesión y de aprendizaje continuo pueden

contrarrestar los efectos negativos del tiempo. El resto de propiedades están menos

claras. Herramientas como los algoritmos de reducción de artefactos, LDC y SVM
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parecen mejorar los resultados, pero éstos dependen también del resto de variables.

Por tanto, se concluye que el estado del arte tan sólo alcanza a arañar la

superficie del problema, aśı como que se necesita más investigación para extraer

conclusiones más firmes que las aqúı presentadas.
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Caṕıtulo 3

Materiales

La mayoŕıa de los estudios considerados en el caṕıtulo 2 se centraron en el

análisis de una única base de datos. Aún cuando se hizo uso de múltiples bases de

datos [8,37,50], el objetivo de los autores era el de evaluar el rendimiento de varios

sistemas, nunca el de analizar las propiedades básicas de los rasgos individuales

del EEG. Además, las bases de datos usadas no siempre eran de dominio público,

lo que dificulta la reproducción de los resultados.

Este caṕıtulo describe en detalle las bases de datos usadas en el presente traba-

jo. Se introducen las propiedades originales de estas bases de datos y su preparación

inicial. Se detalla el preprocesado aplicado a cada una de las bases de datos en un

intento por reducir el ruido y las diferencias no relevantes entre ellas, tales como

la frecuencia de muestreo o el montaje de electrodos. El caṕıtulo finaliza con una

descripción de las 10 bases de datos finales extráıdas de las 6 originales.

3.1. Preprocesado

En conjunto, las bases de datos usadas abarcan un amplio rango de valores de

configuración. Aunque algunos de éstos eran de interés para el estudio realizado
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(tarea cognitiva, longitud de la señal, número de sujetos, etc), otros eran irrele-

vantes (frecuencia de muestreo, número de canales, rango de filtrado, etc). En un

intento por eliminar estos últimos, se aplicó un preprocesado común a todas las

bases de datos para normalizar estos factores (fig. 3.1).

3.2. Bases de datos finales

Tras la preparación y el preprocesado de las 6 bases de datos de dominio públi-

co, se obtuvieron un total de 10 conjuntos de datos (tabla 3.2). Éstos representan

una rica variedad de estados cognitivos:

1. BCI2000-Baseline y DEAP-Baseline contienen estados de relajación.

2. BCI2000-Tasks incluye tareas motoras reales e imaginadas, además de tareas

de relajación.

3. La base de datos de Keirn proporciona múltiples tareas de resolución de

problemas.

4. DEAP-Playback contiene distintas emociones.

5. Las bases de datos de Yeom y Zhang contienen VEPs.

6. La base de datos de P. Ullsperger contiene AEPs.
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Caṕıtulo 4

Eliminación de artefactos del

EEG: Filtrado Localizado de

Componentes

Siendo el EEG una técnica de captura de la actividad neuronal no-invasiva, éste

ha sido extensamente utilizado en la investigación y el desarrollo de aplicaciones

en todas las áreas relacionadas con el cerebro. Una de las principales dificultades

de los dispositivos EEG es la coexistencia de campos eléctricos de interés y con-

taminantes. Mientras los primeros son generados por el disparo de neuronas, los

segundos pueden provenir de varias fuentes, tales como la actividad muscular o

interferencias de dispositivos eléctricos, incluido el propio dispositivo EEG. Estas

fuentes contaminantes son, en muchos casos, de mayor magnitud que las señales de

interés, lo que resulta en una mala relación señal a ruido. Avances en los campos de

la electrónica y los sensores han aumentado esta relación, pero la contaminación

del EEG por ruido es, aún hoy en d́ıa, la mayor preocupación a la hora de usar

estas señales [51,52].

En este caṕıtulo se presenta una nueva técnica para la eliminación de artefac-
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tos, la cual reduce la pérdida de señal inherente a los métodos basados en métodos

de Separación de Fuente Ciega (BSS). Dicha técnica localiza los segmentos conta-

minados dentro del espacio BSS y centra el procesado de componentes únicamente

en esos segmentos: Filtrado Localizado de Componentes (LCF). Además, se diseña

LCF de manera que pueda ser implementada en cualquier técnica de procesado

existente basada en métodos BSS. Su integración es directa, y no requiere grandes

cambios en los sistemas originales.

