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CHAPTER 1
Introduction

Engineering systems, industrial products and/or equipments deteriorate over time due to
the stress they suffer during their operational lives in real environments. An unexpected
failure can result in a devastating accident and in financial losses for the company. Early
detection prevents failures from growing and eventually turning into serious problems.
Consequently, condition monitoring of a physical asset (a machine, a part of a machine
or a system) in industrial scenarios is of paramount importance to early fault detection
and has a great influence on the operational continuity of many industrial processes. It
helps to reduce maintenance costs and increase security and reliability. The advantages
of a monitoring system and their expected percentages of improvement are shown in
Table 1-1 [1].

TABLE 1-1: IMPROVEMENTS IN RELIABILITY USING A MONITORING SYSTEM [1]

Maintenance costs Reduction of 50% to 80%
Equipment damages Reduction of 50% to 60%
Extra hours expenses Reduction of 20% to 50%
Machine life expectancy Increase of 50% to 60%
Total productivity Increase of 20% to 30%
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Humankind has used different maintenance techniques to the control and the
monitoring of the machine condition. Earlier maintenance techniques include over-
current protection relays or ground failure protection, while the latest developments

introduce signal processing techniques together with artificial intelligence.

The increasing interest of condition monitoring (including fault detection, fault
diagnosis and fault degradation) in research and also in industry is evident by the great
amount of papers published in the field and by efforts focused on standard organizations
(ISO, SAE, etc), and the organization of different conferences in the fault diagnosis
field such as COMADEM (Condition Monitoring and Diagnostic Engineering

Management) and Surveillance conferences.

This introductory chapter presents the basics of condition monitoring. We also
outline the topic of audio and vibration based fault diagnosis in bearings and pumps,
from which the motivation of the Thesis is also derived. We finish the chapter by stating
the Thesis, describing the methodology of the Thesis, giving an outline of the

Dissertation, and summarizing the research contributions originated from this work.

Although no special background is required for this chapter, the reader will
benefit from introductory reading in condition monitoring as [2]. A deeper reference is
[3]. In Chapter 2 of this Thesis, we provide a state of the art of audio- and vibration-
based diagnosis especially focused on the latest developments from 2006 up to

nowadays [4].

1.1 Maintenance techniques

Maintenance techniques aim to monitoring the machine condition. Generally,
maintenance techniques can be divided into corrective maintenance and preventive
maintenance (PM). In corrective maintenance, actions are carried out after a fault or
breakdown has occurred. These actions lead to fixing the fault or to postponing the
repair according to the judgment of specialized personnel.
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PM was introduced in the 1950s and can be divided into pre-determined
preventive maintenance (pdPM) and condition-based maintenance (CBM). In pdPM,
scheduled maintenance activities are performed in periodical intervals in order to
prevent components from degrading. The machine is repaired or a part is changed
before the fault occurs. Corrective and pdPM approaches have shown to be costly in
many applications for several reasons (e.g. lost production, cost of keeping spare parts,
quality deficiencies). For this reason, some industries started performing CBM in the
1980s. CBM refers to machine condition monitoring in which information is
continuously collected on parameters that indicate the condition of a machine. The
parameters’ deviation from the normal condition indicates the development of a failure.
CBM takes maintenance action only when there is evidence of abnormal behaviour. For

this reason, CBM reduces the number of scheduled PM activities [3].

1.2 Stages of a Condition-based monitoring system

An automatic CM system usually includes four stages (see Figure 1-1).

1) Data Acquisition deals with the collection of relevant data or information about the
machine condition. The acquired data may vary from the kind of machine to the nature
of the failure. The information collected can include several kinds of data: value type
data such as pressure, temperature, oil analysis data, waveform data (i.e. signals) such
as vibration signal, audio signal or acoustic emission signal, and multidimensional data
such as images [2]. The complete set of extracted signals is called the machine’s

signature. In this Thesis, we focus on audio and vibration signals.

2) Data Processing: the data obtained in the previous stage are analyzed to extract
information about a possible fault. In this Thesis, as the collected data are signals
(waveform data), signal processing techniques are used to analyse the data and extract

valuable information. This process is called feature extraction.

3) Decision Support System or the classification of the previously analyzed data into
different condition states. In this Thesis, pattern recognition approach is used in the

decision support system.
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4) Fault diagnosis/prediction. The aim of a condition monitoring system is to perform
fault diagnosis and fault identification. Fault diagnosis comprises fault detection
(indicating if there is a fault) and fault isolation (determining where the fault is) based
on the previous stages. Fault identification comprises the determination of the size of
the fault (i.e. the severity of the fault) and sometimes also the determination of the time
of onset of the fault (or fault prediction). In this Thesis, fault diagnosis and fault

identification is performed.

Data acquisition Data Decision Fault diagnosis/
(Machine’s ™ processing [ support P Fault prediction
signature) system

Figure 1-1: Stages in a condition-based montioring system.

Due to the complexity of vibration and audio signals in fault diagnosis,
mathematical transformations, signal processing and pattern recognition techniques are
widely used to extract useful features from these signals to discriminate between
different machine conditions and to follow the machine degradation process.

1.3 Vibration and audio based fault diagnosis in bearings and centrifugal pumps

As explained in the stages of a condition monitoring system, the information collected
in the data acquisition stage can include several kinds of data. In this Thesis, we focus
on vibration and audio signals and we have driven our research into two applications:

bearings and centrifugal pumps.

Bearings are vital components in rotating machines since they support the
machine structures facilitating their rotation. An undetected fault in a bearing can cause
the halt of the machine. Examples of rotating machines are motors and generators.
Rotating machines are widely used in several industries. For that reason, the condition

monitoring of bearings is very useful to early fault detection and diagnosis.
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Centrifugal pumps are important elements in several systems because they
transport fluids. They are used in several industries such as power stations, chemical
industry, water depuration systems, oil extraction, cooling and heating systems and even
in spas and swimming pools. So, the condition monitoring of pumps is also very

important for the operational continuity.

Vibration signals are widely used as source of information in condition
monitoring of different machines and component of machines. Bearings and centrifugal
pumps are not an exception. Vibration-based fault diagnosis refers to fault diagnosis
using vibration as information source. Vibration-based fault diagnosis is a well-
established field that includes a wide range of techniques which have rapidly evolved
during the last decades. In condition monitoring, vibration based fault diagnosis
techniques have been widely used due to the easiness to acquire the vibration of the
machine. That is why most research papers in fault diagnosis literature is devoted to

vibation fault diagnosis [1].

Audio-based or airborne-based fault diagnosis refers to fault diagnosis using
audio as information source. Audio-based fault diagnosis using microphones in the
audible range (0-20kHz) is an emerging field with a great potential in fault diagnosis
since microphones are non-invasive sensors and with greater location possibilities. For

this reason, we think audio-based techniques need further research efforts.

In short, we focus our efforts in this Ph.D. Thesis on improvements in both
audio-based and vibration-based fault diagnosis in condition monitoring in bearings and
centrifugal pumps. In each application area we have mainly focused on the processing
stage of a condition monitoring squeme (see Figure 1-1), specifically in feature
extraction. In general, time, frequency and time-frequency domains are frequenctly used
for feature extraction. Recently, nonlinear techniques such as nonlinear dynamics
applied to time series and complexity measures have appeared in fault diagnosis of
certain machines. We think that the study of such features in condition moniroting can

improve the performance of a condition monitoring system.

There exist a vast literature of different methods to bearing fault diagnosis and

fault identification and in bearing degradation assessment. There are also some available
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public databases of bearing vibration signals in normal (free-fault) and fault conditions.
For this reason, in bearing fault diagnosis we have used only vibration signal from the
public available databases. We have proposed improvements in nonlinear features
aiming at detecting different bearing faults and also at the identification of faults. So, we

have made contributions in the signal processing (feature extraction) stage.

In pump fault diagnosis we have recorded our own database using audio and
vibration signals simultenously acquired with the aim of comparing and combining
vibration and audio signals as source of information because there are no public
available databases of centrifugal pumps. As we stated before, most condition
monitoring is carried out using vibration signals and pump condition monitoring is not
an exception. Most research in centrifugal pump condition moniroting is focused in
energy and statistical features extracted from time and frequency domain of vibration
signals as well as pression signals. In this Thesis, we explore the use of audio signals in
pump fault diagnosis, propose new features and study the combination of information
from audio and vibration signals. Specifically, we have proposed three improvements
not previously addressed in the literature: i) the application of features originally used
with vibration signals to audio signal, ii) the proposal of new features extracted from
frequency, cepstrum, time-frequency domains as well as complexity features and
features related to nonlinear dynamics applied to time series in vibration and audio
pump fault diagnosis and iii) a study of the combination features extracted from
vibration signals and features extracted from audio signals. So, we have made
contributions to the acquisition stage, only in the way there is no public audio database
of centrifugal pumps available and to the processing stage (feature extraction) applying
vibration features to audio signals, proposing a set of new features in pump fault

diagnosis and combining information from audio and vibration signals.

1.4 Motivation of the Thesis

This Thesis is focused on two aspects of condition monitoring: the signal used to
extract the information about the condition of the machine and the feature extraction
with signal processing techniques. The aim is fault diagnosis and fault identification
(fault degradation). The two application areas are: bearings and pumps. In bearings only
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vibration signal is used and in centrifugal pumps audio and vibration signals are used as
source of information. The research carried out in this Thesis is motivated by the

following observations from the state-of-the art:

.Vibration-based monitoring is a consolidated field in CBM due to the easiness
to acquire the vibration of the machine [2]-[4]. In bearing fault diagnosis, there are
multiple signal processing techniques to extract features in order to discriminate
between different bearing conditions and to follow the degradation of a bearing fault
[5]. The early detection of a fault is very important in condition monitoring to prevent
the fault develops. Moreover, nonlinear features extracted from the machine's signature
can reveal new understanding of the signal under consideration and the application of
nonlinear features can improve the task of fault diagnosis and fault degration [8]. For
this reason, we have proposed improvements in nonlinear features aiming at detecting
different bearing faults (fault diagnosis) and also at following the degradation of

bearings at early stages.

Audio-based monitoring (also called airborne-based monitoring) is a less
developed field than vibration-based monitoring. The main reason is that audio signal
can be affected by surrounding noise. However, microphones have more possibilities of
location and are not mounted on the machine [6], [7]. For this reason, we aim to explore
audio-based fault diagnosis. In order to study audio signals and to compare them with
vibration signals, audio and vibration signals are acquired from an experimental set of a

centrifugal pump.

.There is a lack of public available databases of audio signals acquired from
machines for audio-based fault diagnosis. Moreover, there are only few works related to
audio and vibration signals acquired together. These are more reasons for recording the
database of audio and vibration signals acquired simoultaneously from an experimental

set of a centrifugal pump.

As audio signals are less used in fault diagnosis literature, most features
extracted from vibration signals have not previously used in audio signals. In this
Thesis, we address this issue applying state-of-the-art vibration features into audio
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signals in the centrifugal pump application in order to study their discrimination ability
between different condition of the centrifugal pump (normal and fault conditions).

n pump fault diagnosis literature, most features are extracted from time,
frequency and time-frequency domain [9], [10]. In this Thesis, a set of new features
extracted from frequency, cepstrum, time-frequency domains as well as complexity
features and features based on nonlinear dynamics applied to time series are extracted
from both vibration and audio signals. These features along with the state-of-the-art
features are evaluated in order to study their discrimination ability between different
pump conditions using two classifiers.

.There are few works in literature using vibration and audio signals acquired
simoulstaneously [11], [12]. For this reason, in this Thesis the fusion of both vibration
and audio signals at feature level, score level and decision level is carried out in order to

evaluate whether the fusion improves the performance of the system.

These observations will be discussed in Chapter 2, in which the Thesis problem

is analized in depth.

1.5 The Thesis

The thesis developed in this Dissertation can be stated as follows:

The use of audio signals as source of information and the application of nonlinear

techniques improves condition monitoring performance.

1.6 Objectives of the Thesis

This PhD Thesis seeks to improve the performance of condition monitoring systems in
fault diagnosis and fault identification using vibration and audio signals in two
applications (bearings and pumps) with special emphasis in the feature extraction stage

and in the use of audio signals as source of information.
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The main objetives of the PhD Thesis are as follows:

1. To review signal processing techniques and pattern recognition techniques in audio-

based and vibration-based fault diagnosis.

2. To obtain vibration bearing databases of free-fault bearings and bearings with faults.

3. To study nonlinear techniques for bearing fault diagnosis and bearing fault
identification.

4. To create a database of audio and vibration signals simultaneously recorded from a

centrifugal circulating pump with normal (free-fault) and fault conditions.

5. To apply features extracted from vibration signals in pump fault diagnosis to audio

signals obtained from a centrifugal pump.

6. To generate new features to discriminate between different pump conditions in pump

fault diagnosis.

7. To compare vibration and audio features performances in the centrifucal pump

application.

8. To study the combination of audio and vibration signals in the centrifugal pump

application.

1.7 Methodology of the Thesis

The methodology of this Thesis is divided in the following steps:

Provided there are no available public audio databases, we record our own audio
database acquiring at the same time vibration signals. We record simultaneously audio
and vibration signals from a centrifugal pump in a closed loop. Normal and different
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faults conditions were recorded. We also collect bearing vibration databases publicly
available from different internet repositories.

Once the bearing vibration databases are collected and the audio and vibration
database from the centrifugal pump is acquired in our laboratory, we carry out different
experiments for bearing application and for pump application.

For bearing application, two new proposed methods based on nonlinear features
are applied to the vibration signals from the bearings for fault diagnosis and fault
identification. The proposed methods are compared with methods in the literature. The
ability of the proposed features for bearing fault diagnosis is quantyfied using two
classifiers: a neural network classifier and a Least-Square Support Vector Machine (LS-
SVM) classifier. In the case of bearing identification, an index to follow the degradation

of bearings with outer race fault and different severities is proposed.

For centrifugal pump application, features from the state of the art of pump fault
diagnosis are implemented and extracted from vibration signals of the centrifugal pump.
Then, these features are applied to the audio acquired from the centrifugal pump.
Features in frequency domain, cepstrum domain, time-frequency domain and nonlinear
features are proposed for pump condition monitoring. Feature selection is implemented
for select relevant features in pump fault diagnosis. We study the relevance of the
selected features and the performance of vibration and audio signals using two standard
classifiers (LS-SVM and neural networks). Finally we analyze how the fusion of audio

signals to vibration signals affects the monitoring performance.

1.8 Outline of the Dissertation

The Dissertation is structured according to a traditional complex type [13] with
literature review and two different applications in which methods are explained and

applied to experimental studies. The chapter structure is as follows:

.Chapter 1 introduces the topic of condition monitoring and gives the motivation,

outline, methodology and contribution of this PhD Thesis.
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.Chapter 2 summarizes related works which have given rise to the motivation of
the Thesis and details the motivation of this Thesis based on these previous works. The
state of the art is a contribution of this Thesis. The writing of Chapter 2 is based on a

paper published by the author of this Thesis.

.Chapter 3 is devoted to the application areas of this Thesis, namely bearings and
centrifugal pumps. A brief description of bearings basics followed by a description of
the public bearing vibration databases used in this Thesis is carried out in the first part
of the chapter. The second part is focused on centrifugal pump application. Pump basics
and the acquisition process of the audio and vibration database are described. We

contribute with the recording of an audio and vibration database of a centrifugal pump.

.Chapter 4 shows the contributions in bearing fault diagnosis and fault
identification using vibration signals. Two methods based on nonlinear techniques are
proposed and the results of the application of each method are shown. The contributions
of this Chapter are the proposed new methods based on nonlinear features for bearing
fault diagnosis and identification. The writing of Chapter 4 is based on three

publications by the author of this Thesis.

.Chapter 5 is devoted to the contributions in the centrifugal pump application for
fault diagnosis using audio and vibration signals. The features used in pump fault
diagnosis literature are described as well as the features proposed in this Thesis for
pump fault diagnosis. We contribuite with the application of vibration features to audio
signals and with the proposal of a set of new features in frequency, cepstrum, time-
frequency and nonlinear domains for pump fault diagnosis. The results of the feature
evaluation with two classifiers are also shown. Part of the writing of Chapter 5 is based

on two publications of the author of this Thesis.

.Chapter 6 shows the results of audio and vibration fusion at feature level, score
level and decision level in the pump application. We contribute with a study of the

combination of audio and vibration signals in pump fault diagnosis.
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.Chapter 7 concludes the Dissertation summarizing the main results obtained and

outlining future research lines.

Chapters 5, 6 and 7 have an introductory part in which the methodology is
explained, a second parte in which the methodology is applied to the databases and a
third part with the results and conclusions.

.The Appendix of the Thesis is an extra chapter that shows a summary of the
work carried out in voice pathology detection and in the discrimination between
emotional states in speech during the Thesis. As the background of the PhD candidate is
voice characterization using nonlinear featres, during the Thesis she continued this

research line.

The dependence among the chapters is illustrated in Figure 1-2. For example,
before reading any of the Chapters 4, 5, and 6, one should read first Chapters 3 and 41
Before Chapter 3 one should start with the introduction in Chapter 1, and it is

recommended to read also Chapter 2.
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Chapter 2:
Chapter 1: . .
P . “State of the art in machinery
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Figure 1-2: Dependence among Dissertation chapters.
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1.9 Research contributions

The research contributions of this PhD Thesis are divided into condition monitoring
contributions and voice contributions. Provided that the research background of the PhD
candidate is voice characterization and she kept working on this subject during her PhD,
the publications in voice are also presente here. Journal papers included in ISI JCR

appear in bold.

1.9.1 Research contributions in condition monitoring

1. Literature review in audio and vibration fault diagnosis techniques focusing on

feature extraction and pattern recognition techniques.

Henriquez, P., Alonso, J. B., Ferrer, M., & Travieso, C. M. (2014). Review of automatic
fault diagnosis systems using audio and vibration signals. Systems, Man, and Cybernetics:
Systems, IEEE Transactions on, 44(5), 642-652.

2. A method based on Teager-Kaiser energy operator and statistic and energy features
for bearing fault diagnosis and application of the proposal to bearing degradation in a
helicopter.

Henriquez, P., Alonso, J. B., Ferrer, M. A., & Travieso, C. M. (2013). Application of the
Teager—Kaiser energy operator in bearing fault diagnosis.ISA transactions, 52(2), 278-
284.

Henriquez, P., White, P., Alonso, J. B., Ferrer. M. A. (2011, October). Application of Teager-
Kaiser Energy Operator to the Analysis of Degradation of a Helicopter Input Pinion Bearing. In
Proc. of the International Conference Surveillance 6 (pp. 265-274), University of Technology

of Compiégne, France.

