Evaluation of three protein methodologies for marine plankton ECOAQUA

UNIVERSIDAD DE LAS PALMAS

DE GRAN CANARIA

Martínez I., Tames-Espinosa M., Bondyale-Juez D.R., Packard T.T., Gómez M.

Marine Ecophysiology Group (EOMAR). ECOAQUA Institute, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain

INTRODUCTION

Protein is an important biomass parameter and critical in the enzyme analysis of plankton. When plankton biomass is abundant, obtaining protein samples is not difficult. However, when biomass is a scarce quantity and it needs to be used for many other measurements, obtaining sufficient material for a protein sample is a challenge. There are several methods for determining total protein content. Among these, some are based on nitrogen content estimation, others on colorimetric measurement after dye binding, and still others on the biuret and Lowry methods. One of the biggest problems, limiting the application of all these methods, is the interference with the buffer compounds used in sample homogenization.

In this experiment, we try to determine the optimal method for measuring protein content in plankton samples prepared for enzyme analysis, testing three commonly used protein determination methods.

MATERIAL AND METHODS

To test the three methods of protein (one of these also modified), we applied each of one to the same sample, from each standar curve and each experiment sample. The standard curve and all samples were done per triplicate.

KNOWN CONCENTRATIONS

CONCENTRATIONS

From the stock solution Bovine serum of (500µg⋅ml⁻¹), albumina we obtained eight samples with different protein concentrations.

ORCID ID

Standard protein solutions containing 0-500µg·ml⁻¹ from a stock solution of Bovine serum albumina (500µg·ml⁻¹) dissolved phosphate buffer in containing Triton X-100

Lowry modified by Rutter (Rutter, 1967) – 'RUTTER' _

SAMPLES

• Mesozooplankton samples (200-2000µm, WP2 net-100µm mesh) • Microplankton samples (0.7-50μm, 50μm mesh and GF-F filters – 0.7μm)

Rutter slightly modified (Markwell et al., 1981) – 'RUTTER-SDS'

✓ **REAGENTS**:

UNKNOWN

- **R.A.:** Sodium carbonate, Sodium hydroxide, Sodium potassium tartrate, Sodium dodecyl sulfate
- **R.B.:** Cupric sulfate pentahydrate
- Folin: Folin diluted 1:1

 \checkmark ASSAY:

Step 1. Mix 0.1ml sample with 0.5ml R.C. **Step 2.Incubate during 10'** Step 3. Add 0.05ml Folin, mix well

R.C.: 50 parts R.A. + 1 part R.B.

Step 4. Incubate during 40' in darkness and read the absorbance at 750nm

Bicinchoninic acid method (Smith, 1985) – 'SMITH'

- **R.A.:** Sodium carbonate, Sodium bicarbonate, Bicinchoninic acid, Sodium
- tartatre, Sodium hydroxide
- **R.B.: Cupric sulfate**

R.C.: 50 parts R.A. + 1 part R.B.

✓ **REAGENTS**:

- **R.A.: Sodium carbonate, Sodium hydroxide, Sodium potassium tartrate**
- **R.B.: Cupric sulfate pentahydrate**
- Folin: Folin diluted 1:1
- ✓ ASSAY:
- Step 1. Mix 0.1ml sample with 0.5ml R.C.
- Step 2. Incubate during 10'
- Step 3. Add 0.05ml Folin, mix well

Step 4. Incubate during 40' in darkness and read the absorbance at 750nm

Bradford method (Bradford, 1976) – 'BRADFORD'

✓ **REAGENTS**:

- **R.A.:** Coomassie Brilliant Blue G-250, ethanol
- **R.B.:** Phosphoric acid
- R.C.: R.A + R.B. diluted to a final volume of 1L

R.C.: 50 parts R.A. + 1 part R.B.

Mix 0.02ml of sample with 1ml of R.C., and read the absorbance at 595nm

RESULTS

 \checkmark

ASSAY:

Fig1. Known concentration samples. This figure shows the accuracy of the methods determine the real to of the concentration samples.

The most accurate are the and **RUTTER-SDS** SMITH methods, being RUTTER-SDS which has the less variability between replicates.

\checkmark ASSAY:

Step 1. Mix 0.025ml of sample with 0.5 ml of R.C. Step 2. Incubate during 30' at 37°C

Step 3. Cool samples to room temperature and read the absorbance at 562nm

SMITH methods, with r^2 of 0.99, but don't reach the maximum **RUTTER and RUTTER-SDS methods**

CONCLUSIONS

- In general, 'RUTTER-SDS' is the method with the lower variability
- 'RUTTER-SDS' and 'SMITH' seems to be the best methods to determine the 'real' protein concentration in samples
- For mesozooplankton and microplankton samples, the best methods to determine the protein biomass are **RUTTER and RUTTER-SDS.** In microplankton samples, SMITH and BRADFORD values probably failed because the samples was a very low biomass (they present the same value independently of filtered volume) 'SMITH' and 'BRADFORD' probably works better in higher protein concentrations, so the second step should be to 0
- test the micro-assays of these methods

REFERENCES

- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254
- Markwell, M. A. K., Haas, S. M., Tolbert, N. E., Bieber, L. L. (1981). [16] Protein determination in membrane and lipoprotein samples: Manual and automated procedures. Methods in enzymology, 72, 296-303.
- Rutter, W. J. (1967). Protein determination in embryos. In *Methods in developmental biology* (pp. 671-683). Crowell New York.
- Smith, P., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical biochemistry, 150(1), 76-85.