4.1. Conclusiones

De los análisis cualitativos y cuantitativos en bases de datos reales y simuladas,

se desprende que la integración LCF en los sistemas existentes ofrece claras venta-

jas en la reducción de la pérdida de señal. Por otro lado, la habilidad de LCF para

mantener la información relevante permite aumentar la agresividad del preproce-

sado a la hora de identificar cuales de los componentes BSS contiene ruido. Ésto

resulta especialmente interesante en situaciones donde el sistema original funciona

de manera muy conservadora.

Además, el prototipo de LCF usado aqúı no es más que una prueba del con-

cepto con un diseño sencillo, basado en la amplitud del voltage y en su velocidad

de cambio. Se pueden esperar mejores resultados con descriptores del ruido más

sofisticados. Ésto, a su vez, permitirá aumentar aún más la agresividad de la identi-

ficación de componentes contaminados. En el caso ĺımite, LCF podrá ser utilizado

de manera individual, procesando cada uno de los componentes BSS.

Es importante resaltar que los beneficios de LCF son inversamente propor-

cionales a la calidad del algoritmo BSS. Si el algoritmo es capaz de disociar las

fuentes de actividad neuronal del resto, el componente de LCF seŕıa innecesario.

Hasta que los avances en dichos algoritmos logren una perfecta disociación, LCF
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servirá como una herramienta extra para la reducción de pérdida de señal
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Caṕıtulo 5

Exploración tiempo-frecuencia del

EEG

En el caṕıtulo 2, se identifica en el estado del arte la falta de un estudio ex-

haustivo de la información espectral discriminatoria. Todos los estudios biométri-

cos publicados hasta la fecha se centraron, principalmente, en mejorar las tasas de

acierto mediante la aplicación de nuevos algoritmos. Mientras tanto, la naturaleza

y las propiedades de la información procesada aún no hab́ıan sido descritas desde

el punto de vista de la biometŕıa.

Contrariamente al estado del arte, el estudio presentado en este caṕıtulo no

pretende, en ningún momento, obtener altas tasas de acierto durante la clasifica-

ción. En su lugar, pretende describir con el mayor detalle posible la información

discriminatoria del sujeto contenida en el espacio tiempo-frecuencia de la actividad

EEG, aśı como caracterizar cada uno de los parámetros del problema de clasifi-

cación. De hecho, algunas de las decisiones tomadas en el diseño y análisis de los

experimentos están fundamentados en este objetivo. Se intenta aśı cubrir el vaćıo

encontrado en el estado del arte.

En particular, a lo largo de los 4 cuatro bloques de experimentación:
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1. Se obtiene una serie de recomendaciones para maximizar la calidad de la

información espectral discriminatoria.

2. Se presentan evidencias visuales de la existencia de dicha información y sus

propiedades mediante una representación en bateŕıa del espectrograma de

múltiples muestras.

3. Se utilizan 6 bases de datos públicas, lo cual ha permitido distinguir en-

tre propiedades generales de la información y aquellas idiosincrásicas de los

datos.

4. Se hace uso, por primera vez, de Potenciales Auditorios Evocados (AEPs)

para la identificación biométrica de sujetos.

5. Se presentan evidencias de la existencia de una firma neuronal

independiente del estado cognitivo.

5.1. Configuración de la Densidad Espectral de

Potencia (PSD)

En el primer bloque de experimentación, se analizan los efectos en la calidad de

la información de algunos parámetros básicos. En concreto, se consideran el número

de coeficientes de la Transformada Rápida de Fourier (FFT) NF , la longitud de

la ventana espectral LW y su solapamiento Θ, y la longitud de la señal de EEG

usada para general la respuesta final LG.

En estos experimentos, se define la configuración óptima de la Transformada

de Fourier de Tiempo Corto (STFT) para maximizar la extracción de información

discriminatoria. En concreto, la fragmentación de la señal del EEG en ventanas

cortas solapadas, de entre 1 y 2 segundos, se ha identificado como la mejor estrate-
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gia. La representación espectral de cada segmento debe ser calculada sin escatimar

en la resolución en frecuencia (NF ≈ LW ∗ Fs), teniendo en cuenta que la infor-

mación discriminatoria se encontró localizada principalmente por debajo de los

40 Hz.

En cuanto a la cantidad de señal EEG necesaria para realizar la identificación,

es una cuestión de maximizar la información proporcionada al sistema. Dicho ésto,

tras el análisis se concluye que LG = [4, 6] segundos resulta en un rendimiento entre

el 92.5 % y el 95 % del máximo alcanzable por los datos disponibles. Sin embargo,

es de esperar que esto vaŕıe en función de la calidad de la señal.