Henriquez, P., Alonso, J. B., Ferrer, M. A., Travieso, C. M. (2011, May-June). Application of
Higher Order Statistics of Teager-Kaiser Energy Transformed Vibration Signal for Bearing
Fault Diagnosis. In Proc. of the 24th Int. Congress on Condition Monitoring and Diagnostics

Engineering Management (pp. 265-274), Stavanger, Norway.
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3. A method based on wavelet packet transform and Lempel-Ziv complexity for bearing
fault identification.

Henriquez, P., Alonso, J. B., Ferrer, M. A., Travieso, C. M. (2014, September). Degradation
assessment in bearings with outer race fault. In 27th International Congress of Condition
Monitoring and Diagnostic Engineering Management (COMADEM 2014), Brisbane, Australia.

4. Proposal of energy features from wavelet packet transform for pump monitoring

using vibration and audio signals.

Henriquez, P.; Alonso, J. B.; Ferrer, M. A.; Travieso, C. M.; Gémez, G. (2012, June). Fault
diagnosis using audio and vibration signals in a circulating pump. Journal of Physics:
Conference Series 25th Int.Congress on Condition Monitoring and Diagnostic Engineering
(COMADEM 2012) (Vol. 364, No. 1, p. 012135), Huddersfiled, England.

5. Proposal of Lempel-Ziv complexity and Hurst exponent for pump monitoring.

Henriquez, P., Alonso, J. B., Ferrer, M. A., Travieso, C. M. (2014, September). Application
of complexity measures to pump fault diagnosist. In 27th International Congress of Condition

Monitoring and Diagnostic Engineering Management (COMADEM 2014), Brisbane, Australia.

Other contributions so far related to the problem developed in this Thesis in

condition monitoring but not presented in this Dissertation include:

1. Proposal of nonlinear features to audio signals from electric machines.

Henriquez, P., Alonso, J.B., Travieso, C.M., Ferrer, M.A. (2007, August). Advances in
automatic detection of failures in electric machines using audio signals. In Proc. of the 11th
IASTED Int. Conference on Artificial Intelligence and Soft Computing, (pp. 114-119), Palma

de Mallorca, Spain.
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2. Method for bearing fault detection based on dynamic time warping and direct
matching point techniques.

Diaz-Cabrera, M., Henriquez, P., Ferrer, M.A., Pirlo, G. , Alonso, J.B., Impedovo, D. (2015,
September). Novel Method for Early Bearing Fault Detection based on Dynamic Stability
Measure. In Proc. of IEEE 49th Annual Int. Conf. on Security Technology, Taipei, Taiwan.

1.9.2 Research contributions in voice

Research contributions in voice pathology detection and voice emotion detection are
listed. The Appendix (Extension to voice) of this Dissertation is based on the following
four publications.

1. Proposal of measures based on nonlinear dynamics for characterization of healthy

and pathological voice.

Henriquez, P., Alonso, J. B., Ferrer, M., Travieso, C. M., Godino-Llorente, J., & Diaz-de-
Maria, F. (2009). Characterization of healthy and pathological voice through measures
based on nonlinear dynamics. Audio, Speech, and Language Processing, IEEE
Transactions on, 17(6), 1186-1195.

2. Proposal of measures based on nonlinear dynamics and complexity measures for

discriminating between emotional states through speech.

Henriquez, P., Alonso, J. B., Ferrer, M. A., Travieso, C. M., Orozo-Arroyave, J. R. (2014).
Nonlinear Dynamics Characterization of Emotional Speech. Neurocomputing, 132, 126-
135.

Henriquez, P., Alonso, J. B., Ferrer, M. A., Travieso, C. M., & Orozco-Arroyave, J. R.
(2013). Global Selection of Features for Nonlinear Dynamics Characterization of

Emotional Speech. Cognitive Computation, 5(4), 517-525.

Henriquez, P., Alonso, J. B., Ferrer, M. A, Travieso, C. M., & Orozco-Arroyave, J. R. (2011).
Application of Nonlinear Dynamics Characterization to Emotional Speech. In Advances in

Nonlinear Speech Processing (pp. 127-136). Springer Berlin Heidelberg.
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CHAPTER 2
State of the art in machinery condition monitoring

using vibration and audio signals

2.1 Introduction

The objective of this chapter is to provide a review of automatic vibration-based and
audio-based fault diagnosis in machinery using condition monitoring strategies. Based
on the analysis of the state of the art, we focus our Thesis on both vibration and audio-
based fault diagnosis and fault identification. This Chapter is based on a review paper
published by the autor of this Theis [1].

We repeat for convenience the steps of an automatic condition monitoring

system. Then, we will describe the state of the art focusing on each stage.

Data acquisition Data Decision Fault diagnosis/
(Machine’s ™ processing [ support P Fault prediction
signature) system

Figure 2-1: Stages in a condition-based montioring system
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Due to the complexity of vibration and audio signals in fault diagnosis,
mathematical transformations, signal processing and pattern recognition techniques are
widely used to extract useful features from these signals to discriminate between
different machine conditions and to follow the machine degradation process. Some
reviews up to 2006 using different kinds of machine signature are available in the
literature [3]-[6] and some works are focused only on vibration-based fault diagnosis

[7]-[9]. In this review, we focus specially on works from 2006 up to 2015.

The most referenced papers in this review belong to vibration-based diagnosis
and were published from 2000 up to 2015 (see Figure 2-2). Several kinds of faults can
be detected using vibration and audio signals. Figure 2-2 (bottom pie charts) shows the
fault distribution of the referenced papers when vibration-based and audio-based fault
diagnosis are used. In the case of vibration-based papers, most references are related to
bearing faults, followed by rotor/stator faults and gears. In the case of audio-based
papers, most references are related to combustion engine faults (C. Eng). Most of these
faults occur in motors, pumps, fans, helicopters, end-milling machines, on load tap

chargers (OLTC) of power transformers and in bearing, gear and rotor test-rigs.
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Audio
20%

C.En
50

20%

Figure 2-2: Distributions of referenced papers: Audio-based and
vibration-based fault diagnosis distribution (upper left). Publishing
years distribution (upper right).Distribution of faults in vibration-
based diagnosis (bottom left) and in audio-based diagnosis (bottom
right).
The remainder of this chapter is divided into five subsections. The second, third
and fourth subsections focus on the steps of a CM system (acquisition, data processing
and decision stage). Subsection 2.5 reports on some examples of CM systems. Finally,

an analysis of the gaps of the state of the arte is carried out.

2.2 Acquisition Stage

Good quality and precision of the signal in the acquisition stage is essential for posterior
analysis and feature extraction. In this Thesis, we focus on vibration and audio signals
acquired by accelerometers and microphones, respectively.

The dynamic forces within a machine produce compression and bending waves.
This vibration pattern changes when an incipient failure starts to evolve. Thus, the

analysis of vibration signals is a useful tool for establishing the machine’s condition. In
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order to detect these signals, vibration sensors are mounted directly onto the machine.
There are different kinds of sensors depending on the frequency range: position sensors
(OHz-10kHz), velocity sensors (10Hz-1kHz) and accelerometers (8Hz-15kHz).
Piezoelectric accelerometers are popular because of their higher dynamic range of
frequencies, reliability, robustness and smaller dimensions. The number and location of

vibration sensors is an important issue discussed in [8].

The acoustic characteristics of a machine change when a fault evolves.
Consequently, the sound of a machine carries information about its condition.
Extracting the sound signature of the machine is a useful tool in fault diagnosis [1]. We
focus our review on audio signals obtained with microphones. They usually acquire
sounds in the OHz-20kHz range. Some microphones can even acquire signals above
100kHz. Microphones are not mounted directly onto the machine. As a result, they are
less intrusive than vibration sensors but they are more sensitive to environmental noise.
For this reason, microphones must be pointed to the machine or system under
consideration and should be placed from 2 cm to 10 cm from the wanted source [1],
[12].

2.3 Processing Stage

Signal processing transforms original signals into useful features to accomplish fault
diagnosis. These features should be independent of the normal machine operating
conditions (variations of load and speed) and extraneous noise and be sensitive only to
machinery faults. This section is divided into vibration and audio signals analysis. Table
2-1 shows some of the most common vibration and audio features discussed in the
literature since 2000 up to 2015.

2.3.1 Vibration signal processing

The main processing techniques applied to vibration signals are based on: time analysis,

frequency and cepstral analysis, time-frequency analysis and non-linear analysis.
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Time domain analysis

Signal processing in the time domain extracts information from the vibration signal as a
function of time. Conventional techniques include several time features such as root
mean square, crest factor [35], variance, skewness, kurtosis and higher order moments
[68],[93]. Some features, such as crest factor, kurtosis, impulse and clearance factors, do
not vary with load and speed variations and are good indicators for impulsive faults
[35], [60] especially in bearings. Other conventional techniques are time averaging
methods, including time synchronous average (TSA), residual signal and difference
signal, all of which are powerful tools in the detection of gear faults [36], [37], [102].
TSA removes background noise and periodic events that are not synchronous with the
gear of interest. The resulting signal is used for posterior advanced analysis [80].
Autoregressive (AR) modelling [30] and autoregressive moving average (ARMA)
modelling [38] have also proven to be efficient tools in modelling transients in the
vibration signal. Novel approaches include a modification of the time-varying AR and
ARMA models in which the coefficients are updated with the incoming vibration signal
[37]. These models are robust to variations in load and speed. Another novel AR
approach [102] proposes the load information as an exogenous input.

Frequency and cepstral domain analysis

Frequency analysis gives information about the periodicity of the signal in the peaks of
the frequency and detects harmonics and side-bands. Conventional frequency features,
such as the mean and standard deviation of the frequency, the root mean square
frequency, peak magnitude, energies and ratios of spectral energies are used in fault
diagnosis in pumps, motors and gearboxes [35], [63], [67]. Another conventional
technique is envelope analysis (EnA) or the amplitude demodulation technique, used
especially in bearings [7], [16], [63] to identify the bearing defect characteristic
frequency and also in gears [76]. EnA improves the signal to noise ratio (SNR) and
makes the spectral analysis more effective. For a good review of EnA see [16]. EnAis
usually applied using the Hilbert transform (HT) [16]. Recently, the skewness
information wave (SIW) has been proposed to compute EnA without using the HT
[103]. The skewness is computed in small regions of the signal, resulting in a skewness

wave. The skewness information wave (SIW) is obtained using the Kullback-Leibler
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divergence information from the skewness wave of the reference signal (measured far
from the diagnostic location) and the diagnosis signal (measured in the diagnostic
location). Then the envelope SIW is obtained from their absolute values and the
spectrum is computed. This method is shown to be superior to the conventional EnA
and more robust to strong background noise. Another novel EnA method is the Teager
Energy Operator (TEO) [50], [100]. TEO is a nonlinear operator with higher

demodulation precision and needs less calculation than HT.

Cepstral analysis, which gives information from the vibration signal as a
function of quefrency has, since the nineties, been shown to be effective in fault
diagnosis [83]. Power cepstrum gives information about the periodicity of the spectrum
and detects harmonics and sideband patterns in the power spectrum. The application of
Mel-Frequency Cepstral Coefficients (MFCC), a technique from speech processing, to
vibration fault diagnosis [40] was proposed in 2006. MFCC contain both time and
frequency information of the signal which makes them more useful for feature
extraction in vibration signals. In 2007, a method called minimum variance cepstrum
was proposed to detect faulty periodic impulses in bearings in noisy environments [19].

It minimizes the variance of the signal power in its cepstrum representation.

Another family of techniques is based on higher order statistics (HOS) in the
frequency domain: bispectrum, summed bispectrum and bicoherence have, since the late
nineties, been shown to be effective in fault diagnosis in the bearings of induction
motors, gearboxes and in flexible rotor systems [17], [18], [39]. These provide more
information than the power spectra, in the case of non-Gaussian signals, can detect
nonlinear couplings and can explain the origin of certain peaks in the power spectra. For
instance, [96] proposed in 2009 the use of HOS in the cepstral domain (bicepstrum) to
detect failures in gears. This technique eliminated noise and modulation effects caused

in gears.

Conventional frequency techniques assume stationarity and linearity and are
usually applied in machines working at fixed speeds. However, most machine processes
presents non-stationary components in speed-up, speed-down and in several faults.
Cyclostationary analysis (a 2nd-order technique in the frequency domain), and time-

frequency techniques are more appropriate for non-stationary processes. The periodic
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variation of statistical moments of rotating machinery makes cyclostationarity
techniques suitable for early fault detection [84], [98].

Time-Frequency domain analysis

Time-frequency analysis extracts information from the vibration signal as a function of
time and frequency and overcomes the problems encountered in frequency analysis
when analyzing non-stationary events. Some conventional time-frequency techniques
include Short time Fourier transform (STFT) (Koo et Kim, 2000) [41], Wigner-Ville
distribution (WVD) (Koo et Kim, 2000; Li et Mechefske, 2006) [41], [56] and the
directional Choi-Williams distribution [42]. Techniques from the late nineties include
Empirical Mode Decomposition (EMD) [35], [43], the Hilbert-Huang transform (HHT)
[21], [35], and the Wavelet Transform (WT) [12], [81]. The WT has adjustable window
size through the choice of the mother wavelet and different approximation scales. This
flexibility makes it suitable for the analysis of non-stationary signals. Multiple features,
such as singularity points [20], Lipschitz exponents [13], scalogram [36], energies,
statistics and entropies [44], [81], are extracted from continuous WT (CWT), discrete
WT (DWT) and Wavelet Packet Transforms (WPT). These are used to detect
imbalance, misalignment, spalling, pitting in gears, faulty bearings and OLTC [97].
Contrary to WT, EMD is a self-adaptive method, applied to fault diagnosis for the first
time in 1998. EMD decomposes the signal into a sum of intrinsic mode functions
(IMFs). The frequency components in each IMF are related to the sampling frequency
and to the signal itself, whereas WT is related only to the sampling frequency. However,
the number of IMFs cannot be controlled [35], [63], [91], [117]. The HHT uses the
EMD to obtain IMFs [21], [35] and then EnA is applied to each IMF using the HT.

Many new techniques have, in the last years, been proposed in time-frequency
analysis. Most of them are related to the decomposition of the signal into mono-
component AM-FM signals (amplitude modulated and frequency modulated signals)
which are then analyzed using EnA techniques, and to the improvements in WT and
EMD techniques. These techniques allow a finer analysis of the signal and more
accuracy to detect single and compound faults, essential in fault diagnosis. They are
discussed next.

Universidad de Las Palmas de Gran Canaria 53



PhD Dissertation

Spectral Kurtosis (SK) is a spectral statistic reformulated in 2006 for non-
stationary signals [104]. SK provides a robust way of detecting incipient faults that
produce impulse-like signals, even in the presence of strong noise. SK also offers a way
of designing optimal filters for filtering out the mechanical signature of faults using the
kurtogram or the fast kurtogram (ways to compute the SK) as a prelude to EnA [105].
Recently, an enhanced kurtogram has been proposed for bearing fault diagnosis in
combination with wavelet packet transform [114]. Local mean decomposition (LMD)
and improved LMD are also proposed for fault diagnosis [110]. Contrary to the HHT,
LMD does not use HT to estimate the envelope but uses the moving average. Product
functions are obtained by multiplying the envelope estimates and the FM signal.
Generalized demodulation time frequency (GDTF) also decomposes the signal into
mono-component AM-FM signals, transforming the original signal into a new space
where WT can be applied, therefore obtaining frequencies with physical meaning.
GDTF was first proposed for analyzing biomedical signals. The envelope order
spectrum technique, which blends GDTF and the spectrum, has also been proposed for
fault diagnosis [99]. Iterated Hilbert transform (ItHT) analyzes AM-FM signals using
the iterated application of the HT to a filtered version of the amplitude envelope.
Amplitude envelopes and instantaneous frequencies are then extracted. ItHT has higher
demodulation accuracy and lower complexity than EMD. The combination of ItHT and
a smoothed instantaneous frequency estimation has been recently applied to fault
diagnosis [106]. Ensemble EMD (EEMD) is a novel technique (2009) that eliminates
the mode mixing problem in EMD. In the mode mixing problem the physical meaning
of each IMF is unclear and EMD fails to represent the fault characteristics of a signal
accurately. EEMD uses a noise-assisted technique to eliminate the mode mixing
problem. EEMD and EMD are applied to a rotor fault and in a heavy oil catalytic
cracking machine set [43]. Results show that EEMD can extract the fault characteristic
information better than EMD. The multi-scale enveloping spectrogram (MuSENS) [46]
algorithm was developed in 2009 using time, scale, and frequency domain information
contained in the signal. It decomposes the signal into different wavelet scales and the

envelope signal in each scale is calculated, resulting in an ‘‘envelope spectrum’’ [46].
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TABLE 2-1: FEATURES FOR VIBRATION AND AUDIO SIGNALS

Evolution
Methods 2000-2006 2007-2015
Time Statistics (2004)[59] (A) (2009)[37] (V)
TSA - (2010)[36] (V)
AR, ARMA (2002)[30], (2006)[38] (V) (2010)[102] (V)
models
Frequency | Statistics (2004) [59] , (2005) [58], (2010)[35], (2009)[54],
(2006) [56] (A) (2006)[63], (2008)[67](V),
(2007)[52] (A)
EnA (HT) (2000)[26] (A) ; (2007)[77](V) | (2008)[63] (V)
SIW - (2010)[103] (V)
TEO (2007)[100] (V) (2009)[50] (V)
Cyclostationarity | (2001)[84] (V) (2010)[98] (V)
Polyspectrum - (2007)[39] (V)
(HOS)
Cepstral Cepstrum - (2007)[19] (V)
MFCC (2006) [40] (V) (2009)[54] (A)
Time- STFT, WVD, (2000)[41], (2001)[42] (V), (2009)[54], (2010)[86](A)
Frequenc Choi dist. (2006)[56] (A)
a Y wt (2003)[12] (V, A) (2010)[36], (2009)[47](V)
(CWT, (2007)[13], (2007)[20], (2009)[57](A)
DWT, WPT) (2007)[39] (V)
SGWT (IWPT) | (2007)[44] (V) (2009) [68] (V)
RSGWT - (2010) [108] (V)
dtcWT (2010)[94] (V)
Generalized S (2011)[207] (V)
transform
MuSENS - (2009)[46](V)
EMD, HHT, (2005)[21] (V) (2010)[35], (2009) [43],
EEMD (2015)[117] (V)
ItHT - (2008)[106] (V)
LMD - (2009)[110] (V)
GDTF - (2010)[99] (V)
SK - (2009)[104], (2009)[105]
(2013)[114] (V)
Non- Phase  portrait, | (2000)[10] (A), (2003)[11] (V) -
linear dot pattern -
Lyapunov (2001)[18], (2000)[23] (V) (2007)[24], (2007)[52],
Exponents, CD, (2008)[51], (2010)[95] (V),
fractals (2005)[55] (A.V),
(2007)[25] (A)
ApEn, (2007)[48], (2007)[49],
Multi-Scale (2015)[116](V)
PermEn
Multiple - (2009)[109] (V)
manifold

V: Vibration, A: Audio.
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Second generation WT (SGWT) [111] was proposed in 2006 and overcomes the
main shortcoming of the WT (the proper selection of the mother wavelet) because
SGWT is realized by a lifting scheme in the time domain (which is not based on the
Fourier transform). The improved WPT (IWPT) is also based on SGWT and it is shown
to be superior to WPT in extracting the fault characteristics in bearings [44], [68]. An
approach that improves the SGWT is the redundant SGWT (RSGWT) proposed in 2009
[108], [111]. RSGWT s time-invariant, contrary to SGWT, which allows capturing
more useful fault information. RSGWT outperforms SGWT in extracting transient
components in gearbox vibration signals [111]. The dual-tree complex WT (dtcWT)
was proposed in 2010 [94] in fault diagnosis. In [94], the authors show that dtcWT
outperforms SGWT, fast kurtogram and DWT because dtcWT enhances noise
reduction, is approximate time-invariant and can detect multiple fault features
simultaneously Another application of the WT includes a novel growth index [47],
insensitive to different mother wavelets and levels of decomposition. Finally, the
generalized S transform was proposed in 2011 for fault diagnosis. It unifies STFT and
WT so as to obtain more satisfactory time-frequency representations than other similar
techniques such as STFT, WVD and the S transform. This allows more accurate

detection of the bearing fault characteristic [107].