5.2. Representación de los dominios de tiempo y

frecuencia

Una vez encontrada la configuración óptima de los parámetros NF , LW , Θ y

LG, se han evaluado los efectos de diferentes representaciones de los dominios de

tiempo y frecuencia. Se ha comparado la información discriminatoria de los mon-

tajes AvgMnt, BIHMnt y CzMnt, y los efectos de varios métodos de normalización

de la PSD.

Aunque AvgMnt resultó ser el montaje con mejor rendimiento medio, los resul-

tados de BIHMnt fueron sorprendentemente similares, en especial considerando la

significante reducción del volumen de datos introducida por BIHMnt. Además, la

normalización espectral con medidas robustas frente a valores at́ıpicos, redujo los

efectos del ruido y mejoró la calidad de la información extráıda en la mayoŕıa de

casos. Aśı pues, éstas técnicas pueden ser aplicadas como alternativa a métodos

de eliminación de artefactos.
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5.3. Propiedades de la información discriminato-

ria

A continuación, se describen algunas de las propiedades de la información dis-

criminatoria identificada en los bloques de experimentación anteriores. En parti-

cular, se estudia la distribución espacial y en frecuencia de la información, además

de la naturaleza única entre individuos y permanencia a lo largo del tiempo.

Los resultados sugieren que no hay una clara localización que supere a las

demás de manera sistemática entre sistemas, bases de datos y estados cognitivos.

Por tanto, se concluye que el rendimiento relativo de cada sensor parece estar

principalmente determinado por idiosincrasias de los datos y del montaje y por las

caracteŕısticas del sistema.

En cuanto a la distribución en frecuencia, los resultados apuntan a la existen-

cia de un pico de rendimiento dentro de las ondas alfa. Además, las ondas beta,

hasta 40 Hz, parecen contener tanta o más información que frecuencias más bajas.

Finalmente, en ocasiones, otro pico de rendimiento puede verse por debajo de los

5 Hz.

Los resultados también sugieren que esta información discriminatoria es sufi-

cientemente única para discriminar un gran número de usuarios (> 100) y rela-

tivamente constante en cortos periodos de tiempo. Sin embargo, se necesita más

experimentación con bases de datos mayores, grabadas en múltiples sesiones dis-

tanciadas en el tiempo, para extraer conclusiones más firmes en este aspecto.
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5.4. Firma neuronal independiente del estado cog-

nitivo

Los resultados de S. Sun en MTL [47] y de F. Kennet cuando trataba de identi-

ficar estados cognitivos usando las mismas caracteŕısticas que para la identificación

de usuarios [32] ya sugeŕıan la existencia de una firma neuronal independiente del

estado cognitivo. En esta última fase de experimentación, se ejecutan una serie de

experimentos especialmente diseñados para evaluar la hipótesis principal de esta

tesis.

Si las diferencias entre las firmas neuronales estuvieran principalmente deter-

minadas por el estado cognitivo, la tasa de acierto del sistema biométrico habŕıa

sufrido una cáıda dramática (cerca de niveles aleatorios) en los experimentos de

validación cruzada de estados. Por el contrario, la estabilidad en la tasa de acierto

observada respalda la hipótesis planteada. En especial, considerando que en los

experimentos de validación cruzada de estados algunos sujetos fueron testeados

con EEG de estados cognitivos usados para entrenar a otros sujetos.

Ésto no sugiere que la actividad del EEG sea completamente homogénea entre

estados cognitivos. En los ejemplos mostrados, actividad espećıfica al estado cog-

nitivo es fácilmente identificable. Sin embargo, estas variaciones (A) coexisten con

caracteŕısticas independientes del estado y/o (B) tienen una magnitud menor que

las diferencias entre individuos. De hecho, los resultados cuantitativos presentados

señalan la existencia de información discriminatoria espećıfica del estado, pero con

una capacidad discriminatoria menor que la de la información independiente del

estado.

El hecho de que los efectos del tiempo en experimentos con validación cruzada

de estados cognitivos se mantuvieran como en experimentos sin validación cruzada

de estados, respalda aún más la existencia de una firma neuronal independiente. Si



28 Caṕıtulo 5. Exploración tiempo-frecuencia del EEG

el rendimiento de los experimentos previos se debiera a peculiaridades del montaje

en lugar de a caracteŕısticas reales de los sujetos, la tasa de acierto se hubiera

desplomado al aplicar validación cruzada en las sesiones.

Los resultados sugieren que la actividad cerebral capturada por el EEG, está más

definida por la identidad del individuo que por el estado cognitivo. De hecho, el

espectrograma del EEG revela que parte de esta actividad es relativamente estable

entre estados. En particular, se observa esta firma neuronal independiente entre ta-

reas motoras y de relajación (BCI2000-Full), estados emocionales y REO (DEAP-

Full), resolución de problemas (Keirn’s), AEPs de sinónimos y no-sinónimos (P.

Ulssperger’s), VEPs de representaciones propias y de otras personas (Yeom’s) y

VEP de objetivos y no-objetivos (Zhang’s).

5.5. Conclusiones

En este caṕıtulo, se presentan los resultados de un estudio exhaustivo de la

información discriminatoria en el espacio tiempo-frecuencia del EEG. Para ello, se

han empleado 6 bases de datos con distintos estados cognitivos. Esto, en conjun-

to con los análisis cualitativos y cuantitativos, han permitido distinguir entre las

caracteŕısticas inherentes a la firma neuronal y las idiosincrasias de las bases de da-

tos. Se han ejecutado cuatro bloques de experimentación, cada uno con un objetivo

espećıfico, los cuales resultaron en las siguientes recomendaciones y conclusiones:

1. Configuración de la PSD: recomendaciones.

a) Grabar, al menos, 5 segundos del EEG para llevar a cabo la identifica-

ción.

b) Dividir el EEG en segmentos de entre 1 y 2 segundos de longitud.
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c) Si el volumen de datos y la velocidad de procesado no es un problema,

aplicar solapamiento entre los segmentos.

d) Calcular la representación espectral de cada ventana, manteniendo la

máxima resolución en frecuencia posible.

e) Mantener un ancho de banda desde la frecuencia más baja posible hasta

30 o 40 Hz.

f ) Llevar a cabo la clasificación para cada una de las ventanas individual-

mente y generar la respuesta final combinando el resultado de cada una

de ellas.

2. Representación de los dominios temporal y de la frecuencia: recomendaciones.

a) Usar AvgMnt como el montaje por defecto.

b) Considerar BIHMnt en casos donde la velocidad de procesado o el vo-

lumen de datos sea un problema.

c) Como alternativa a métodos complejos de eliminación de artefactos,

normalizar los coeficientes espectrales con métodos robustos frente a

muestras at́ıpicas.

3. Propiedades de la información discriminatoria: conclusiones

a) Parece no haber una localización que proporcione mejores resultados

que el resto para todos los sistemas, bases de datos y/o estados cogni-

tivos.

b) Existe un pico de rendimiento dentro de las ondas alfa. Frecuencias en

las ondas beta (hasta 40 Hz) son tan o más discriminatorias que otras

frecuencias más bajas. Frecuencias por debajo de 5 Hz también pueden

contener una importante cantidad de información discriminatoria.
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c) Los rasgos individuales en el EEG son suficientemente únicos como para

discriminar 100+ sujetos cuando se aplica el sistema apropiado.

d) La firma neuronal parece ser lo suficientemente permanente como para

ser usada como una biometŕıa.

e) Del total de la información discriminatoria localizada en el

espectro del EEG, una parte significativa de la misma es in-

dependiente del estado cognitivo.
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Caṕıtulo 6

Implementación de un sistema

biométrico

Para finalizar esta investigación, se han aplicado los conocimientos sobre las

propiedades y caracteŕısticas de la firma neuronal adquiridos en el caṕıtulo ante-

rior, en el diseño de un sistema de verificación biométrica.

6.1. Diseño base

Se parte de un diseño base derivado del usado en el caṕıtulo 5. La señal de EEG

se dividió en ventanas de 2 segundos solapadas un 75 %. Se aplica una ventana

de Hamming y se calculan los coeficientes PSD para cada uno de los segmentos.

Se concatenan los coeficientes de entre 1 y 40 Hz de todos los sensores EEG para

formar el vector de caracteŕısticas. Se realiza la clasificación mediante LDC. Para

cada muestra, se agregan los resultados de cada una de las ventanas/segmentos

para obtener la respuesta final.
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6.2. Coeficientes cepstrales reales

Los coeficientes cepstrales han sido extensamente aplicados a problemas de

procesado de señal [53]. El espacio cepstral codifica la forma general del espectro en

sus bajas cuefrencias (primeros coeficientes cepstrales), y los detalles y periodicidad

en cuefrencias superiores. Aśı pues, tras una serie de experimentos con vectores

de caracteŕısticas RCepsP %, con distintos valores de P , donde P es el porcentaje

de los primeros coeficientes usados (el resto fueron desechados), se encuentra que

es suficiente con mantener un 20 % de los mismos para obtener un rendimiento

óptimo.