Nonlinear analysis

Evidence of a complex and non-linear vibratory system has been found in stator-rotor
rub, loose pedestal and unstable oil film faults [18]. Conventional non-linear methods
include pseudo-phase portrait, singular spectrum analysis, correlation dimension (CD)
[22], [23], fractal dimensions, approximate entropy (ApEn), information entropy [92],
mutual information [25] and Lyapunov exponents [14], [109]. CD quantifies the
complexity of a time series and has successfully proven to detect rotor-stator rub, loose
pedestal faults [23] and bearing faults [22]. Phase portrait shows qualitative differences
in a normal gear and in a gear with an early fatigue cracked tooth [10]. ApEn quantifies
the regularity of a time series and can effectively indicate the condition in fans [48] and
bearings with speed and load variations [49].

A new technique is proposed in [24] to select a proper fractal dimension

spectrum less affected by noise. In a more recent paper (2008) [51], a modification of
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the correlation integral is introduced to the real-time fault diagnosis of bearings.
Multiple manifold analysis is a novel nonlinear approach [109] (2009) that extracts
manifold information from the vibration signals and outperforms conventional nonlinear
techniques. A paper of 2010 proposes to compute the fractal dimension using DWT
[95]. Fractal features are estimated from the slope of the variances of the DWT in
different scales. The multiscale permutation entropy (Multi-Scale PermEn) has recently
applied to bearing fault diagnosis [116]. Multi-Scale PermEn computes the permutation

entropy across different scales.

2.3.2 Audio signal processing

Most research in machinery diagnosis is oriented towards the analysis of vibration
signals. Audio-based CM has, however, not developed at the same rate. This is due to
the contamination of the sound signal by unwanted sources such as other machines,
noisy environments and the structural vibration of the machine itself [2]. This situation
makes it difficult to acquire the machine’s signature. Two main options are used to
improve the low SNR in audio signals: the use of partial or full enclosure using an
anechoic chamber [15], [17], which is an unrealistic approach for real industrial
scenarios, or the use of pre-processing de-noising methods, such as wavelet [12] or
blind source separation [2], [15], [26]. These techniques can affect the feature extraction
stage. The choice of certain parameters, such as the threshold in wavelet techniques, is
important for the extraction of the purified signal with the smallest distortion and the
highest SNR. Audio-based techniques are useful in certain cases, especially when it is
impossible to access the machine. Audio measurements can be performed at a distance

from the machine so the use of sensors mounted directly on the machine is avoided.

The same processing techniques for vibrations are applied to extract features in
audio signals obtained from machines. Statistical time domain features and energy
features in the frequency domain [59] are used to detect wear in internal combustion
engines and mass unbalance faults in rotary disks. EnA is used in a heavy sizing-press
[26] and in the end-test of vacuum cleaner production [58], where the use of vibration
and current analysis did not prove useful. As in vibration-based techniques, the audio
spectrum is used when the machine is working at constant speeds [10], [56]. Some
papers compare the use of Fourier analysis in audio and vibration signals, [10], [87].
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These works claim that Fourier analysis is less effective in sound signals because of the
low SNR. As in the case of vibration analysis, time-frequency techniques are more
appropriate. For example, STFT is applied to identify engine fault frequencies [54].
However, WVD [86] and pseudo WVD [56] are shown to have better results in
extracting non-stationary signatures in the bearings of induction motors. Continuous
WT, WPT and MFCC are successfully applied to fault diagnosis of engines [15], [52],

[57] working at different speeds and run-up conditions.

The symmetrised dot pattern technique is based on the visualization of changes
in amplitude and frequency of the audio signal. It has been applied to distinguish
between normal and faulty fans [10] and in the fault identification of an internal
combustion engine working at different speeds [55]. Some papers have focused on the
analysis of a group of chaotic measures extracted from audio signals of different
machines. Asynchronous changes in audio signals can be detected with chaotic
measures [25]. The spectral entropy of audio signals has shown to be more effective

than vibration signals in the diagnostic of cavitation [88].

The development of techniques to improve SNR and the use of the same tool,
i.e. wavelets, in the de-noising and extraction stages can put audio-based techniques at
an advantageous position in CM systems since they are less intrusive than vibration-

based techniques.

Multiple features are extracted from vibration and audio signals in CM
techniques. However, a unique feature capable of representing the machine condition
does not exist. A good characterization requires the extraction of different features from
different domains. Thus we need to find, using feature selection, the most suitable ones
for the application under consideration. The selection of well-suited features providing
fault-related information and the discarding or weakening of irrelevant or redundant

features is an important stage in machine CM to improving system performance.
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2.4 Decision Stage

The decision support stage of CM systems helps take maintenance actions when a fault
is impending or already detected. The decision stage can be performed by a qualified
person or an expert system. This paper focuses on pattern recognition techniques
applied to machine CM. Automatic pattern recognition techniques can be accomplished
using supervised or unsupervised learning. In supervised learning, the machine should
be forced to work in different conditions, including faulty states, to train the pattern
recognition system. Alternatively, unsupervised learning methods (or novelty

detection), only require normal data and it is not necessary to damage the machine.

However, novelty methods can only distinguish between normal and faulty
conditions. Noise and the changing environment must also be taken into account to
avoid incorrect interpretations. In the next paragraphs, pattern recognition techniques
used in fault diagnosis are discussed. Table 2-2 presents some of the most common

classification methods used in the literature from 2000 up to 2015.

TABLE 2-2: CLASSIFICATION METHODS FOR VIBRATION AND AUDIO

Evolution
Methods 2000-2006 2007-2015
SPC (2001)[27] (V, V) -
Distances (2002)[66] (V,S) | (2008)[67] (V,U); (2010) [35] (V, S)
SVM, (2005)[70] (v, U) | (2007)[44], (2007)[52], (2007)[101], (2009)[91],
SVDD, (2011)[93], (2014)[118] (V.S)
PSVM (2009)[68] (V, L)
HMM (2005)[29] (v, U) | (2007)[24] (V,S)
Hyp.  test, | (2004)[65] (V) (2009)[37] (V)
GMM (2006)[40] (V)
NN - (2007)[69], (2009)[61] (V, L)
(2010)[35], (2009)[45], (2008)[63], (2008)[64] (V, S)
(2009)[57] (A, S)
Fuzzy-logic - (2007)[13], (2010)[60] (V, S)
Evolutionary - (2007)[39], (2010)[35] (V, S)
alg.
Expert (2004)[59] (A, S) | (2007)[90], (2008)[63], (2012)[112], (2015)[115] (V, S)
systems

V: Vibration, A: Audio, S: Supervised, U: Unsupervised.

Statistical Process Control (SPC) is a conventional unsupervised method that

measures the deviation of the current signals from a reference signal (which represents
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the normal condition) to determine whether the current signal is inside the control limits
[27], [82]. Cluster analysis groups signals into different fault categories according to the
similarity of the features. The objective is to minimize the variance inside the same
group and to maximize it between different groups. Conventional distances used to
achieve this objective are: Mahalanobis distance [66], Euclidean distance [35], [66] and
Bayesian distance [66]. In 2008, [67] proposed a novel clustering algorithm using a
compensation distance evaluation technique in unsupervised clustering. The Support
Vector Machine (SVM) is a cluster-based technique widely used in machinery diagnosis
[44], [52], [93]. It maximizes the distance of the closest point to the boundary curve that
separates two data classes. The original SVM performs bi-class classification but
multiclass SVMs have been developed to classify different kinds of faults [44].
Proximal SVM (PSVM) has also been proposed in fault diagnosis [101]. PSVM is
modeled as a system of linear equations which produces results similar to SVM but with
less computational effort. In 2005, the application of one-class SVM was proposed in
fault diagnosis. One-class SVM is an unsupervised technique [70] based on the Support
Vector Data Description (SVDD). It fits a tight hypersphere around the feature vector
extracted from normal signals. This method has been used in bearing degradation
experiments [68]. SVDD for multiclass classification was proposed in 2009 [91]. It uses
the centers of a set of hyperspheres and models the decision boundaries via a

combination of linear discriminant analysis and the nearest-neighbor rule.

HMM is a conventional method used to perform fault classification by analysing
the time series. The hidden states of the Markov model represent “healthy” and “faulty”
states [28], although in the latest developments the relationship between hidden states
and physical meaning is not established [29]. The factorial HMM classifier has a strong
capability for classification of non-stationary signals. For this reason, factorial HMM
was applied in 2006 for the speed-up and speed-down process [62]. In 2007, an HMM

was used in unsupervised learning mode for fault detection [24].

Statistical hypothesis tests such as the Kolmogorov-Smirnov test [37], [65] and
Student’s t-test [65] have been conducted to statistically compare signatures of normal
and faulty machinery. Density estimation techniques are also popular in fault detection.
These are unsupervised methods that model the underlying distribution of the data. The

Gaussian mixture model (GMM) analyzes features extracted from a signal using a
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weighted sum of Gaussians. The success of GMM in the classification of dynamic data
makes GMM especially suitable in modelling vibration data from machinery. GMM

was applied for the first time to fault diagnosis in 2006 [40].

Neural networks (NN), fuzzy-logic (FL), expert systems and evolutionary
algorithms are pattern recognition techniques widely used in fault diagnosis. They are
usually utilized in a blended way to obtain better performance. Because of their high
learning and generalizing capabilities, NN are used to classify different machinery faults
[85], [93]. The NN is a conventional classification method and multiple NN models
such as multilayer perceptron [35], [63], radial basis functions [35], [64], back-
propagation NN [57], probabilistic NN [45], generalized regression NN [57] and
wavelet NN [64] have been used in fault diagnosis. Auto-associative NN [69] and self-
organizing maps [61] are unsupervised conventional NN techniques applied in
diagnosis. FL and decision trees have been combined to generate rules from the feature
set automatically [60]. The combination of NN and FL improves the learning
capabilities at the self-adaption and self-learning stages [13], [89]. The neuro-fuzzy
approach aims at automating the design of a fuzzy system using NN. An extended
neuro-fuzzy system was proposed in 2008 for condition monitoring [113]. NN, FL and a

decision tree algorithm are used together in [60].

Expert systems use the knowledge of an expert in a computer program. The
knowledge base contains domain knowledge while the inference mechanism
manipulates the knowledge to produce solutions [90]. When the expert knowledge is
inexact, FL obtains uncertainty measures [13]. An NN inference mechanism is used in
an expert system to diagnose unbalances using acoustic signals [59]. Recent papers have
focused on a new adaptive neuro-fuzzy inference system (ANFIS) that combines the FL
approach and the adaptive NN capability [63], [115]. Recently, the soft set theory, a
mathematical tool used to deal with uncertainties, has been applied for the first time in
fault diagnosis (2012) [112].

Finally, in artificial techniques, evolutionary algorithms have been used to
reproduce the natural process of the evolution of a population. The most frequently used
are genetic algorithms which are applied to fault diagnostics to select the more adequate
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and competitive features and to combine different classifiers to obtain better
performance [35], [39].

2.5 Systems & Performance

This subsection discusses the performance evaluation techniques in diagnostic
technologies and shows examples of the application of CM systems. The use of
performance metrics allows different algorithms and techniques to be compared so as to
evaluate the entire CBM system. The creation of a common performance evaluation
framework is a challenging task for researchers and standards institutions and
organizations; I1ISO 17359 outlines the CM metrics and the Society of Automotive
Engineers (SAE) (SAE, 2007) [31] addresses all aspects of metrics. The NASA Ames
Research Center proposes an annual international Diagnostic Competition (http://dx-
competition.org/) to discuss the latest developments.

The metrics used in diagnostic/prognostic technologies can be divided into
performance metrics and effectiveness metrics. Performance metrics assess technical
performance such as algorithm performance while effectiveness metrics measure the
capability of the global system to achieve operational goals. Most metrics used in the
literature include classification accuracy, true positive (TP, percentage of correct
classification), false positive (FP, percentage of incorrect classification), false negative
(FN, number of misses), true negative (TN number of correct rejections), the confusion
matrix (a representation of TP, FP, FN and TN) [60], [61] and the Receiving Operating
Curve (ROC) [61]. ROC gives a comprehensive overview of the trade-off between FP
and FN.

Some authors and institutions have developed test beds to assess the
performance and effectiveness of the proposed metrics for diagnostic systems [32]-[34].
The NASA Ames Research Center developed a real-world electrical power system test
bed [32] and the US Navy [33] developed a CBM test bench with data provided by the
State ARL Mechanical Diagnostics Test Bed (MDTB) [73].
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The fault diagnosis techniques proposed in the literature cannot be easily
compared because of the lack of common and public machinery databases. Some efforts
have been made to develop public databases, although there is only a limited number of
them: Case Western Reserve University (Case Western) [71] provides bearing vibration
signals, Ypma provides normal and faulty samples of gears and pumps [74], the NASA
Prognostics Data Repository includes a collection of donated data sets (NASA) [75], the
Naval Systems Command provides vibration signals of an UH-60 helicopter (UH-60)
[72] and the MDTB data [73] of gears, shaft and bearings can be obtained under

previous petition.

Table 2-3 summarizes the characteristics of some CM systems based on
vibration or audio analysis. Performance evaluation of most of these systems is made
using classification accuracy. Y. Lei et al. [63] and G. Yu et al. [45] use the Case
Western University bearing vibration dataset (Case Western) [71]. A 100% accuracy is
obtained by Y. Lei et al. [63] using a set of selected features from time, frequency and
time-frequency domain. The improved distance evaluation technique is used to select
the most suitable features that feed the ANFIS. G. Yu et al. [45] use an unsupervised
procedure based on cluster-based feature extraction from DWT and probabilistic NN.
Different scales of WT decomposition are used and the classification accuracy is
computed for each scale. J. Sanz et al. [69] apply WT and unsupervised auto-associative
NN in a gearbox of a pump station [74] with the data collected by Ypma. S. Cho et al.
[78] and W. Wang et al. [76] propose automatic fault diagnosis systems applied to real
industrial scenarios. S. Cho et al. [78] propose a CM system in an end milling machine.
Multiple sensors, including vibration sensors, are used and features from the frequency
domain are extracted. Fusion at feature and decision levels is performed. W. Wang et al.
[76] proposes a real-time CM system for gears in printing machines. J.-D. Wu et al. [57]
use audio signals in the development of an expert system for internal combustion
engines. Shannon entropy is extracted from WPT. Back propagation NN and
generalized regression NN were used as classification methods achieving a success rate
of 95%.

Most CM products on the market are directed to specific applications so the
results of using a prototype are not generally reproducible for other applications. For

this reason, the use of standards is recommended. Two standards and two
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standardization proposals can be found in: IEEE 1451 and IEEE 1232, MIMOSA and
OSA-CBM [77].

TABLE 2-3: SYSTEMS PERFORMANCE

Author Main Features Database Approach Results
(Y. Leiet | Timeand Bearing vibration data | ANFIS 100%
al., Frequency set [71] Training: 140, Test:
2008,[63]) | domains, EMD | (N, OR, IR, B faults) 70
V)
(G.Yuet | DWT (cluster- | Bearing vibration data | Probabilistic | 98.2 % (maximum
al., based feature set [71] NN accuracy)
2009,[45] | extraction) (N, OR, IR, B faults) Training: 168, Test:
(V) 60
(J. Sanz et | Discrete Pump vibration Auto- 100%, Training:
al., Wavelet database [74] (gears) associative 650 (N); Test: 160
2007,[69]) | Transform (N and Damage NN (N), 810 (damage)
V) pump), (Two loads) (unsupervised
mode)
(S.Choet | Timeand OKUMA ES 3016 SVM, 97.67% (maximum
al., Frequency CNC vertical Multilayer accuracy with three-
2010,[78]) | domain; machining center (N, Perceptron, sensor combination)
V) Parameters: Breakage, Chipping, Radial Basis
speed, feed and | wear), (Different Function
depth of cut. speeds)
(W. Wang | Wavelet energy | Gears Neural Fuzzy | 97.6 %
etal., function, Phase | (N, Cracked and scheme
2009,[76]) | demodulation, | Chipped)
(V) kurt.
(J.-D. Wu | Shannon Internal combustion Generalized | >95% inall
etal., Entropy of engine Regression experiments
2009,[57]) | Wavelet (N, 5 faulty NN Training: 30 for
(A) Package conditions) each condition
Transform (2 fixed speeds and a Test: 120 for each
coefficients run-up experiment) condition

V: Vibration, A: Audio, N: normal condition, OR: outer race fault, IR: inner race fault, B: Ball

fault.

2.6 Analysis of the state of the art

Nowadays, machinery diagnosis implementing CBM is a field of intensive research. A
good CBM policy leads to the detection and prevention of faults. Companies can save
millions of dollars per year and human lives with a well-implemented CM system. The
need for increasing security in industrial scenarios and the rapid development of signal
processing techniques and communication technologies have helped scientific and
technological advancements in this field. This chapter summarizes a review of
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vibration-based and audio-based automatic fault diagnosis in machinery implementing
the stages of a CBM system (data acquisition, signal processing and decision-making).
We have paid special attention to recent advancements in signal processing techniques
and classification methods. Finally, some examples of CM systems have been

presented.