6.2.1. Coeficientes de envolvente espectral

Los coeficientes de un modelo AR (o Coeficientes Predictores Lineales, LPC)

han sido una opción popular dentro del campo de la biometŕıa del EEG (caṕıtulo

2). Un modelo AR predice muestras de una serie temporal en función de p muestras

pasadas, donde p es el orden del modelo. Ésto puede verse como la salida de un sis-

tema todo-polos de Respuesta al Impulso Infinita (IIR) cuando se le presenta ruido

a su entrada. Aśı pues, los LPC describen la forma espectral de la señal modelada.

Entre mayor sea el orden del modelo, más detallada será esta descripción.

Al igual que ocurrió con los cepstrums reales, se encuentra que es suficiente con

modelar la señal con orden 8 (LPC8). Órdenes superiores resultaron en rendimien-

tos similares o incluso peores. Además, se testeó el uso de otras representaciones

de los LPC, tales como los Coeficientes de Reflexión (RC), las Ĺıneas de Pares

Espectrales (LSP) y el error del modelo AR (ǫ). Mientras ǫ obtuvo resultados

significativamente peores que LPC, tanto RC como LSP obtuvieron resultados

similares. Sin embargo, hay que señalar que el cálculo de estos coeficientes es

computacionalmente más costoso que en el caso de los LPC.
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Estos resultados contradicen algunas de las conclusiones encontradas en la lite-

ratura. R.B. Paranjape et. al. conclúıan que un incremento en el orden del modelo

AR era necesario para mantener el rendimiento del sistema frente a un incremen-

to en el número de usuarios [54]. Con tan sólo 5 sujetos, los autores encontraron

un incremento en la tasa de clasificación de 7 puntos porcentuales al aumentar el

orden de 9 a 15. Aśı mismo, el equipo de Campisi encontró que los RC superaban

en rendimiento a los LPC [14, 55]. Estas discrepancias pueden ser debidas a dife-

rencias en la metodoloǵıa de experimentación: experimentos de clasificación frente

a verificación, arquitecturas del sistema y/o idiosincrasias de las bases de datos.

6.3. Otros sistemas evaluados

En esta fase, se evaluaron muchos más diseños además de los descritos. Sin

embargo, todos ellos resultaron en tasas de acierto peores o similares; éstos últimos

con arquitecturas más complejas. Aśı pues, se decidió no presentar sus resultados

de manera detallada, pero śı una descripción de los mismos. En particular, los

siguientes diseños fueron testeados:

Vectores de caracteŕısticas basados en medidas estad́ısticas de la PSD o de

los coeficientes RCeps o LPC.

Fusión a nivel de datos de todos los vectores de caracteŕısticas, considerando

todas las combinaciones posibles.

Fusión a nivel de resultados de todos los vectores de caracteŕısticas, conside-

rando todas las combinaciones posibles.

Fusión a nivel de resultados de sistemas con segmentaciones del EEG de

distinta longitud.
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Aplicación de algoritmos de reducción de la dimensionalidad, tales como el

Análisis Linear Discriminante (LDA), el Análisis de Componentes Principales

(PCA) y el Análisis de Componentes Independientes (ICA).

Fusión a nivel de resultados de sistemas expertos de sensores.

Aplicación de clasificadores no lineales como SVM y Redes Neuronales Arti-

ficiales (ANN).

6.4. Comparación con otros sistemas del estado

del arte.

A pesar de que las bases de datos BCI2000, de Keirn, de Yeom y de Zhang han

sido utilizadas por otros autores para la evaluación de sistemas biométricos, no se

puede realizar una comparación directa entre sus resultados y los obtenidos en este

trabajo. Además de las diferencias en el número de sujetos y estados cognitivos,

y en la metodoloǵıa de experimentación empleada, los siguientes dos factores han

de tenerse en cuenta:

En primer lugar, el diseño propuesto aqúı es un diseño generalizado. Al contra-

rio de la mayoŕıa de sistemas presentados por otro autores, en el presente trabajo

se ha diseñado el sistema haciendo uso de múltiples bases de datos, de manera que

las configuraciones seleccionadas son óptimas de manera general, pero sub-ópti-

mas de manera particular para cada base de datos. Por tanto, este sistema no esta

optimizado para maximizar el rendimiento frente a una única base de datos, sino

para obtener buenos resultados en cualquier escenario. De hecho, los resultados

de las tres bases de datos mayores se encuentran distanciados por tan sólo 6 pun-

tos porcentuales, lo que sugiere que dicho grado de discriminación es propio del

sistema y de la firma neuronal, y no debido a idiosincrasias de los datos.
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En segundo lugar, la estrategia propuesta basada en el uso de una firma neu-

ronal independiente del estado cognitivo representa un problema indudablemente

más complejo que el de la identificación v́ıa EEG de un único estado cognitivo.