Vibration-based monitoring is a well-established technique widely used in CBM
[2], [3]. According to Figure 2-2, most research papers consulted for this state of the art
are related to vibration-based fault diagnosis. This fact seems reasonable due to two
aspects: the easiness to acquire the vibration signal from a machine and the transmission
path between the machine or a component of the machine and the sensor is less affected
by interferences than in the case of audio-based diagnosis. We can extract another
conclusion from Figure 2-2. Most faults are related to bearings. In fact a large motor
reliability survey [119] reports that 42% of the faults in large motors (more than 200
horsepower) are related to bearing faults. In small motor the percentage of faults related
to faults is 90% [120]. For this reason, research efforts in condition monitoring are
focused on bearing fault diagnosis. Most bearing fault diagnosis is done using vibration
signal and current signal as source of information. In Figure 2-2 it is also observed that
most referenced papers related to bearings use vibration signal for monitoring.
Moreover, in the elaboration of this review, we carried out a search of public available
databases. We have found three vibration databases public available. For all these
reasons, in this Thesis, we focus the first part of our research in methods for bearing

fault diagnosis and bearing fault identification using vibration signals.

Signal processing techniques have evolved from conventional time and
frequency analysis, which assume stationarity and linearity, to more developed
techniques that exploit the non-stationary and non-linear nature of faulty signals and of
speed-up and speed down processes. These provide a more realistic description of the
real condition of the machine. For this reason, in bearing application, our research aims

at fault diagnosis and fault degradation using nonlinear techniques.

Audio-based monitoring has not been applied to CBM systems to the same
degree as vibration-based monitoring (see Figure 2-2), even though microphones are not

mounted on the machine and have greater location possibilities. The main reason is the
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difficulty of recovering the machine’s signature because the signal can be immersed in
noise. Some authors have proposed to locate the microphone at a distance from the
machine between 2cm and 20cm to avoid unwanted interferences [12]. The application
of audio-fault diagnosis techniques in an extensive way will improve greatly the
inspection of certain industrial environments in which a permanent CM system is
expensive or the mounting of vibration sensors is difficult. For this reason, we think
audio-based techniques need further research efforts and we have focused the second

part of our research on audio-based fault diagnosis.

Provided the fact that there is a lack of large publicly available databases in fault
diagnosis and audio signals are not an exception, we have built an experimental set in
our laboratory to acquire simultaneously vibration and audio signals from a centrifugal
pump working in normal condition and in different fault conditions. In this way, we
obtain vibration and audio signals for different machine conditions that we use in
different fault diagnosis experiments. Moreover, this database can be made public so
other researchers can benefit from it. Public databases provide common data to

comparatively evaluate fault diagnosis techniques and CM systems.

In this chapter, multiple features from vibration-based diagnosis are described.
Most of them are not used in audio-based diagnosis. In this Thesis, we address this
issue. We apply vibration features to audio signals and we make a comparison of the
performance in both cases. Moreover, in the literature there are only few works related
to audio and vibration signals acquired together. In this Thesis, we focus on a study of
audio and vibration signals acquired simultaneously from a centrifugal pump. A set of
features are extracted from both signals and classifiers are used to discriminate between

different machine conditions (normal and faulty conditions).

Data fusion of multiple data is a clear research line in fault diagnosis. Multiple
signals can be fusioned to obtain a more reliable diagnosis. In this Thesis, fusion of

audio and vibration signals from a centrifugal pump is carried out.
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CHAPTER 3
Databases: bearings and pumps

This Chapter focuses on the databases collected and generated in this Thesis for bearing
and pump condition monitoring. The Chapter is divided into two subsections. The first
one is devoted to public vibration bearing databases and the second one to the audio and
vibration pump database generated in this Thesis. The basic concepts of bearings and

centrifugal pumps are also explained in each respective subsection.

3.1 Bearing Vibration Data

The Oxford English Dictionary defines a bearing ‘‘as a part of a machine that allows
one part to rotate or move in contact with another part with as little friction as
possible”’. Additional functions include the transmission of loads and enabling the

accurate location of components [21].

Bearings are vital components in a great range of machinery since they support
the rotating structures and facilitate their rotation. They dominate the performance of
the machine and maintenance programs are usually timed according to the bearings.

Bearing problems can result in costly downtime, equipment damage and breakdowns.
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Establishing and following a preventive maintenance program is a key factor in

guaranteeing long bearing service hours and minimizing equipment downtime.

3.1.1 Faults in Rolling Bearing

A rolling-element bearing consists of four components: an outer ring, an inner ring, the
rolling elements (balls or rollers) and a cage. The rings form the raceway. The rolling
elements are several balls or rollers contained in the space between the outer race and
the inner race and the cage is used to fix the position of the rolling elements. In most
applications, the outer race is generally stationary and the inner race is attached to the
rotating assembly such as a shaft. As one of the bearing races rotates it causes the
rolling elements to rotate as well with low resistance. Because the balls are rolling they
have a much lower coefficient of friction than if two flat surfaces were sliding against
each other. Figure 3-1 shows the components of a rolling-element bearing with balls (a

ball bearing).

Outer Ring (OR) Inner Ring (IR) Cage Balls (B)

Figure 3-1: Components of a ball bearing

Bearing defects can be divided into distributed and discrete defects [24].
Distributed defects are due to the progressive growing of surface wear or to low-quality
manufacturing process [25]. Discrete defects, localized defects or single-point defects
are localized areas of damages in the rolling surfaces of the bearing. They are
characterised by sharp discontinuities in the rolling surface producing impulsive-like
vibrations [24]. The presence of a discrete defect in a bearing can be indicative of
incipient failure. As such, bearing research and vibration monitoring programmes for

rolling element bearings are concerned principally with the detection of discrete faults.
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The main discrete defects in bearings are the outer-race fault (OR), inner-race
fault (IR) and ball fault (B), which are faults located in the outer-race, in the inner-race
and in the balls (or rollers) respectively. All bearings, even free-fault bearings, produce
noise as the rolling-elements roll over the races. This noise is generated at high
frequency and low amplitude. The bearing housing amplifies the noise and a transducer
such an accelerometer can acquire the signal produced by the bearing transformed by
the transmission path. Vibration signals generated by bearings with discrete faults
produce a distinct bearing signature. As the rolling element strikes a discrete fault on the
inner or outer race or when a fault on a rolling element strikes the inner or outer race an
impulse is produced, which excites the supporting structure between the bearing and the
transducer. These impulses appear as a very sharp rise that corresponds to the impact
between a roller and the defect. Then, the impulse decays with an approximately
exponential envelope as the energy is dissipated by the internal damping. The impact
frequencies are called characteristic bearing frequencies and can be determined by the
geometry of the bearing and the rotation frequency of the shaft [22]. During bearing
running, the impulses are further modulated in amplitude by two factors: i) the transfer
function of the transmission path varies due to the fault position change in relation to
the position of the transducer; ii) the strengths of the impulses change due to a non-
homegeneous load distribution. The bearing components support load as they pass the
lower half of the bearing, i.e. the load zone. The strength of the impulses will be higher
in the load zone and lower in the non-load zone [26]. Therefore, a low-frequency
envelope is generated. See Figure 3-2, extracted from [26], where the typical
acceleration signals produced by discrete faults in the different components of the
bearing are shown. The dotted line is the low-frequency envelope. This phenomenom
appears in the case of inner-race or ball faults. The inner-race fault pass through the load
zone at the shaft frequency and the rolling elements pass through the load zone at the
fundamental cage frequency, i.e. the cage frequency. Usually, the outer race of the
bearing is fixed and it is not affected by the non-homogeneous load distribution. In the

vibration bearing signal acquired by the transducer there is also noise.
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Figure 3-2: Bearing vibration signals of bearings with discrete faults at
outer race, inner race and ball. BPFO = ball pass frequency, outer
race, BPFI = ball pass frequency, inner race, BSF = ball spin
frequency, FTF: fundamental train frequency (cage frequency).
Source: [26].

Therefore, a model for a faulty bearing comprises the pulse sequence generated by

the interaction of the fault with the surface (x(t)), the non-homegeneous load

distribution causing a low-amplitude modulation to the pulses (x,(t)), then the natural

frequencies excited by the pulses (X, (t) ) and noise (n(t)).

X(t) = [Xps ()%, (O] * X (1) + (1) [Eq. 3-1]

For the fault-free bearing with no pulse sequence generated by faults, the natural
frequencies are not excited. The spectrum of bearing vibration signal can have peaks at
the rotation frequency and some harmonics. A free-fault bearing vibration signal can be

considerer as a random sequence with low amplitude.
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As a simplification, vibration signal from a bearing with a discrete fault can be
considered as an amplitude modulated signal in which the carrier is the resonance
frequency excited and the fundamental frequency of the modulating signal (the
envelope) is the bearing characteristic frequency of the faulty bearing. In figure 3-2 the

amplitude demodulated signals (the envelope) of each kind of fault is shown.

In Figure 3-3 real vibration signals of a bearing in normal condition (free-fault
bearing), a bearing with inner-race defect, a bearing with outer-race defect and a bearing
with ball defect are shown. The signals are from the Case Bearing Database [1]. The
impulsive characteristic of the vibration signals for bearings with single point defects

can be clearly seen in the figure.
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Figure 3-3: Time bearing vibration signal of 0.17 seconds (sample
frequency is 12kHz) for different bearing conditions: Normal
condition (upper-left), Inner race fault condition (upper-right), Outer
race fault condition (bottom-left) and Ball fault condition (bottom-
right).

As stated in Chapter 2, time and frequency techniques are conventional
techniques to extract features from the bearing vibration signal aim to fault diagnosis or
to find an index for fault evolution or for severity assessment. Features that are good
indicators for impulsive faults are kurtosis, crest factor, impulse factor. In frequency
domain, the popular technique of envelope analysis is used to amplitude demodulate the
bearing vibration signal and obtain the bearing defect characteristic frequency. An

alternative demodulation technique is based on the Teager-Kaiser energy operator. In
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this Thesis, we propose to use the TEO over the raw vibration signal and to feature the
result signal with time features. We also propose a methodology to assess the severity
degree of a bearing with inner race fault and outer race fault. The methodology is based
on wavelet packet transform and a complexity measure called Lempel-Ziv complexity.

In Chapter 4 the methodology, experiments and results are shown for both proposals.

In order to evaluate the proposals in bearing fault diagnosis and bearing fault
evolution, public available bearing vibration databases were collected. In the next

subsection, the bearing vibration databases are described.

3.1.2 Bearing Vibration databases publicly available

The three publicly available databases collected in this Thesis in chronological order
are: the Case Western Bearing Vibration Database [1] with samples of bearing vibration
data in normal condition and in outer-race, inner-race and ball fault conditions; the UH-
60 Blackhawk Helicopter Vibration Database [2] with vibration samples from an
endurance test of an helicopter and the bearing vibration database of the Intelligent
Maintenance Systems (IMS) with bearing vibration samples of a run-to-failure

experiment [3].

Case Western Bearing Vibration Database

The bearing vibration data from the Case Western Reserve University [1] were collected
from an accelerometer mounted on an induction motor housing at the drive-end bearing.
The drive-end bearing are located at the drive-end part of the motor and supports the

motor shaft.

The test stand is shown in figure 3-3. The 2 hp three-phase induction motor (left
in the figure) was connected to a dynamometer (right in the figure) and a torque
sensor/encoder (center in the figure) by a self-aligning coupling. The dynamometer is
controlled so that desired torque load levels can be achieved. It is important to mention
that the load supported by the motor affects only the rotational speed of the shaft. It
does not affect the load supported by the bearing.
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Faults were introduced into the drive-end 6205-2RS JEM SKF, deep groove ball
bearing using the electro-discharge machining method. Faults of diameter 0.007, 0.014
and 0.021 inch (7 mills, 14 mills and 21 mills respectively) are considered,
corresponding to 0.01778 cm, 0.03556 cm and 0.05334 cm respectively. The deep of
the fault is 0.011 inch/ 0.02794 cm.

Vibration data was collected with an accelerometer attached to the housing with
magnetic bases placed at the 12 o’clock position at the drive end. The sample frequency
was 12 kHz. Speed and horsepower data were collected using the torque sensor/encoder
and recorded by hand. Vibration data was recorded at four different conditions: normal
(N), inner race fault (IR), outer race fault (OR) and ball fault (B). Each signal is 10
seconds. Experiments were repeated for motor loads of 0 to 3 horsepower (motor speeds
varying from 1797 to 1720 RPM. The higher the load is the lower the speed). The shaft
rotating frequency is about 30 Hz. Data consisted of 4 vibration signals for N condition
and 12 vibration signals for each fault condition (12 IR, 12 OR and 12 B). In total there

are 40 vibration signals.

Induction motor Torque transducer Load

Drive end bearing position

Figure 3-4: Test stand for the acquisition of bearing vibration data.
Source [1].

The Case bearing vibration database was used in this Thesis for the evaluation of

the following proposals: the proposal of using Teager-Kaiser energy operator to extract
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statistics, energy and higher order statistics features in order to detect between IR, OR,
B and normal condition in bearing fault diagnosis and the proposal of a new
methodology based on wavelet package transform and Lempel Ziv complexity to the

assessment of bearing severity and degradation (see Chapter 4).

UH-60 Blackhawk Helicopter Vibration Database

The UH-60 Blackhawk helicopter vibration database was recorded during a component
endurance test of an UH-60 Blackhawk helicopter at Patuxent River, M.D. [2]. Figure
3-5 shows the main gearbox transmission system of the UH-60 helicopter. The gearbox
transmission system translates the energy from the two engines into the main rotor and

it is a complicated system.

HYDRAULIC MODULE

ACCESSORY
MODULE

Figure 3-5: Main transmission of an UH-60 Backhawk helicopter.
Source: [27].

The data sets were recorded at irregular intervals throughout the endurance tests
with a sample frequency of 100kHz and only recordings at conditions within +/- 10% of
full torque are used in the experiments. Vibration signals were acquired using Endevco
6259M31 accelerometers. The vibration database consists of 62 data sets of 10 seconds

each.

Severe degradation of the inboard roller bearing SB-2205 occurred during the

endurance test. The helicopter indicators showed chip lights (a chip light is an indicator
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of the presence of metal chips or particles in the module) in the experiment. The first
chip light occurred in the data set number 40, 10200 minutes after the recordings had
begun. The position of bearing SB-2205, which supports the combining bevel pinion in
one of the input modules, is shown in Figure 3-5 (left). As it can be seen from Figure
3-6 (left), the bearing is located deep inside the gearbox. In this position, the
background noise is greater and the detection of a bearing fault is more difficult. The
bearing condition at the end of the test is also shown in Figure 3-6 (right). From the

figure, it can be seen a fault in the rolling element of the bearing.

Main Module

'''''

Bearing
SB 3313 SB 2205

Figure 3-6: Position of the bearing SB-2205 in the transmission (left
figure) and the fnal bearing condition (right figure). Source: [28].

The UH-60 Blackhawk helicopter vibration database was used in this Thesis for
the evaluation of the following proposals: the proposal of using Teager-Kaiser energy
operator to extract statistics, energy and higher order statistics features in order to detect
between IR, OR, B and normal condition in bearing fault diagnosis and the proposal of
a new methodology based on wavelet package transform and Lempel Ziv complexity to

the assessment of bearing severity and degradation (see Chapter 4).

IMS Vibration Bearing Database

The IMS vibration bearing database is a bearing data set provided by the Center on
Intelligent Maintenance Systems (IMS) [3]. Four bearings were installed on one shaft
and two accelerometers were placed in each of them to register the vibration signals in
two different spatial axes (see Figure 3-7). The shaft was driven by an AC motor and
coupled by rub belts. The rotation speed was kept constant at 2000 rpm and a 6000 Ib.
radial load was added to the shaft and bearings by a spring mechanism. Vibration data
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was collected every 10 min for 164 h with a sampling rate of 20 kHz. At the end of the
test-to-failure experiment, an outer race defect was discovered on bearing 1. Captures
obtained by the horizontal accelerometer of bearing 1 have been used in this Thesis for

bearing degradation. According to [34], the first indication of fault is 89 hours after the

beginning of the experiment.

Radial Load -
Accelerometers D T'hermocouples

Bearing | Bearing 2 Bearing 3 Bearing 4

Figure 3-7: Position of the bearings in the IMS bearing database.
Source: [3].

The IMS vibration bearing database was used in this Thesis for the evaluation of
the following proposal: the proposal of a new methodology based on wavelet package
transform and Lempel Ziv complexity to the assessment of bearing severity and
degradation.

3.2 Centrifugal Pump Audio and Vibration Data

A pump is defined as a mechanical device that rotates or reciprocates to move fluid
from one place to another [5]. There are multiples kinds of pumps with different
applications. According to the Hydraulic Institute [6] pumps can be classified according
to the manner in which the pump adds energy to the pumped fluid to generate
movement into: kinetic pumps and positive displacement pumps. In this Thesis we
focus on centrifugal pumps, a kind of kinetic pumps. They add energy by high-speed

rotating wheels or impellers.

Pumps are important components in a wide range of technical processes such as
power stations, chemical industry, cooling and heating systems, etc. The degradation of

pump components such as impellers, bearings, seals or the presence of impurities or
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strange objects in the fluid being pumped can reduce the pump performance and lead to
faults. The overall reliability and safety of many systems depends on the health of
pumps. Therefore, pump condition monitoring plays a key role in maintenance

procedures.

3.2.1 Elements and working of a centrifugal pump

A centrifugal pump consists of two main components: 1) the rotary element or impeller
and 2) the stationary element or casing (called volute). The impeller is the rotating part
that converts driver energy (i.e. the energy of a motor) into the kinetic energy. Rotation
of the impeller forces the fluid (usually liquid) to circulate through the pump from the
axial to the radial direction while energy is transferred to the fluid [7]. The volute is the
stationary part that converts the kinetic energy into pressure energy. Summing up, the
impeller produces fluid velocity and the volute converts velocity to pressure.

Figure 3-8 shows the components of a centrifugal pump. The direction of the
fluid in a centrifugal pump (left) and the zones of velocity and pressure of the fluid
when passing through the centrifugal pump (right) are also shown. The fluid enters in
the suction eye (attached to the inlet part or suction part of the pump) for the inlet side
(suction side), then pass through the impeller and finally exits in the outlet (discharge)

side of the pump.

fluid in |
\ ;_..\\‘\
e

Cutwater Low velocity

High velocity High pressure

Volute

A | e
A\ \\/ . Impeller

eye

— v Rotation

Figure 3-8: Left: Fluid direction in a centrifugal pump. Source: [6].
Right: velocity and pressure in a centrifugal pump. Modified from
source: [5]. The inlet, outlet, volute and impeller are shown.
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An impeller has a number of channels or vanes delimited by curved blades. A
closed impeller (see Figure 3-9) has plates on both sides called hub plate and shroud
plate that totally enclose the impeller from the suction eye to its edges. The hub plate is
in the front of the impeller (where the impeller is connected to the rotor) and the shroud
plate is in the rear of the impeller (in the impeller eye area). The impeller also has
several blades (also called vanes) to impart the centrifugal force to the fluid. The center
of the impeller is called the impeller eye. The region near the impeller eye is called vane
leading edge (LED). The region at the tip of the vane is called vane trailing edge (TED)
[14].