Tal y como se señaló en el caṕıtulo 5, la actividad neuronal de un estado espećıfi-

co contiene información discriminatoria, la cual es explotada por los sistemas del

estado del arte. En el caṕıtulo 7 se presentan una serie de argumentos a favor de

esta estrategia, a pesar del adquirido aumento en complejidad.

6.5. Conclusiones

En este caṕıtulo, se han evaluado múltiples métodos y arquitecturas de sistema

en un intento por explotar los rasgos de identidad contenidos en el espacio tiempo-

frecuencia del EEG. En general, se observa que RCeps20 % y LPC8 son, de aquellas

testeadas, las dos caracteŕısticas con mejores resultados. Cualquier descriptor extra

añadido al vector RCeps20 % o LPC8 tuvo siempre un efecto neutral o negativo en

el rendimiento del sistema, al igual que lo tuvo la aplicación de algoritmos de

clasificación no lineales tales como ANN y SVM.

De los resultados presentados se concluye que:

1. La información extráıda por RCeps y LPC está altamente correlacionadas,

evidenciada por el hecho de que la fusión de los mismos no tiene ningún

efecto en la tasa de acierto del sistema.

2. El problema de verificación basado en caracteŕısticas RCeps o LPC es un

problema lineal, evidenciado por el hecho de que los algoritmos no lineales

aplicados, SVM y ANN, tan sólo igualaron la tasa de acierto de LDC.

3. RCeps y LPC pueden codificar la mayoŕıa de la información discriminatoria

del espectro del EEG, evidenciado por el hecho de que todos los demás sis-
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temas testeados obtuvieron tasas de acierto peores o similares a los sistemas

basados únicamente en RCeps o LPC, incluyendo sistemas que fusionaban

múltiples caracteŕısticas.

Aśı pues, la información codificada por RCeps20 % y LPC8 es sorprendentemente

discriminatoria y robusta. Para mejorar el diseño del sistema seŕıa más productivo

explorar información extra de fuentes distintas al espectro del EEG de sensores

individuales, o aplicar etapas de preprocesado más sofisticadas.
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Caṕıtulo 7

Exposición, avances y lineas

futuras

En este último caṕıtulo, se reflexiona sobre la fuente de la firma neuronal

independiente del estado cognitivo, se aportan argumentos a favor de la estrategia

propuesta para el problema de identificación biométrica del EEG y se resaltan los

avances en los campos de la biometŕıa y la neurociencia logrados por el presente

trabajo.

7.1. Reflexión sobre la firma neuronal indepen-

diente del estado cognitivo

A lo largo de esta investigación, se han proporcionado evidencias que respaldan

la hipótesis presentada en la sección 1.1:

Existe en el electroencefalograma humano, un patrón concomitante a la

identidad del individuo e independiente del estado cognitivo.
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Además, se ha usado esta propiedad para construir satisfactoriamente un siste-

ma capaz de diferenciar individuos en función de su actividad EEG, independien-

temente del estado cognitivo. Dicho sistema no habŕıa sido posible sin la existencia

de información discriminatoria independiente del estado.

Dicha investigación es fundamentalmente diferente a estudios neurofisiológicos

y biométricos publicados anteriormente. Sean los sistemas de reconocimiento del

iris y de la marcha como ejemplos análogos. El primero de estos sistemas hace uso

de propiedades inherentes al individuo, mientras que el segundo se centra en la

manera en la que el individuo ejecuta una acción (caminar). Por tanto, se puede

argumentar que los estudios biométricos centrados en el EEG de un estado cogni-

tivo concreto están más cerca, en naturaleza, de describir actividad idiosincrásica

del individuo durante el procesado cognitivo. En contraposición, esta investigación,

centrada en caracteŕısticas independientes de la tarea, intenta describir la identi-

dad del individuo en śı misma. Dicho ésto, es muy probable que estudios previos

hayan usado, de manera inadvertida, parte de la firma neuronal independiente de

la tarea.