Leading edge

Trailing edge Blade
Figure 3-9: Closed impeller. Modified from source: [6].

A more detailed description of how the fluid passess through a centrifugal pump

is described next [5].

1. Fluid flows through the pump by first entering the inlet side. Then the fluid enters the

lowest pressure area in the pump, the impeller eye.

2. From here the fluid is picked up by the spinning impeller vanes. The fluid passes
along the vanes where velocity and energy are added to it. The amount of energy given
to the fluid is proportional to the velocity at the edge or vane tip of the impeller. The
faster the impeller rotates or the bigger the impeller is, then the higher will be the

velocity of the fluid at the vane tip and the greater the energy imparted to the fluid.

3. Through centrifugal force, the fluid is thrown to the outside tips of the impeller,
against the volute and toward the discharge flange. At this point, because the fluid is

confined by the volute, the velocity decreases thereby increasing the pressure. The fluid
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velocity is decreasing because the volute is shaped in such a way that the impeller is not
centered inside it. Rather, the impeller is offset from the center. This offset causes the
impeller to volute clearance to increase from the cutwater to the discharge area. As the

clearance increases the velocity decreases and the pressure increases.

4. Then the fluid moves through the inside edge of the volute to the discharge flange
where it exits the pump at a higher pressure. The velocity of the fluid is converted to
pressure according to Bernoulli's principle (Bernoulli's Principle states that as the speed

of a moving fluid increases, the pressure within the fluid decreases).

Other parts of a centrifugal pump are the pump shaft, bearings, shaft seal, the
wear rings, and the inlet and outlet. The shaft seal stops the fluid from leaking out of the
casing. The wear rings separate the high and low pressure areas inside the casing. The
bearings make the shaft turn easier. The inlet and outlet parts of the casing connect to
the fluid piping system. The sealing device is placed inside the stuffing box to control or

eliminate leakage from the pump casing.

3.2.2  Vibroacoustic mechanism in a centrifugal pump

The pump vibro-acoustics is generated by the following sources: hydraulics sources and
mechanical sources [16], [18]. Both sources cause vibrations which make the pump
structure vibrate. This vibration radiates airborne sound. Therefore, the acoustics of the

pump has the same mechanism of production that the vibration mechanism [18].

Hydraulics sources are caused by the fluid-structure interaction with impeller vanes

and volute (especially volute cutwater) and by flow perturbations.

Mechanical sources are caused by vibration of unbalanced rotating masses and friction

in bearings, seals, impeller and shaft [16].

During the working process of a centrifugal pump non-steady fluid-dynamic
forces may produce either discrete or broad-band frequencies in vibration and acoustic
signals [8], [15], [16], [18]. The discrete frequencies are: the rotation frequency (RF),

the vane-passing frequency (rotor frequency multiplied by the number of vanes or
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blades of the impeller) and their harmonics. The rotation frequency is present due to
pressure pulsation (fluctuations in the pressure being developed by the pump) caused by
impeller imbalance [19] (when the impeller has an orbital motion coupled to the rotation
[8]) and also by small manufacturing imperfections in the impeller [8]. The vane-
passing frequency (VPF) is due to the finite thickness of the blades which causes flow
disturbances associated with the passage of each blade near the cutwear or volute

tongue [8]. A pressure pulse is developed as each vane passess the cutwater.

Broad-band fluid-dynamic excitation is due to pressure pulsations generated by
flow turbulence, viscous forces, boundary layer vortex shedding, boundary layer
interaction between a higher-velocity and lower velocity regions of the process fluid,
and by vortices generated in the clearances between the rotor of the centrifugal pump
and the adjacent stationary part of the casing [18]. Mechanical sources such as noise
from the rotation of the pump shaft and bearings also contribute to broad-band vibration

content. Broad-band content is always present due to turbulence [8].

Other perturbations not related directly with the pump itself can also exist, such
as an obstacle or obstruction in the pump inlet, in the pump outlet or even inside the
impeller [8]. Other frequencies generated may be related to fan frequency of the motor,
motor frequencies or frequencies related to other part of the system in which the pump

IS operating.

In normal condition, the frequencies that dominate the spectrum are the discrete
frequencies (RF and VPF and their harmonics). Although broadband noise is always
present, in normal condition it has a minimum value. When some of the components of the
centrifugal pump have a fault, other frequency components can appear, the previously
mentioned frequency can increase, decrease in amplitude or even can dissapear. The broadband
noise may also increase and dominate the spectra due to the presence of faults in the pump (such

as cavitation for example).

3.2.3 Main faults in a centrifugal pump

The main faults in pumps are associated with impeller damages [9], [10], rotor faults,

seals faults, cavitation [11] and bearing faults [11], [12]. A classification of the main
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faults in a centrifugal pump might be done according to the component affected by the
fault into electrical faults, mechanical faults and hydraulic faults. The electrical faults
are associated with the pump motor, mechanical faults are associated with bearings and
shaft and hydraulic faults are associated to hydraulic parts of the centrifugal pump. In
this Thesis, we have focused on hydraulic faults. The hydraulic parts of the centrifugal
pump are the impeller, the blades, the volute, the inlet and the outlet. The functionality
of the hydraulic parts is to convert mechanical energy from the shaft to hydraulic energy

induced into the liquid pumped by the pump [17].

The hydraulics faults are produced in the impeller, the blades and the volute.
The hydraulics faults associated with them are: dry running, impurities fixed on the
impeller (causing inbalance), wear of the impeller (leading edge fault, trailing edge
fault), blocked or partial blocked flow field inside the impeller, blocked impeller
rotation, wear of the sealing ring, missing sealing ring, loss of the impeller, cavitation,
instability, rotating stall and pressure pulsations [13], [18], [19], [20]. The main effects
of these faults are changes in the value of pressure and the load torque generated by the
impeller at a given flow. Moreover some of the faults can induce pressure oscillations.
These pressure oscillations can be either harmonics of the rotational frequency, or noise
like signals covering a larger frequency span. Cavitation may produce the wear of

impellers and piping system.

The inlet and the outlet part of the pump and the pump system can be considered
apart. The faults in the inlet part of the pump are low pressure and obstruction at the
inlet pump. The main effect of these faults is that the inlet pressure to the impeller
becomes too low. The faults in the outlet part of the pump include leakage on the outlet
pipe and obstruction of the outlet pipe. The main effects of these faults are leakages
from the system and decreased pressure produced by the pump.

3.2.4 Considered Faults in a centrifugal pump in this Thesis

In this Thesis, we focus on impeller-related faults (leading edge damage, trailing edge

damage and plate damage), system faults and seal fault.
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Impeller-related faults were artificially created cutting the leading edge of all
vanes for the leading edge fault and cutting the trailing edge of all vanes for the trailing
edge fault [14]. The plate fault was created removing part of the plate. There are certain
flow phenomena that occur in the fluid flow when it enters the inlet part of the pump,
pass through the impeller and the volute up to the outlet part of the pump. The
modification of the impeller geometry affects the flow patterns inside the centrifugal
pump. When plate damage, trailing edge damage or leading edge damage occur flow
pattern changes [13], [14], [19], [20]. These flow pattern changes affect mainly VPF
and their harmonics [13]. They can also produce broadband noise due to the vortices
generated in the clearances between the impeller and the volute [18]. The mechanism of
production of flow patterns inside the pump is not very well understood yet [19] and

this subject is outside the scope of this Thesis.

The system faults considered in this Thesis consist in the addition of strange
obtjects and impurities to the fluid such as PVC (polyvinyl chloride) balls, sand, sand
and paper. This can lead to partial obstruction of the piping system, producing low flow
rate and the generation of turbulence (broadband) noise [8], [15]. The addition of

impurities can produce degradation of the pump itself in long term.

3.2.5 Audio and Vibration Database acquisition from a centrifugal pump

In order to study audio and vibration signals simultaneously, we have recorded vibration
and audio samples from a circulating centrifugal pump in an experimental test rig. This
subsection describes the acquisition process of the database and the database generated.

A circulating centrifugal pump is a pump designed to circulate a fluid through a
closed system. A closed system is one which runs in a loop, with the pump discharge
line eventually returning back to the pump suction. The pump works like any
centrifugal pump, except they only need to overcome the friction of the piping system.
Circulation pumps are primarily used for circulation of water in closed systems e.g.
heating, cooling and air conditioning systems as well as domestic hot water systems and
in applications that require chemicals to be regularly mixed into the fluid, such as pool

and spa pumps.
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3.2.5.1 Acquisition system

A diagram of the acquisition system is shown in Figure 3-10.

FRONT-END .
\ .~ SOUNDCARD

.

_ MICROPHONES
with acquisition software

.. ACCELEROMETERS
MACHINERY

Figure 3-10: Diagram with the components of the acquisition system

The acquisition system consists of two microphones and two accelerometers
connected to a front-end. The outputs of the front-end are connected to the Line-In input
to two soundcards. The soundcards are connected to a PC with an acquisition software
[23]. The characteristics of the sensors, the front-end and the soundcards are shown in
Table 3-1 and Table 3-2.

TABLE 3-1: CHARACTERITICS OF AUDIO AND VIBRATION SENSORS

Microphones Accelerometers
Model CESVA PA25/C-250Preamplifier CESVA CESVA
(PA-25) + 4” Prepolarised condenser AC001 AC006

microphone(C-250)
Frequency C-250 (re 1 kHz): 3.15Hz-20kHz 0.7-10kHz 0.35-2.6kHz
range (x2dB) (£10%) (£10%)
(pressure or omnidirectional
microphone)

Sensitivity (1kHz): 50mV/Pa 100 mV/g 1000 mV/g
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software. This system is able to record signals from different soundcards without cuts,

in a continuous way and for large periods of time [23]. The sample frequency of the

TABLE 3-2: CHARACTERITICS OF FRONT-END AND SOUND CARDS

Front-end

Sound Cards

Model

CESVA FC-822

Sound Blaster Audigy 2NX

Characteristics

.8 input/output  channels,
.possibility of  connecting
microphone or accelerometers
.adjustable gain

Jlow-pass and high-pass filters
.Inputs Band width: 0.3Hz-
20kHz

.USB port

.Line-in

.Mic-in

.Up to 96kHz (24-bits)

The audio and vibration samples were collected with a multichannel acquisition

recording system was set to 44100 Hz.

3.2.5.2 Characteristics of the pump

A centrifugal circulating pump with in-line connections and dry rotor (ALP800, brand
DAB) is used to acquire audio and vibration signals. The diagram of the pump is shown
in Figure 3-11 and the measurements of the pump in Table 3-3. The main characteristics

of the circulating pump are shown in Table 3-4.

H3

DNA

Figure 3-11: Diagram of the ALP800 pump
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TABLE 3-3: MEASUREMENTS OF THE PUMP ALP800
PumMP MEASUREMENTS
A B H H1 |H2 | H3 | DNA DNM Volume | Weight
NPT* NPT* (m3) (Kg)
300 | 136 |[180 |90 [90 |190 |11/2"G-M |11/2"G-M |0.017 7.5
(3.81cm) |(3.81cm)
“NPT: American Standard Pipe Taper Thread.

TABLE 3-4: MAIN CHARACTERITICS OF THE PumMP ALP800

Type of motor Induction motor, two-pole (single-phase)

RPM 2925 (= 48.75 Hz)

P2 Nominal Power (kW) 0.37 kW (0.5 HP)

Tension (50 Hz) 220-240 V

Current 14 A

Horse Power 0.5HP

Pumped fluids The machine has been designed and built for pumping

water, clean, free from solids or abrasive substances, non
viscous, non aggressive, non crystallized, chemically
neutral, close to the characteristics of water

Maximum working | 10 Bar (1000 Kpa)

pressure

Liquid temperature range -15°C to +120°C

Standard apertures Unflanged, 1 1/2" M GAS
Maximum ambient | +40 °C

temperature

Relativity humidity of the | Max. 95%

air

Insulation class F

Working Range From 0,6 to 8,4 m3/ with head up to 21 metres
Motor Protection IP55

Installation With motor in a horizontal position

Material of pump body and | Bronze
motor support

The impeller and seal characteristics of the pump are also shown in Table 3-5
and Table 3-6 respectively.

TABLE 3-5: IMPELLER CHARACTERITICS OF PumP ALP800

Impeller characteristics

Material Plate Plate Number | Vanes | Vane-passing
Diameter | Circunference | of vanes | Length | frequency
Technopolymer | 8 cm 25 cm 7 5cm 341.25 Hz
(7 vanes x 48.75 Hz)

Universidad de Las Palmas de Gran Canaria 93




PhD Dissertation

TABLE 3-6: SEAL CHARACTERITICS OF PumP ALP800

O-ring Seal characteristics

Type Material Diameter Height

O-ring Carbon/Ceramics 2cm 50 mm

Figure 3-12 shows two different views of the pump casing, the volute and the
inlet and outlet part of the pump. In Figure 3-13 the casing is dissambled and the
impeller mounted on the rotor is shown (left part of Figure 3-13). The right part of
Figure 3-13 shows the volute with the inlet and outlet part of the pump. Figure 3-14
shows a different view of the impeller mounted on the rotor and two views of the

impeller.

Figure 3-13: Photos of the pump ALP 800. Impeller mounted on the
rotor (left). VVolute, inlet and oulet pump (right).
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"

Figure 3-14: Photos of the pump ALP 800. Impeller mounted on the
rotor (left). Different views of the impeller (center and right).

3.2.5.3 Conditions recorded and Generation of faults

In this Thesis, we consider faults associated to the impellers (plate faults, leading edge

fault and trailing edge fault), seal fault and system faults.

Four different impellers were used in the experiments. Table 3-7 shows the
impellers used and the faults created in the impeller or in the pump system for each

impeller.

For impeller 1, faults in the plates of impeller were created. Then, the impeller 1
was replaced by a free-fault impeller (impeller 2) and a spontaneous seal fault was
detected. After detecting this fault, the seal was replaced. Then, a set of different objects
and materials including sand, paper and PVC balls were added to the water in the tank
in order to simulate system faults. For impeller 3, faults in the leading edge of the
impeller were created. Finally, for impeller 4, faults in the trailing edge of the impeller

were considered. For each impeller, normal (free-fault) condition was also recorded.

TABLE 3-7: IMPELLERS AND CONDITIONS
Impeller # | Conditions Recorded
Impeller 1 | Normal/Plate Fault
Impeller 2 | Normal/Seal Fault and System Fault
Impeller 3 | Normal/Leading Edge fault
Impeller 4 | Normal/Trailing Edge fault

The generation of each fault is described in this subsection: impeller-related

faults, seal fault and system faults.
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Plate Fault

Three different parts of the impeller plate were removed. The first part was removed
from the hub plate (the plate of the impeller front, the plate facing the rotor). The second
part was removed from the shroud plate in the opposite position from the first part. The
third part was removed from the hub plate just side by side the second part removed.

This fault simulates a broken impeller due to a crack present in the impeller.

Figure 3-15 shows the impeller in normal condition and the impeller with part of

the plates removed.

Figure 3-15: Photos of the plate fault in impeller. Upper left: impeller
in normal condition. Upper right: one part of the plate removed.
Lower left: two parts of the plate are removed. Lower right: the third
part of the impeller was removed.

Leading Edge Fault

The leading edge fault (LED) consists in removing part of the vane leading edge (the
region near the impeller eye) of all vanes. Three different lenghts were used. Table 3-8
shows the original length of the vane and the millimeters of vane removed. This fault

simulates the degradation of impellers along time due to particles or impurities that can
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be in the water. Figure 3-16 shows the impeller used for LED fault with 5mm of vane

leading edge removed from all vanes.

TABLE 3-8: SEVERITY OF LEADING EDGE FAULTS

Fault Severity | Length vane reduction Length of the remaining vane
None 0 50 mm

Slight 10% of the total length = Smm 50mm - 5Smm = 45 mm
(LEDS)

Medium 20% of the total length = 10mm | 50mm - 10mm = 40 mm
(LED10)

Severe 30% of the total length = 15mm | 50mm - 15mm = 35 mm
(LED15)

Figure 3-16: Photo of the impeller with leading edge fault. In this
case, the slight fault (5mm from all vane leading edges were removed)
is shown.

Trailing Edge Fault

The trailing edge fault (TED) consists in removing part of the vane trailing edge (the
region at the tip of the vane) of all vanes. Three different lenghts were used. Table 3-9
shows the original length of the vane and the milimiters of vane removed. This fault
simulates the degradation of impellers along time due to particles or impurities that can
be present in the water. Figure 3-17 shows the impeller used for TED fault with 5mm of
vane trailing edge removed from all vanes.
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TABLE 3-9: SEVERITY OF TRAILING EDGE FAULTS

Fault Severity | Length vane reduction Length of the remaining vane
None 0 50 mm

Slight 10% of the total length = Smm 50mm - Smm =45 mm
Medium 20% of the total length = 10mm | 50mm - 10mm = 40 mm
Severe 30% of the total length = 15mm | 50mm - 15mm = 35 mm

Figure 3-17: Photo of the impeller with trailing edge fault. In this case,
the slight fault (5mm from all vane trailing edges were removed) is
shown.

Seal rubber fault

The seal fault was produced spontaneously while impeller 2 was being recorded in
normal condition. The sealing type of the pump is RS-1. The assembly of the impeller
with the rotor is configured with a ceramic "O-ring" type stationary seat and is also
equipped with a "set screw collar”. The RS-1 type is an "Elastomer (or Rubber) bellows
seal". When we open the pump, we discovered that the ceramic "O-ring" was displaced
during the pump operation. This caused the friction between the O-ring and the impeller
and a screech sound was audible. In Figure 3-18 the impeller with the O-ring is shown.
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System faults

4

Figure 3-18: Photo of the o-ring of the impeller of the AL P800 pump.

The ALP800 pump is designed and built for pumping water, clean and free from solids.

We have added different solids to the water to cause damage and partial obstruction to

the pump. This causes a decrease of water flow.

The different solids added to the water are enumerated in Table 3-10. The

characteristicas of the solids and their concentration in water are also shown in the table.

TABLE 3-10: CHARACTERISTICS OF SOLIDS ADDED TO THE PUMP

Conditions

Characteristics

Concentration

Sand

Fine sand from "Las
Alcaravaneras" beach
Grain diameter range:
0.0625-2 mm

2kg/50l

Sand + Paper

Standard paper A4 80gr

2kg/50I (sand), 2kg/501(paper)

PVC balls (no sand
anymore)

Polyvinyl chloride balls
used for airsoft pellets
Diameter: 6 mm
Weight: 0.12 g

2000 balls /50 1
(2409/501)

Figure 3-19 shows the reservoir with sand and Figure 3-20 shows the PVC balls.
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Figure 3-19: Photo of the reservoir with the sand added to simulate
strange objects or particles in the system.

Figure 3-20: Kind of PVC balls (6 mm of diameter) used to simulate
strange objects in the system [29].

3.2.5.4 Experimental set-up: sensor positions

The room where the experimental set-up is placed is shown in Figure 3-21. The room

has a 29 dB of acoustic isolation respect aerial noise.
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Figure 3-21: Drawing of the room for the experimental set-up with the
measurements in mm. A squematic of the set-up is also shown.

A squematic of the experiment setup is also shown in Figure 3-21, where the
pump (in green), the reservoir with water (in blue) and the pipes (in orange) are shown.
The flow direction is also shown. A photograph of the experiment is shown in Figure
3-22, where the circulating pump and the sensors are shown. The elements of the
experimental set-up are the following: a centrifugal pump, 4 meters of pipes of 3.81 cm
(1.5 inches) of diameter connected to the inlet and outlet of the pump, a pressure gauge
connected to the output of the pump, the reservoir and a trolley in which the reservoir
and the pump are placed on. The reservoir is filled with 50 liters of water and a closed
loop is formed with pipes. The pump is at the same height of the reservoir because is a

circulating pump.

Two microphones were placed in the pump inlet and in the pump outlet.
OutletMicro points the pump outlet and InletMicro points the pump inlet (see Figure
3-22). The microphones are expected to obtain information about the flow changes. The

distance between the microphone and the pump used in different works in centrifugal
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pumps varies from 5cm to 100cm [16],[18],[31],[32]. These works focus on detection of
cavitation. Iniatially, the distance of the microphones from the pump was varied from
2cm to 100cm (in steps of 2cm from 2cm to 20cm and in steps of 5 cm from 20cm to
100cm) and audio signals were taken. Their spectra were visually inspected for
searching peaks at the discrete frequencies (rotor frequency, vane passing frequency and
their harmonics). The discrete frequencies were observed in all cases but from 50cm to
100cm the amplitude of the discrete frequencies vanished progressively. Taking into
account that in industrial scenarios, the background noise is usually high, microphones
should be located near the source [33]. For this reason, microphones were placed at 5
cm from the pump in this Thesis.

Accelerometers were placed in two orthogonal directions over the pump casing:
accelerometer CESVA ACO001 with sensitivity 100 £ 5 % mV/g (‘RadiallnletAccel’ in
Figure 3-22) and accelerometer CESVA ACO006 with sensitivity 1000 £ 10 % mV/g
(‘RadialAccel’ in Figure 3-22). 'RadiallnletAccel’ is placed on the volute in the radial
plane (that is, the plane perpendicular to the rotor direction) and near the inlet,
'RadialAccel' is placed over the volute in the radial plane and perpendicular to
“RadiallnletAccel”. A third accelerometer was placed in axial direction (the rotor
direction). However, this accelerometer is not considered in this Thesis. The

accelerometers are expected to obtain information about the flows inside the volute.

Rthccé] x

‘ RadialAccel

S

' OutletMicro

»"

InletMi

T

Figure 3-22: Sensor Placement for the Experimental set-up.
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3.2.5.5 Database Structure

The files of the database are in .mat format. The content of each file in the database is
described in Table 3-11. The names of the variables stored in each file of the database
are enumerated in the first column of Table 3-11. In the second column the possible
values of the variables are enumerated and described.

The name of the files in database contains all the information to know the pump
condition, the impeller used in the recording, the severity of the fault and the number of
the file. The name of the files in the database has the following format:

CON_ImI_SevS_XX.mat
CON is the condition. See variable condition in Table 3-11.

I is the number of the impeller. See variable impeller in Table 3-11.
S is degree of severity in a fault. See variable severity in Table 3-11.

XX is the number of the file.

For example, LED_Im3_Sevl 0l1.mat is a file with LED condition in impeller 3

with severity 1. The number of the file is 01.
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TABLE 3-11: CONTENT OF A SAMPLE FROM THE DATABASE

condition

String with the name of the condition. Possible values are:

.‘nor’: normal condition

.‘pla’: plate fault condition.

.‘sea’: plate fault condition.

.‘led’: leading edge fault condition.
.‘ted’: trailing edge fault condition.
.‘san’: sand in water condition.

.‘sap’: sand and paper in water condition.
. ‘pvc’: balls of PVC in water

impeller

Contains the number of the impeller used in the recording. Possible
values are:

1: impeller 1
2: impeller 2
3: impeller 3
4: impeller 4

multisigOri
ginal

Matrix that contains the audio and vibration signals of 59 seconds (with a
sample frequency of 22050 Hz). Each row of the matrix corresponds to
the signal acquired for a sensor.

Sensorposit
ion

Type cell. Each cell contains the name of the sensors in the order that are
stored in the matrix multisigOriginal.

radialInletAccel' 'radialAccel' 'outletMicro' 'inletMicro'
The data of 'ratialinletAccel’ is stored in the first row of the

multisigOriginal matrix. The data of 'radialAccel' is stored in the second
row of the multisigOriginal matrix and so on.

severity The severity of the fault. Possible values are:
0: no severity.
1: slight severity.
2: medium severity.
3: higher severity
No severity means that the file corresponds to a normal condition or that
the file corresponds to a fault with no severity associated (for example,
seal fault).
1 can correspond to a plate fault with one part of plate removed, to a LED
or TED fault of 5mm.
2 can correspond to a plate fault with two parts of the plate removed, to a
LED or TED fault of 10 mm.
3 can correspond to a plate fault with three parts of the plate removed, to
a LED or TED fault of 15 mm.

dateacq String with the data of the data acquisition.

Example: ‘21-Jul-2011°
File recorded 11 July 201.
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3.2.5.6 Numbers of samples for each condition

Table 3-12 shows the different conditions recorded for ALP800 pump. The first column
of the table shows the impeller used, the second column shows the pump condition and
the third column shows the number of samples acquired for each condition. Each

sample has four signals of 59 seconds. Each sample was obtained in different recording

sessions.
TABLE 3-12: RECORDED CONDITIONS FOR EACH IMPELLER
Impeller # | Condition Number of samples per
condition
1 Normal 20
1 1 Plate 20
1 2 Plates 20
1 3 Plates 18
2 Normal 20
2 Seal Ring 9
2 Sand 23
2 Sand and Paper 62
2 PVC balls 18
3 Normal 20
3 LED 5 mm 20
3 LED 10 mm 20
3 LED 15 mm 20
4 Normal 20
4 TED 5 mm 20
4 TED 10 mm 20
4 TED 15 mm 20

3.2.6 Pump Database Preprocessing and Baseline signals

Each original file of the database is 60 seconds at a sample frequency of 44.1kHz (more
than twice the bandwidth of the microphones). As the amplitude in the spectra of the
audio signals drops around 15kHz and the band-width of the accelerometers is up to
10kHz, each file of the database was decimated by 2. The new sample frequency is
22050Hz. To decimate the files a linear phase FIR (finite response) filter with order 30
is used. Finally, we remove the beginning of the signal and we obtain a signal of 59

seconds.

Universidad de Las Palmas de Gran Canaria 105



PhD Dissertation

In the following figures, examples of spectra of vibration and audio signals from

the centrifugal pump test rig in normal (free-fault) condition are shown.

Radial Inlet Accel: Normal Condition ([0-1000]Hz)
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Figure 3-23: Spectrum in range [2.7-1000]Hz of a 8192 points
vibration frame (371.5ms) from sensor RadiallnletAccel. The higher
peaks are marked with red circles and the frequency value is shown.

Radial Inlet Accel: Normal Condition ([1000-11025]Hz)
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Figure 3-24: Spectrum in range [1000-11025]Hz of a 8192 points
vibration frame (371.5ms) from sensor RadiallnletAccel. The higher
peaks are marked with red circles and the frequency value is shown.
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Micro Inlet: Normal Condition ([0-1000]Hz)
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Figure 3-25: Spectrum in range [2.7-1000]Hz of a 8192 points audio
frame (371.5ms) from sensor Microlnlet. The higher peaks are marked
with red circles and the frequency value is shown.

Micro Inlet: Normal Condition ([1000-11025]Hz)
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Figure 3-26: Spectrum in range [1000-11025]Hz of a 8192 points
audio frame (371.5ms) from sensor Microlnlet. The higher peaks are
marked with red circles and the frequency value is shown.

Figure 3-23 and Figure 3-24 show the normalized spectrum of a vibration signal
from sensor Radial Inlet Accel in the frequency range [2.7-1000]Hz and [1000-
11025]Hz respectively. Figure 3-25 and Figure 3-26 show the normalized spectrum of
an audio signal from sensor Inlet Micro in the same frequency ranges. Both vibration
and audio signals were acquired simultaneously. Focusing on the frequency range [2.7-
1000]Hz in the case of the vibration spectrum, peaks appear at 46Hz, 97Hz, 196Hz,
339Hz, 683Hz, 876Hz, 976Hz corresponding at the rotor frequency (1X), 2X, 4X, vane-
passing frequency (VPF), 2VPF, 18X and 20X respectively. In the case of the audio
spectrum, peaks at 1X, 2X, 4X, 6X, 2VPF and 20X appear with different amplitudes at
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those of the vibration spectrum. It can be observed another distinctive peak at 487Hz
(10X frequency) in the audio spectrum. This peak is due to the fan of the pump, which
has 10 blades. It can be observed that peaks at rotor frequency and vane-passing

frequencies and their harmonics are present in both audio and vibration signals.

Regarding the frequency range [1000-11025]Hz, both the vibration spectrum
and the audio spectrum show a peak at 1077Hz, a frequency multiple of the rotor
frequency (22X). Low amplitude at this frequency (22X) would be expected. It is
believed that this peak is due to structural resonances. The same observations were

made in vibration and audio signals of a centrifugal pump in [30].

The rotor frequency and vane-passing frequency and their harmonics dominate
in spectra for both vibration and audio signals. This confirms the vibroacustic
mechanism in a centrifugal pump when operating without faults explained earlier in this
Chapter.

3.3 Contributions of this Chapter

The first part of this Chapter contributes with the collection of different bearing
vibration databases from different repositories in internet to form a corpus. The second
part of this Chapter contributes with the acquisition of a vibration and audio database

from a centrifugal pump in the DPDS.
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CHAPTER 4
Contributions to vibration bearing fault

diagnosis and fault identification

This Chapter focuses on vibration features in bearing fault diagnosis and bearing
degradation. The contributions of this Thesis on bearing fault diagnosis are based on
nonlinear measures. The nonlinear energy operator Teager-Kaiser is proposed as a
preprocessing tool for bearing fault diagnosis followed by statistical and energy based
feature extraction to diagnose between normal bearing condition, inner race fault, outer
race fault and ball fault conditions. A new methodology to assess the severity of a fault
in bearings (i.e.: the progression of the fault from an onset fault to a developed fault) for
outer race fault and inner race fault using wavelet package transform and complexity

measures Lempel-Ziv complexity is also proposed.

In this Chapter, we explain our proposals and the experimentation carried out.
Finally, we show the results and the conclusions. The first part of the Chapter (section
4.1) is devoted to the experiment of the nonlinear energy operator Teager-Kaiser. The
structure is based on papers published by the author of this Thesis [1]-[3]. The second
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part of the Chapter is devoted to the degradation experiment. The structure is based on a

published conference [4] and on an ongoing paper.

4.1 Proposal of nonlinear Teager-Kaiser energy operator for bearing fault

diagnosis and bearing degradation assessment

As stated in Chapter 3, vibration signals generated by bearings with discrete faults
located at the inner race, at outer race or at the rolling elements can be viewed as an
amplitude modulated signal in which the carrier is the resonance frequency of the
bearing (the frequency excited by the impacts of the discrete fault) and the fundamental
frequency of the modulating signal (the envelope) is the bearing characteristic
frequency of the faulty bearing. In Figure 4-1, repeated here for convenience, the
vibration signals for a bearing with inner race, outer race and ball fault are shown along

with their corresponding envelope signals.

-
Outer Race

L—.l— 1/BPF(O)

Envelope Signal

Envelope Signal

Figure 4-1: Time Vibration signals for bearings with outer race fault,
inner race fault and ball fault. Source: [28].
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In recent decades, much attention has focused on the development of new digital
signal analysis methods for modeling bearing vibration signals so as to discriminate

between normal operation and different faulty conditions.

Some conventional methods, after sampling the vibration signal v(t) with sample

n
frequency f,, feature the vibration signal v(n) = V(f_J with statistical measures of first,

S
second or higher order such as variance, skewness or kurtosis and with measures such
as crest factor, impulse factor and root mean square which feature the impulsive nature

of the bearing vibration signal [5].

Other methods model the vibration signals generated by faulty bearings as an
amplitude modulated (AM) signal, defined as:

v(n) = A(n) cos(2f,n) = Acos(2, n) cos(24f, n) [Eq. 4-1]

where f, is the resonance frequency of the bearing and A(n) the AM signal or signal

envelope whose f; is the bearing fault characteristic frequency that have to be detected.

The AM signal can be extracted using the high frequency resonance analysis or

envelope analysis [6] which implies band-pass-filtering the v(n) bearing vibration
signal. Then, Fourier transform is used to obtain f,, . The main disadvantage of this

technique is the difficulty in the correct selection of the central frequency and the
bandwidth of the band-pass filter.

Recent methods in bearing fault diagnosis include more advanced signal
processing methods such as spectral kurtosis [7], wavelet analysis and empirical mode
decomposition (EMD) [8]. Spectral kurtosis offers a way of designing optimal band-
pass filter for bearing fault diagnosis. Wavelet analysis and EMD are time-frequency
techniques that decompose the raw vibration signal in different frequency bands. Then,
several features such as entropy or statistics are extracted from the different frequency

bands.
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Recently, as an alternative to obtain the AM signal from the raw vibration signal,
[6], [10] proposed the nonlinear Teager-Kaiser energy operator (TKEO) [11]. The AM
signal and the frequency modulated (FM) signal from a mono-component AM-FM
signal can be extracted using TKEO [12]. H. Li et al. [9] proposed TKEO to extract the
AM signal (AM-TK signal) from bearing vibration signal, without using a band-pass
filtering process, just with some simple operations over TKEO. Liang et al. [10]
proposed the application of the TKEO over the raw bearing vibration signal without

computing the AM signal. Then, the Fourier transform is applied and the f is

identified.

In this Thesis, we propose to use TKEO to obtain the vibration signal in the
Teager—Kaiser domain (TK signal) and then to feature it with statistical and energy-
based features. The objective is to show how the statistical and energy-based features
extracted from the TK signal outperform the diagnosis results when extracting the same
features from the raw time vibration signal (time signal), the AM signal obtained by
pass-band filtering (AM signal) and the AM signal obtained by using the TKEO (TK-
AM signal). A comparative analysis between statistical and energy-based features
extracted from TK signal, TK-AM signal, AM signal and time signal (T signal) is

accomplished.

Next, the conventional envelope analysis and the Teager-Kaiser energy operator
are explained. From the conventional envelope analysis the AM signal is extracted. The
TK signal is extracted directly from the Teager-Kaiser operator and the TK-AM signal
is extracted from the Teager-Kaiser operator after doing some calcularions. The T signal

is the raw vibration signal.

Conventional Envelope analysis: AM signal

The conventional analysis to obtain the amplitude demodulated signal ( A(n) in [Eq.
4-1]) is called envelope analysis or high frequency resonance analysis [6]. This
procedure implies the following steps: (i) band-pass filtering the bearing vibration
signal, (ii) application of the Hilbert transform to the band-pass filtered signal, and (iii)

low-pass filtering the resulting signal. The step (i) requires a visual inspection of the
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bearing vibration spectrum to estimate the central frequency and the bandwidth of the
band-pass filter.

Teager-Kaiser enerqy operator: TK-AM signal and TK signal

The Teager-Kaiser energy operator was derived by Kaiser in 1990 [11] to measure the
energy of the mechanical process that generated a single time-varying signal. TKEO can
detect modulations in AM-FM signals by estimating the product of their time-varying
amplitude and frequency. It is considered as a high-resolution energy estimator. The
TKEO for continuous time signals v(t) is:

[Eq. 4-2]
v V()] = V()] - v(©)v(t)
where v(t) = d%t
It can be shown [11] that the discrete version of the TKEO is:
wv(n)]=v?(n) —v(n —1v(n +1) [Eq. 4-3]

Maragos et al. [12] developed a method to estimate the amplitude envelope (AM
signal) and the instantaneous frequency (FM signal) of speech formant signals using the
TKEO. The amplitude modulated signal can be extracted from TKEO (TK-AM signal)
as follows [12]:

2w[v(n)] [Eq. 4-4]

O D3]

This technique has been applied in bearing fault diagnosis in [9] to extract the

TK-AM signal without using a band-pass filter.

The direct application of TKEO over the raw vibration signalv(n) ([Eq. 4-3])

[10] can perform more effective bearing fault detection. In the TK domain the faulty

samples can be easily discriminated because the TK signal highlights the characteristic
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impulse train which is due to the impact of the rollers with the defect. This effect can be
seen in Figure 4-2 which shows an example of TK signals for normal and fault
conditions. Therefore, it is expected that features obtained from the TK signal will
discriminate effectively between normal and fault bearing conditions without estimating
the AM envelope. The direct computation of TKEO over the vibration signal has the
following advantages: (i) it does not require the use of a band-pass filter. Therefore, the
appropriate estimation of the central frequency and bandwidth of the band-pass filter is
avoided.; (ii) Three adjacent samples of the signal are used to compute the TKEO. This

fact makes the TKEO implementation very simple and computationally efficient.

0.8 TK signal for N condition 1 TK signal for IR condition
206 o
E E
%_ 0.4 =0
S g
<0.2 <
0 : g ) . .
0 0.05 0.1 0.15 0 0.05 0.1 0.15
Time(s) Time(s)
TK signal for OR condition 0.8 TK signal for B condition
506 0 0.6
2
=04 =04
£
<02 < 0.2}
0] ; . - 0 ! ‘
0 0.05 . 0.1 0.15 0 0.05 0.1 0.15
Time (s) Time (s)

Figure 4-2: Teager-Kaiser transformed signals (TK signals) for
different bearing conditions: normal condition (upper-left), inner race
faul condition (upper-right), outer race fault condition (bottom-left)
and ball condition (bottom-right).

From the AM signal, the TK-AM signal and from the TK signal a set of
statistical, energy-based and entropy features are extracted and a performance
comparison between the different methods are carried out. The extracted features from
the AM signal, the TK-AM signal and the TK signal are: features that characterize the
amplitude [1]: peak value and peak-to-peak value; statistical measures: standard
deviation, skewness and kurtosis; third, features that quantify the energy in the signal
[1]: root mean square (rms), squared mean root (smr); fourth, features that quantify the
impulsive nature of the vibration signal [1]: crest factor (peak value/rms), L factor (peak
value/smr), shape factor (rms/peak value), impulsive factor (peak value/mean) and
finally the Shannon entropy that measures the disorder or complexity of a system [14].