El origen de esta firma neuronal sigue sin estar claro. Puesto que es indepen-

diente del estado cognitivo, se podŕıa asociar con procesos inconscientes que tra-

bajan de manera ininterrumpida, de forma similar al concepto de ‘modo estándar

del funcionamiento cerebral’ introducido por M.E. Raichle et. al. [56–58]. Dicho

concepto propone la existencia de actividad intŕınseca que se encarga del manteni-

miento de información para la interpretación, respuesta e incluso la predicción de

las demandas del entorno. El modo estándar no desaparece completamente cuando

el sujeto comienza una tarea, si no que se atenúa [57]. Ésto concuerda con nuestra

observación sobre el dinamismo de la firma neuronal. La propiedad de independen-

cia de la tarea surge del hecho de que dichas fluctuaciones tienen una magnitud

inferior que las diferencias entre individuos. Por tanto, pueden ser interpretadas
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como actividad espećıfica del estado superpuestas al modo estándar del cerebro.

A modo de anécdota, resaltar que M.E. Raichle et. al., en su disertación sobre la

continuidad del modo estándar, notaron su relación con el ‘yo’ del individuo [57].

También existe la posibilidad de que la firma neuronal sea puramente debida a

la estructura de las redes neuronales subyacentes, y que no tenga nada que ver con

los procesos cognitivos que ejecutan. Dada la naturaleza de los campos eléctricos

y de su propagación a través del cráneo, dos redes con funcionalidad idéntica pero

distinta organización produciŕıan distintas señales EEG. Aśı, la firma neuronal del

EEG estaŕıa principalmente definida por la disposición de redes neuronales dentro

del cerebro, y los procesos cognitivos jugaŕıan un papel modulador de la misma.

Como suele ocurrir en estos casos, es probable que la solución no sea ninguna

de las anteriores, sino una combinación de ambas.

7.2. Reflexión sobre la estrategia de una biometŕıa

del EEG independiente del estado cognitivo

Hasta la fecha, la estrategia seguida en la literatura se ha basado en el análisis

del EEG para condiciones cognitivas únicas. Incluso cuando un sistema era ali-

mentado con señales de múltiples estados, éstos eran etiquetados de manera que

el sistema pudiera diferenciar entre ellos y explotar información especifica a cada

uno de los mismos (MTL).

En una publicación reciente, el equipo de Campisi reflexionó sobre la idea

de definir un protocolo de adquisición de EEG, donde se ped́ıa a los usuarios

realizar una tarea particular mientras se registraba su EEG para la identificación

o verificación [59]. En concreto, Campisi et. al. centraron sus esfuerzos en las

condiciones de reposo REC y REO [14–16,55]:

En este paradigma, se le pide a los sujetos que se sienten en una silla confor-
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table con ambos brazos en reposo, en una sala con luz tenue o totalmente oscura.

Generalmente, los sonidos externos se minimizan para favorecer la relajación de

los sujetos. Se le pide a los participantes que se mantengan unos minutos en estado

de relajación con sus ojos cerrados o abiertos, evitando cualquier tipo de atención

o concentración, pero manteniéndose despiertos y alerta [59].

T. Pham’s et. al. fueron más allá y propusieron un sistema que asignaba tareas

espećıficas a cada uno de los usuarios [60]. Aśı, al identificar la tarea realizada,

la complejidad del problema se reduce en un factor N , donde N es el número de

tareas consideradas.

No se puede negar que la ejecución de cualquier tarea espećıfica durante la ve-

rificación de la identidad de un usuario es, en muchos casos reales, problemática.

Por ejemplo, si esta modalidad fuera integrada en el pasaporte biométrico, llevar

a cabo un simple protocolo de estado de relajación (en palabras del equipo de

Campisi [59]) es completamente inviable. Además, este tipo de biometŕıa encon-

traŕıa aplicación, principalmente, en otros BCIs, los cuales fueron originalmente

creados con otros propósitos. Por ejemplo, una patente reciente de Google integra

la identificación del usuario en un sistema de diagnóstico multi-sensor [61].