Finally, we have the featured AM signal, the featured AM-TK signal and the featured
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TK signal.

The proposed method is first applied to the Case Western Database to show how
the proposed method outperforms the method that uses statistical features in fault
diagnosis, i.e. discriminating between different bearing faults: inner race fault (IR),
outer race fault (OR) and ball fault (B). The diagram of the experiment for fault
diagnosis is shown in Figure 4-3. Then, the proposed method is applied to the UH-60
database. As this database is a run-to-failure database (fault degradation) the method is
applied with some differences which are explained in the corresponding section. See
Figure 4-4 for the diagram of the experiment for fault evolution along time. In the next
subsection the singularities of the application in each database are explained and the

results are shown.

Which fault?
Fault diagnosis: outer race fault, inner race fault, ball fault

Machine’s signature: Vibration
(Case Bearing Database)

Method 1 (Proposal): Method 2: Method 3: Method 4:
featured TK signal | featured T signal | featured AM signal | featured TK-AM signal

Evaluation of the methods:
Neural networks and LS-SVM

Figure 4-3: Diagram of the experimentation in bearing fault diagnosis.
The proposal is compared with other methods in the state of the art
and an evaluation with two classifiers is carried out.

Fault evolution

Machine’s signature: Vibration
(UH-60 Degradation Database)

Method 1 (Proposal):
featured TK signal

Fault detection

Figure 4-4: Diagram of the experimentation in bearing fault evolution.
The proposal is applied to a run-to-failure bearing vibration database.
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4.1.1 Evaluation and results of the proposal for bearing fault diagnosis

Following the diagram in Figure 4-3, the proposed methods 1 to 4 were evaluated in the
Case Vibration Bearing database for fault diagnosis. To quantitative evaluate the
proposed method, two classifiers are used to evaluate the discrimination ability of the
features between normal condition, IR fault, OR fault and B fault: a neural network
classifier and a Least Square-Support Vector Machine (LS-SVM) classifier. Moreover,
the features extracted from the TK signal are sorted by relevance order with the floating
forward feature selection procedure. Then, features from the different signals are
evaluated (in order of relevance) with the two mentioned classifiers. A detailed
explanation of the experimentation is carried out in the following paragrahps and the

results are shown.

Frame segmentation and feature extraction

First, the mean is removed from the vibration signal of each file of the database and
then the vibration signal is normalized between -1 and 1. Then, the vibration signal is
divided into time frames of 0.17 seconds which are overlapped by 33%. Each frame
comprises 5 revolutions of the shaft. Each frame is transformed to the TK domain using
[Eqg. 4-3]. Then, the mentioned features are extracted from the TK signal. We call the
features extracted from the TK signal TK features. In order to compare the results, the

same features are also extracted from the time vibration signal v(n) (T features), from

the AM signal by means of envelope analysis (AM features) and from the AM signal by
means of the Teager-Kaiser method (TK-AM signal).

Relevance of the TK features

In order to select the subset of TK features with gives the best success rate, the TK
features are sorted by relevance order using the sequential floating forward selection
(SFFS) algorithm [22] and then are evaluated incrementally with the neural network
classifier and the LS-SVM classifier. SFFS is an heuristic algorithm that search the
subset of features of the original set which has the best success rate. The procedure to

sort the features by relevance order using the SFFS is described next.
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The database is split into a training subset and a testing subset by choosing
randomly three files from normal condition and nine files from each fault condition (30
files in total) for the training set and leaving the remaining files for the testing set (10
files in total). The data in the training and testing setare z-score normalized using the
mean and variance of the training set. The SFFS algorithm is applied 60 times with
different training and testing subsets randomly chosen. As a result, a different subset of
best features is obtained each time the SFFS algorithm is applied. The classifier used by
the SFFS to obtain the success rate is a 1-nearest neighbor classifier. At the beginning
of the experiment, a 60(times) x 12 (features) matrix is initialized at zero values. Each
time the SFFS is applied a subset of best features is obtained. Their position in the
matrix is marked with ‘1°. At the end of the 60 repetitions, each column is summed so
as the number of times a feature is within the subset of best features is obtained. Finally,
the features are sorted by relevance in descending order: the feature that most times
appears in the subset of best features is the most relevant one and the feature that least

times appears in the subset of best features is the least relevant one.

Classification

Once the TK features are sorted by relevance order, they are incrementally evaluated
using two classifiers: a neural network classifier and a LS-SVM classifier. The
incremental evaluation of the features consists in the following: first, the most relevant
feature is evaluated, then the most relevant is evaluated along with the second most
relevant and so on. As a result, the subset of TK features which gives the best success

rate can be selected. The same procedure is done with the T, AM and TK-AM features.

Neural Network Classifier

The features are fed into a multilayer feed forward neural network (NN) with one
hidden layer trained to discriminate between normal condition, IR fault condition, OR
fault condition and B fault condition. The neural network is a standard classifier and can
be used to reproduce the results easily. Supervised learning is carried out using the
resilient back propagation train algorithm [23]. The number of neurons in the hidden

layer is selected using cross-validation technique and the output layer has 4 neurons.
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The NN input is the vector of features belonging to one frame: p=[p,,... ps]" (T is

transposition of the vector p) and R is the number of features in the vector. As the
features are evaluated incrementally, when one feature is evaluated R = 1, when two
features are evaluated R = 2 and when all the features are evaluated R = 12. The
activation functions for the hidden layer are tansigmoid functions (hyperbolic tangents).
The output layer of the NN has 4 nodes corresponding to the 4 bearing conditions: &’

=[a’,a;,a;,a;]", where a’ is the output for normal condition, aZ is the output for IR

fault condition, aZ is the output for OR fault condition and a? is the output for B fault

condition. The activation functions for the neurons of the output layer are linear

activation functions.

In order to train and test the NN, the database is split into a training subset and a
testing subset and the data are normalized in the same way of the feature selection
procedure. The training subset is used to choose the size of the hidden layer (i.e. the
number of neurons of the hidden layer S). The NN is trained with varying S from 1 to
20. For each S value, the training subset is subdivided using the 3-fold cross-validation
technique, i.e. the training subset is divided in three different subsets: two of them are
used to train the neural network and the remaining one (called validation subset) is used
to compute the success rate. The value of S with the best success rate is chosen as the
size of the hidden layer. Finally, the NN with the final configuration is trained and then

evaluated with the testing subset.

In the testing phase, each frame is classified according to the maximum output
value of the neural network. For example, if a’ =max{a’,a’,aZ,a’}, the frame is

classified as normal condition. Then each file is classified between normal, IR, OR or B
fault conditions according to the more voted rule, i.e. if the majority of the frames are
classified as normal condition, the file is classified as normal condition. All the process
is repeated 60 times, randomly choosing different files for training and testing set and

the results were averaged. As a result, the success rate is obtained.

The training process is stopped when any of these conditions occurs: the
maximum number of iterations, set to 5000, is reached; the maximum amount of time,

set to infinite, is exceeded; the performance of E (error function) is minimized to the
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goal, set to 0.01; the performance gradient (j—E) falls below the minimum gradient, set
i

to 0.015; or the validation error has increased more than 5 times since the last time it
decreased. In order to set the stopping criteria values, the training error and the
validation error curves are taken into account. The training error curve has to reach a
horizontal line. It means the NN has learned the data. In our experiment, the NN reach
the horizontal line when the goal is 0.01 or the performance gradient falls below 0.015.
In a training process, training error is going down and validation error first also goes
down but then may begin to rise. At that moment, the overfitting problem can arise. To
avoid the overfitting of the NN, the training process is stopped when the validation error
increases more than 5 times since the last time it decreased, even though the rest of
stopping criteria has not been reached.

Least-square Support Vector Machine (LS-SVM)

The least-square support vector machine (LS-SVM) classifier [24] is used to validate
the results obtained by the neural network classifier. LS-SVM classifier [24] is a
modified version of the SVM classifier. The standard SVM is solved using quadratic
programming methods whereas LS-SVM is designed to be solved using a set of linear

equations.

SVMs and LS-SVM classifiers are originally designed to solve bi-class
classification problems. In our case, a four-class classification problem is addressed. For
this reason, an one-vs-all scheme is used. In this scheme, four one-vs-all binary LS-
SVM classifiers are implemented. Each binary classifier makes binary decisions

between one class and all other classes.

Gaussian radial basis functions (RBF) were used as kernels functions in the
binary LS-SVM classifiers. In order to make an LS-SVM model in the training phase,
we need two tuning parameters: y which is the regularization parameter, determining the
trade-off between the training error minimization and smoothness and 6, which is the
bandwidth of the Gaussian radial basis function. These parameters are tuning using a

cross-validation process.
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The database is randomly split into a training subset and a testing subset in the
same way of the neural network classifier. The regularization parameter and the
bandwidth parameter of the LS-SVM are adjusted using the training subset with the
same technique used in the neural network classifier, i.e. 3-fold cross-validation. In the
testing phase, each frame is classified according to the maximum output value of the
four binary classifiers. For example, if the maximum corresponds to the binary classifier
which discriminates between normal and the rest of conditions, the frame is diagnosed
as normal. Finally, each file is diagnosed with the more voted rule. All the process is
repeated 60 times, randomly choosing different files for training and testing set and the
results were averaged. As a result, the success rate is obtained.

Results and Discussion

The results in the feature selection procedure and the success rates obtained with the
TK, T, AM and AM-TK features are shown in Figure 4-5 and Figure 4-6. Figure 4-5
shows the evaluation with the neural network classifier of the TK features sorted by
relevance order (marked with '0). The order of relevance of the TK features is explicitly
written in the top of the figure. The X-axis is the number of features evaluated (i.e. 1 is
the L factor, 2 is the L factor along with the Shape factor, and 12 are all the features),
the Y-axis is the success rate obtained in the evaluation of the features. Figure 3 also
shows the success rates for the T (marked with an inverted triangle), AM (marked with
\") and TK-AM features (marked with 'x’), sorted with the same relevance order
obtained for the TK features and evaluated in the same manner. Figure 4-6 shows the
same information of Figure 4-5 but using a LS-SVM classifier to obtain the success
rates. Both figures show an increment of the success rates with the increment of the
number of features evaluated. In general, the results of the LS-SVM classifier

outperform the success rates obtained using the neural network classifier.

In the case of the neural network classifier, the best success rate of 89.17% is
obtained using the first 9 most relevant TK features: L factor, shape factor, skewness,
kurtosis, Shannon entropy, peak to peak value, peak value, impulse factor and crest
factor. In the case of the LS-SVM classifier, the best success rate of 90% is obtained
using only the first 3 most relevant TK features: L factor, shape factor and skewness.
This shows the higher generalization capacity of the LS-SVM.
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Table 4-1 shows the averaged results of the TK, T, AM and TK-AM features for
the neural network classifier and for the LS-SVM classifier using the complete set of 12
features. The standard deviation (o) of the results is also shown. In the case of the neural
network classifier, the TK features outperform the T features by 3.5% and the TK-AM
features by 12.83%. The TK features give similar results to the AM features. However,
in the computing of the AM features, a visual inspection of the spectrum is conducted to
determine the central frequency and the bandwidth of the band-pass filter. Table 4-1
also shows the success rate after TK feature selection (in parenthesis in the TK features
column). In the case of the neural network classifier, there is an increment of 3.67% in
the success rate of TK features after feature selection. In this case, the best results of the
9 selected TK features are more evident: the 9 selected TK features outperform the T
features by 7.17%, the TK-AM features by 16.5% and the AM features by 3.67%. In
fact, the success rate obtained with the 9 selected TK features outperforms the rest of
the success rates. It can be observed in Figure 4-5, where the maximum value of the
success rate is 89.17% which corresponds to the 9 selected TK features. In the case of
the LS-SVM classifier, the results show that the TK features outperform the T features
by 5%, the TK-AM features by 5.83% and the AM features by 4%. In Figure 4-5, it can
be observed that the maximum success rate of 90% is achieved with only 3 TK features.

The success rates of TK features outperform the rest of features in all the cases.

Finally, the results of the evaluation of the TK features before and after feature
selection (in bold) are shown in the confusion matrix of Table 4-2 for neural network
classifier. The same information is shown in Table 4-3 for the LS-SVM classifier. In
this case, the results with the 3 first TK features are the same that the results obtained
with the 12 TK features, so they are not shown in Table 4-3. In both tables, the results
show that TK features discriminate with great accuracy the normal condition and the IR
fault condition from the other conditions. However, the success rate of the OR and B
fault conditions are misclassified with OR, B and normal conditions. The reason for this
is that the peaks of the envelope in the B fault condition are not as evident as in the
other conditions. In the neural network classifier, if the 9 selected TK features are used,
the B fault success rate is increased 11.11%. As a result, the misclassification between
B fault condition and the rest of conditions is lower.
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Incremental Evaluation of Selected Features using neural network
100 ~Order of Relevance: L factor, Shape factor, Skewness, Kurtosis, Shannon entropy, Peak to peak value, Peak
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Figure 4-5: Success rates using TK, T, AM and TK-AM features in
order of relevance with the neural network classifier.

Incremental Evaluation of Selected Features using LS-SVM
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Figure 4-6: Success rates using TK, T, AM and TK-AM features in
order of relevance with the LS-SVM classifier.

TABLE 4-1: SUCCESS RATES USING TK, T, TK-AM AND AM FEATURES

Classifier TK features T features TK-AM features AM features
Neural 85.5 (0=5.66) 82(0=7.77) 72.67(0=10.71) 85.5(0=6.99)
Network 89.17(0=4.97)*
LS-SVM 90(0=4.97) 85(0=7.07) 84.17(0=6.99) 86(0=7.07)
90(0=3.66)*
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TABLE 4-2: CONFUSION MATRIX OF NORMAL, IR, OR, B FAULT
CONDITIONS USING ALL THE TK FEATURES AND THE 9 TK FEATURES
SELECTED (SHOWN IN BOLD) FOR NEURAL NETWORK CLASSIFIER

Detector Actual Diagnosis (%)
Decision (%)

Normal IR OR B
Normal 100 (0=0) 0(co=0) 0(co=0) 0(c=0)
100 (6=0) 0(e=0) 0(e=0) 0(e=0)
IR 0(0=0) 91.56(0=0.36) 8.44(0=0.36) 0(0=0)
0(e=0) 94.33(6=0.54) 5.67(6=0.54) 0(e=0)
OR 11.11(0=2.51) 0(o=0) 70(0=1.02) 18.89(0=2.77)
5.67(6=1.57) 0(e=0) 71(6=1.31) 23.33(6=2.37)
B 3.33(0=1.02) 5.56(0=1.57) 8.89(0s=2.21) 80.22(0=3.19)
1.67(6=0.36) 3.33(6=1.02) 3.67(6=0.36) 91.33(6=1.57)

TABLE 4-3: CONFUSION MATRIX OF NORMAL, IR, OR, B FAULT
CONDITIONS USING ALL THE TK FEATURES FOR LS-SVM CLASSIFIER

Detector Actual Diagnosis (%)
Decision (%)

Normal IR OR B
Normal 100(0o=0) 0(0=0) 0(0=0) 0(0=0)
IR 0(0=0) 95.56(0=3.57) 4.44(0=3.57) 0(0=0)
OR 0(0=0) 2.11(0=1.57) 81.22(0=2.57) 16.67(0=2.57)
B 0(0=0) 0(0=0) 17(0=2.57) 83(0=2.57)

4.1.2 Evaluation with the UH-60 Helicopter Database for bearing degradation

assessment

The Teager-Kaiser transformed is also applied to the endurance test of an inboard input
pinion bearing of a Black Hawk Helicopter, a run-to-failure bearing vibration database
(see Chapter 3) where a rolling element of the bearing was damaged. The database
consists of 62 datasets of 10 seconds each. The first evidence of degradation in the roller
bearing SB-2205 occurred in the data set number 40. For each dataset the Teager-Kaiser
transform is applied and the following features are extracted from the raw vibration
signal (T signal) and from the Teager-Kaiser transformed signal (TK signal): root mean

square, crest factor, skewness, kurtosis [3].

Some previous works have focused on degradation indexes for the UH-60
database. The very first work [26] applied an existing library of diagnostics, including
band pass filtering in different bands but these procedures did not detect a degradation
of the bearing health in the early stages. For this reason, following works tried to
improve this result. Mclnerny et. al [27] analysed envelope analysis extracting some
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features in different band pass ranges. The results show that the kurtosis of the Q band
[2500-3800Hz] envelope provides an earlier indication of this bearing failure. A more
recent work uses cyclic spectral analysis to analyse the vibration signal [25]. Based on
this study, an index of cyclostationarity is reported to have a better sensitivity to the
presence of a fault. The use of the Teager-Kaiser operator followed by the extraction of
time features avoids the inspection of different frequency bands and it is simpler and

faster.

Evolution of features

In Figure 4-7 and Figure 4-8 the evolution of the extracted features from the TK signal
and from the T signal are shown. It can be observed that none of the features extracted
from the T signal shows significant changes over the endurance test. The values of the
features extracted from the TK signal show an increment from the dataset 40. This fact
is more obvious in the case of the root mean square and kurtosis. The results show that
root mean square and kurtosis features extracted from the signal transformed to the
Teager-Kaiser domain are good indicators of the bearing degradation. For comparison,
the features were computed using the envelope signal of the Q band [2500-3800Hz]
[27] and the results are plotted in Figure 4-9. The results show an increment in the
values of skewness, kurtosis and RMS between data set 40 and data set 50. Then, the
values of these features decrease. Around data set 58 their values increase again.
Therefore, they do not show a monotonic increment as the fault develops.
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Figure 4-7: Evolution of the features extracted from the TK signal.
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Figure 4-8: Evolution of the features extracted from the raw vibration
signal (T signal).
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Figure 4-9: Evolution of the features extracted from the envelope
signal of the Q band[2500-3800Hz].

4.1.3 Conclusions

In this Thesis we propose the use of statistics, energy-based and impulsive measures
extracted from the Teager-Kaiser signal in bearing fault diagnosis. The vibration signal
is transformed into the Teager-Kaiser domain using the Teager-Kaiser operator. A
standard and easily reproducible neural network classifier is used to evaluate the
discrimination ability of the extracted features between normal bearing, outer race fault,

inner race fault and ball fault. Moreover, a LS-SVM classifier is also used to validate
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the results obtained by the neural network. The results show that the use of statistical,
based-energy and impulsive features extracted from the Teager-Kaiser signal in bearing
fault diagnosis outperforms the results obtained by the same features extracted from the
time vibration signal, from the time envelope signal (computed using TKEQO) and from
the time envelope computed using band-pass filter. In addition, the use of the Teager-
Kaiser signal avoids visual inspection of the bearing spectrum to determine the center
frequency and the bandwidth of the band-pass filter. The computation of the extracted

features and of the TKEO itself is also simpler and faster than band-pass filtering.