Como solución a estos problemas, se propone una estrategia novedosa donde

no se le pide al usuario que ejecute ninguna acción en particular. En su lugar, el

sistema extrae información discriminatoria independiente del estado cognitivo. A

su vez, esto deja al usuario libre para ejecutar cualquier otra acción. Por ejem-

plo, en la cabina de pasaporte biométrico, el EEG del usuario puede ser grabado

mientras este presenta su pasaporte, introduce cualquier información requerida y/o

proporciona otras biometŕıas. En una BCI de propósito general, la verificación de

la identidad del usuario podŕıa tener lugar de fondo y de manera invisible. Aśı, el

procedimiento de seguridad no interferiŕıa con la experiencia del usuario. Además,

se podŕıan ejecutar chequeos de seguridad de manea continua o periódica, una vez
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más, sin interferir con el funcionamiento del dispositivo.

7.3. Conocimiento generado

En este trabajo, se ha realizado un estudio del estado del arte en la identificación

biométrica del EEG y, en menor medida, de estudios genéticos y neurofisiológicos

equivalentes (caṕıtulo 2). En el momento de su publicación en mayo del 2014 [62],

fue el primer art́ıculo de este tipo. En él, se identifica una falta general de con-

senso en varias preguntas fundamentales, tales como la distribución en frecuencia

y espacio de la información discriminatoria, y las condiciones para optimizar su

extracción.

En un intento por arrojar luz sobre estas cuestiones, se llevó a cabo un análi-

sis exhaustivo del espacio tiempo-frecuencia del EEG (caṕıtulo 5). Dicho estudio

representa las siguientes innovaciones con respecto a investigaciones previamente

publicadas:

Se propuso una representación visual de la información, basada en la concate-

nación de espectrogramas del EEG, que permite aportar evidencias visuales

de la existencia de rasgos individuales en el PSD del EEG.

A través de dicha representación, se llevaron a cabo análisis cualitativos que

complementaron los cuantitativos. Esta estrategia fue vital para la correcta

interpretación de los resultados.

Se ejecutaron los experimentos en 6 bases de datos, divididas en última es-

tancia en 10 conjuntos de datos con distintas caracteŕısticas. Éstas inclúıan

estados de reposo, tareas motoras reales e imaginadas, tareas de resolución de

problemas, VEPs y AEPs. Tal variabilidad permitió diferenciar entre resul-

tados caracteŕısticos e idiosincrásicos, y extraer conclusiones robustas sobre
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las propiedades generales de la firma neuronal.

Además, una de las bases de datos usadas estaba compuesta por AEPs. En

estudios biométricos previos, VEPs eran los únicos ERPs usados.

Se ejecutó el análisis siguiendo una metodoloǵıa incremental cuidadosamente

diseñada. Se abordaron cada uno de los parámetros de manera individual

para entender su interacción con el problema de identificación. Siempre que

fue posible, se usaron tres versiones de las bases de datos: una en crudo y

dos libres de artefactos.

Se identificaron las condiciones óptimas para la extracción de los rasgos in-

dividuales en el espacio tiempo-frecuencia del EEG a través de la STFT.

Una vez más, cuando estos avances fueron publicados en el 2015, representaron

el primer análisis exhaustivo de las propiedades de los rasgos individuales dentro

del espacio tiempo-frecuencia del EEG [63].

A continuación, se evaluó la hipótesis propuesta con dos experimentos dedica-

dos (sección 5.4). Como resultado, proporcionamos, por primera vez, evi-

dencias de la existencia de una firma neuronal independiente del es-

tado cognitivo. Esto sugiere que la actividad neuronal, grabada por el EEG,

está principalmente determinada por la identidad del sujeto y no por la tarea rea-

lizada. De ser aśı, esto podŕıa tener implicaciones importantes para el estudio del

cerebro humano y de su funcionamiento.

Finalmente, se aplicaron estos avances para el diseño de un sistema de veri-

ficación biométrica del EEG independiente del estado cognitivo (caṕıtulo 6). Se

identifican los RCeps20 % y los LCF8 como dos potentes descriptores capaces de

codificar la mayor parte de la información discriminatoria contenida en la forma

del espectro del EEG. Aunque LCF hab́ıa sido una opción popular en la literatu-
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ra, este es el primer trabajo en usar RCeps. Gracias al análisis previo, fue posible

explicar el funcionamiento de estas dos caracteŕısticas.

Además de las innovaciones detalladas, también se ha presentado una nueva

metodoloǵıa para la eliminación de artefactos en el EEG: LCF (caṕıtulo 4). Ésta fue

desarrollada en el Departamento de Psicoloǵıa de la Facultad de Salud y Ciencia

Humana, Universidad de Swansea (Gales, Reino Unido). Dicha metodoloǵıa se

aplicó para obtener una de las versiones libres de artefactos de las bases de datos.
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