The proposed method is also applied to a run-to-failure bearing vibration database
obtained from an endurance test of a Black Hawk Helicopter. The results show that root
mean square and kurtosis features extracted from the signal transformed to the Teager-

Kaiser domain are good indicator of the bearing degradation.

4.2 Proposal of Lempel-Ziv complexity measure based on wavelet package

transform for bearing degradation assessment

The aim of bearing fault diagnosis techniques is to detect the kind of fault presented in a
bearing (i.e. outer-race fault, inner-race fault or ball fault in the case of discrete defects).
Once the kind of bearing fault is diagnosed (i.e. inner race fault, outer race fault or ball
fault), it is important to assess the severity of the fault (fault identification), i.e. how
large the fault is. Another important task in condition monitoring is the early detection
of a fault (to follow the degradation of a component from normal condition to fault

condition).

In this Thesis, we have developed a new methodology to assess the severity of
bearings with outer race fault and inner race fault with different degrees of severity
(depicted in Figure 4-10). The proposed method combines the wavelet package
transform technique and the Lempel-Ziv complexity to assess the fault severity of
bearings with outer race and inner race fault. We evaluate the proposed method in the
Case Western Vibration Bearing database, the UH-60 helicopter database and in the
IMS bearing database. Wavelet packet transform is a time-frequency technique that
basically decomposes the signal into detail (low frequency components) and
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approximations signals (high frequency components) in different levels of
decomposition or scales. Wavelet packet transform is used as a preprocessing tool to
select the node with higher energy (i.e. the node where the fault lies). Then, the Lempel-
Ziv complexity is used to measure the severity of the fault. As the Lempel-Ziv
complexity values are bounded between 0 and 1, it is a good indicator of the severity of

the bearing fault.

In this section, a description of the methods for fault severity assessment in
bearings literature is carried out. Next, the preprocessing tool (the wavelet packet
transform) and the Lempel-Ziv complexity are explained. Then, the proposed
methodology is shown and finally a set of experiments in bearings is carried out to show
the usefulness of our proposal and a comparison with some methods in literature is also

accomplished.

State of the art

The severity assessment in bearings in literature is mainly addressed with time-domain
features including kurtosis, root mean square, crest factor and amplitudes [20], [21].
Kurtosis increases in single-point faulty bearings from a value of 3 (in the case of free-
fault bearing) to higher values when the bearing has a single-point defect. However,
when the single-point defect is in advanced stages kurtosis values return to 3 [20]. Root
mean square, crest factor, amplitudes are other techniques to follow the degradation of
the fault. However, they have the same problems that kurtosis. Their values are not
consistent with the evolution of the fault. There are other techniques in frequency
domain such as energy features extracted from envelope analysis. The main

disadvantage of these features are that thery are not bounded.

Lempel-Ziv complexity was firstly investigated in bearing severity assessment
Lempel-Ziv complexity in [15]. The authors proposed LZ for outer-race bearing fault
deterioration. They extracted the LZ values from the raw vibration signal. They showed
that the LZ value increases as the size of the outer race bearing fault increases. H. Hong
et al. [16] proposed a new version of the Lempel-Ziv complexity as a bearing fault
severity measure based on the continuous wavelet transform (CWT). The applications

to the bearing inner- and outer-race fault signals have demonstrated that the new version
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of Lempel-Ziv complexity can effectively measure the severity of both inner- and
outer-race faults. This technique uses the CWT to obtain the sub-band where the fault
lies. Then, the signal is amplitude demodulated and the envelope signal and the carrier
signal are obtained. Finally, the Lempel-Ziv complexity is computed for the envelope
signal and for the carrier signal and a weighted summed is computed. They use different
weights depending on the fault (IR fault or OR fault). In this Thesis, we propose a
simpler way to assess the severity in bearing using wavelet package transform to obtain
the sub-band where the fault lies and then applying Lempel-Ziv complexity to this sub-
band.

Methods

Wavelet Packet Transform

Wavelet packet transform (WPT) is an extension of the discrete wavelet that allows a
finer resolution of frequencies at both high frequencies and low frequencies. WPT can
simultaneously break the signal up into detail (low frequency components) and
approximations signals (high frequency components) in different levels of
decomposition or scales. In bearing fault diagnosis the fault information lies in high
frequency. For this reason, the wavelet packet transform is a common analysis tool for

bearing fault diagnosis.

Mathematically, wavelet packets are a collection of functions
{277°W_(277t—k),neN, j,k e Z} generated recursively from the following

expressions:

W, (t) = V2> h(mW, (2t — m) [Eq. 4-5]

W,,.1 (1) =2 g(mW, (2t —m) [Eq. 4-6]
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where h and g are the quadrature mirror filters, W, (t) is the scaling function and W, (t)

is the wavelet mother function, & is a time-localization parameter, j is a scale parameter

(depth) and 7 is an oscillation parameter.

The wavelet packet coefficients for a discrete signal can be obtained using the

following iterative expressions:

Ciipon(K) =C;,(K)*h(=2k) =>"h(I - 2k)c; ,(I),0<n< 2’ -1 [Eq. 4-7]
Cj+l,2n+l(k) = Cj,n (k) * g(_2k) = Zg(l - 2k)cj,n (I),O <n< 2j -1 [Eq 4'8]

The original signal can be reconstructed using the following iterative expression:

C;n () =D "N(—2k)ck, 5, +> gl —2k)Ck, 50,0 <N<2) -1 [Eq. 4-9]
k k

Wavelet packets are organized in trees, where the scale j defines the depth or level

of the tree and # is the position or node in the tree. For each scale j, n=0,...,2" —1.

From each node of the tree, two children nodes are obtained. One of the children node is
obtained by low-pass filtering (using the impulse response #) followed by down-
sampling and the other children node is obtained by high-pass filtering (using the
impulse response g) followed by down-sampling. It is important to mention that the
frequency order of the nodes for a level is not necessary the same as the node order
because of aliasing introduced by down-sampling. For example, a signal with 1kHz
bandwidth decomposed using a wavelet tree of decomposition level (scale) j = 3 have
eight nodes at level 3 (n=0,...,7). The frequency content for each node (in natural
order, i.e. N=0,...,7) is the following: n = 0, (0-125 Hz); n = 1, (125-250 Hz); n = 2,
(375-500 Hz); n = 3, (250-375 Hz); n = 4, (875-1000 Hz); n = 5, (750-875 Hz); n = 6,
(500-625 Hz); n = 7, (625-750 Hz). Therefore, the frequency order is not the same as
node natural order (also called Paley order). To obtain the node in frequency order

(from low frequency to high frequency), the nodes need to be reordered.
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Lempel-Ziv complexity

Lempel and Ziv proposed a complexity measure that can characterize the degree of
order or disorder and development of spatiotemporal patterns in a time series [18], [19].
The signal is transformed into binary sequences and Lempel-Ziv algorithm gives the
number of distinct patterns contained in the given finite sequence. After normalization,
the relative Lempel-Ziv complexity measure (LZC) reflects the rate of new pattern
occurrences in the sequence. LZC values range from near 0 (deterministic sequence) to
1 (random sequence). To compute the LZC of a given sequence s, the sequence has to
be coded using a finite symbol set A. Using the standard coding squeme, the sequence to
be coded s is divided in « equiprobables bins, where o is the number of diferent
symbols in A. An element of the symbol set A is assigned to each value of the signal
according to the bin in which the value lies. Finally, a new sequence of symbols S is
obtained. This sequence S is subsequently scanned looking for original subsequences of
different lengths. The complexity value is related with the number of different
subsequences found. Thus, if A* denotes the set of all finite length sequences over the

finite symbol set A, and 1(S) denotes the length of a sequence S € A", then according to

[19].
A" ={S e A'1(S) =n},n=>0 [Eq. 4-10]
and for every S e A", the Lempel-Ziv complexity can be expressed as

n [Eq. 4-11]

oM <) 09, ()

where g, — 0if n—occand «a is the number of different symbols in the symbol set A.

The upper bound for c(n) is

n [Eq. 4-12]
log., (n)

rl]m c(n)=b(n) =

Therefore, c(n) can be normalized by using this upper limit
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0<C(n) :% <1 [Eq. 4-13]

For « =2 two symbols are used to code the signal (0 and 1). For « =3 there
exit 3 symbols (0, 1 and 2). The LZC value depends both on the number of symbols
used in the coding squeme and on the length of the sequence s. According to [16] length

of sequence higher than 3600 is enough.

Proposal

We propose a new method for fault severity assessment in bearings (depicted in Figure
4-10). The proposed method combines the wavelet packet transform and the Lempel-
Ziv complexity to assess the fault severity of bearings with outer race and inner race.
As explained before in this Chapter, the LZC over the raw vibration signal has been
used in bearing literature to outer-race ault severity assessment [15]. However, this

technique is affected by noise. We show that our proposal is less affected by noise.
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Figure 4-10: Proposed methodology for bearing severity fault
assessment.

First, the raw vibration signal is decomposed using the wavelet packet transform
with a level 3 of decomposition (8 nodes). Daubechies 6 (db6) (see Figure 4-11) was
used as the mother wavelet because has an impulsive shape according to the impulsive
fault bearing characteristics (see figure 4-12). The WPT is used to obtain the node
where the fault lies and remove unwanted signals. Initially, mother wavelets db2 to db5
and db7 to db9 and symlet wavelet mother familiy from order 2 to 9 were used. The

results obtained are very similar between wavelet mothers with orders higher than 3.

i L L L L 1
2 4 6 8 10 12

Figure 4-11: Waveform of the Daubechies 6 wavelet mother.

The vibration signals are broken up to 3 level (j=3) of decomposition,
obtaining 8 frequency bands (or 8 nodes) in this level of decomposition. Signals are
reconstructed from the wavelet coefficients associated to each node. The reconstructed
signal for each node is a new time series. If xdenotes the original signal (the vibration

signal), then x, is the reconstructed signals for jth level of decomposition and nth

denotes the frequency-band of the signal. For j =3, there are 8 frequency-band signals

in level 3.

Then, the relative energy of the reconstructed signals of each node is computed,
I.e. the energy of each node divided by the energy of the original raw signal. Then, the
node with the maximum energy is selected. Relative energy features are computed from

the reconstructed signals in level 3 of decomposition ( j =3). E denotes the energy of

the original raw vibration signal x(n) :
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[Eq. 4-14]

where x is the mean value of x(n) and N is the number of samples of x(n). Then, the

relative energy of the reconstructed signals in level 3 is computed as:

y X Eq. 4-15
2 (% () = Xan)* [Eq. 4-15]
e — M -1
' E

where X, (n = 0,...,7) are each of the reconstructed signals of level 3, M is the number

of samples of X, , and Xsn is the mean value of each X, .

The node with the maximum relative energy corresponds to the frequency band
that contains the most fault features. A bearing with a localized fault will have the
maximum relative energy located in high frequencies because the bearing is modelled as
an amplitude modulated signal with the frequency of the carrier being the resonance
frequency of the system. Therefore, features extracted from the selected node will have
information about the fault. The node with the maximum relative energy is selected and
the LZC is extracted from the reconstructed signal for this node.

The LZC gives information about the complexity of the reconstructed signal.
This is the diagnostic feature vector extracted from the input frame. This procedure is
applied for each frame and finally a feature vector is obtained.

The proposed methodology is applied to the Case Western Bearing Vibration
Database, to the UH-60 helicopter database and to the IMS database. In order to
compare with classical method in the literature, we extract kurtosis, Lempel-Ziv

complexity from raw vibration data and kurtosis from wavelet package transform.
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4.2.1 Evaluation with the Case Bearing Database

The proposed methodology is applied to the Case Bearing Database. Each sample of the

database is divided in frames of 4096 samples each and for each frame the procedure

shown in figure 4-11 is applied. As the sample frequency is f, =12000Hz, the
bandwitdth of the signal is f, =6000Hz. Therefore, x has a frequency interval
(0,6000]Hz, X5, is the reconstructed signal in level 3 with a frequency range of (0,
750]Hz and X, , is the reconstructed signal in level 3 with a frequency range of (5250,

6000]Hz. The nodes are reordered in frequency order.

In Figure 4-12-Figure 4-16 the relative energies for each node of the WPT (in
level 3) for a frame is shown for the normal condition and for fault conditions IR, OR
and B with different severities and different loads. In the figures a title is added to each
subfigure: IRXXY'Y means inner race fault with XX mils of diameter and load YY. XX
can be '07' for a severity of 7 mils in diameter, '14' for a severity of 14 mils in diameter
or 21' for a severity of 21 mills in diameter. Y'Y can be '00' for load 0, '01' for load 1,
‘02" for load 2 or '03' for load 3. The nodes of the wavelet packet were obtained in

natural order (Paley order) and then were reordered in frequency order.

We can observe from the figures that the energy is concentrated in high
frequency bands, where the fault characteristic lies. In the case of normal condition, the

energy is concentrated in low frequency bands.
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Figure 4-12: Relative energies for WPT nodes of level 3 of
decomposition (ordered by frequency content) for a frame of 4096
samples extracted for normal vibration signals with different loads.
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Figure 4-14: Relative energies for WPT nodes of level 3 of
decomposition (ordered by frequency content) for a frame of 4096
samples extracted for vibration signals with inner race fault (left
column), outer race fault (center column) and ball fault (right column)
with different severities and for load 1.
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Figure 4-15: Relative energies for WPT nodes of level 3 of
decomposition (ordered by frequency content) for a frame of 4096
samples extracted for vibration signals with inner race fault (left
column), outer race fault (center column) and ball fault (right column)
with different severities and for load 2.
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Figure 4-16: Relative energies for WPT nodes of level 3 of
decomposition (ordered by frequency content) for a frame of 4096
samples extracted for vibration signals with inner race fault (left
column), outer race fault (center column) and ball fault (right column)
with different severities and for load 3.

After selecting the node of maximum energy, the LZC is computed. As
mentioned in the LZC definition, LZC depends on the number of elements of the
alphabet (). A study of the variability of LZC with « is carried out for a = 2, 3, 4, 5. In
Table 4-4 the mean and standard deviation values (between parentheses) of the LZC for
each value of o for each kind of fault, each severity and each load are shown. The
following conclusions can be extracted from Table 4-4: the values of the LZC for OR
condition increase monotonically with the severity of the fault for « > 2. The values of
the LZC for IR condition decrease monotonically with the severity of tha fault for o > 2.
The best discrimination between severities is obtaine for « = 4. The values of the LZC
for B condition do not follow a clear tendency and depends of the load and the value of
a. If the normal condition is included in the analysis, there is a monotonic increment of
the LZC value from normal condition to OR condition with the maximum severity.
These results are in concordance with literature results using the LZC from the raw
vibration signal [15], [16]. According to these observations, the LZC is computed for o
= 4 and this measure is discarded as a severity measure for B condition. However, it can
be used to detect ball fault as the value of the LZC of the node of maximum energy is

higher in ball fault with slight severity than in normal condition.

Universidad de Las Palmas de Gran Canaria 141



PhD Dissertation

TABLE 4-4: MEAN VALUES AND STANDARD DEVIATION (BETWEEN PARENTHESES) OF THE LZCEMAXWPT FOR NORMAL
CONDITION AND IR, OR AND B CONDITIONS FOR EACH LOAD (L) AND WITH DIFFERENT NUMBER OF SYMBOLS (ALFA).

L N IRO7 IR14 IR21 ORO0O7 OR14 OR21 BO7 B14 B21

0 0,3637 0,5286 0,5257 0,4388 0,5079 0,4756 0,5276 0,4492 0,4308 0,4424
(0,0142) (0,0089) (0,0121) (0,0223) (0,0099) (0,0116) (0,0133) (0,0105) (0,0113) (0,0126)
0,4313 0,5445 0,5499 0,4398 0,4912 0,5128 0,5337 0,4736 0,4478 0,4654
(0,0106) (0,0107) (0,0147) (0,0238) (0,0102) (0,0084) (0,0119) (0,0106) (0,0107) (0,0115)
0,4468 0,5494 0,5465 0,4475 0,4907 0,5146 0,5286 0,4748 0,4422 0,4660
(0,0072) (0,0085) (0,0102) (0,0220) (0,0074) (0,0098) (0,0106) (0,0092) (0,0101) (0,0085)
0,4683 0,5650 0,5607 0,4555 0,5242 0,5276 0,5399 0,4820 0,4549 0,4714
(0,0098) (0,0098) (0,0135) (0,0155) (0,0071) (0,0074) (0,0105) (0,0096) (0,0087) (0,0077)

1 0,2825 0,5241 0,5243 0,4498 0,4755 0,4745 0,5298 0,4468 0,4311 0,4153
(0,0172) (0,0098) (0,0122) (0,0195) (0,0138) (0,0113) (0,0121) (0,0107) (0,0149) (0,0116)
0,3038 0,5481 0,5466 0,4594 0,4571 0,5154 0,5357 0,4782 0,4373 0,4552
(0,0112) (0,0095) (0,0113) (0,0216) (0,0129) (0,0088) (0,0107) (0,0096) (0,0162) (0,0104)
0,3246 0,5519 0,5479 0,4565 0,4607 0,5159 0,5312 0,4789 0,4354 0,4580
(0,0120) (0,0088) (0,0107) (0,0209) (0,0110) (0,0094) (0,0103) (0,0084) (0,0134) (0,0080)
0,3384 0,5656 0,5599 0,4707 0,4993 0,5272 0,5409 0,4889 0,4537 0,4659
(0,0099) (0,0087) (0,0078) (0,0181) (0,0097) (0,0099) (0,0101) (0,0119) (0,0115) (0,0091)

2 0,2947 0,5311 0,5144 0,4800 0,4835 0,4887 0,5231 0,4264 0,4356 0,4192
(0,0151) (0,0088) (0,0119) (0,0153) (0,0089) (0,0129) (0,0099) (0,0108) (0,0214) (0,0119)
0,3181 0,5492 0,5362 0,4874 0,4789 0,5209 0,5326 0,4655 0,4376 0,4527
(0,0105) (0,0118) (0,0104) (0,0140) (0,0109) (0,0095) (0,0118) (0,0087) (0,0193) (0,0110)
0,3388 0,5455 0,5349 0,4812 0,4741 0,5210 0,5276 0,4718 0,4418 0,4566
(0,0104) (0,0070) (0,0103) (0,0109) (0,0084) (0,0091) (0,0104) (0,0094) (0,0153) (0,0100)
0,3512 0,5614 0,5477 0,4917 0,5053 0,5318 0,5373 0,4764 0,4571 0,4663
(0,0100) (0,0101) (0,0112) (0,0102) (0,0083) (0,0111) (0,0086) (0,0083) (0,0137) (0,0077)

3 0,3238 0,5189 0,5027 0,4908 0,5004 0,5055 0,5177 0,4087 0,4417 0,4217
(0,0119) (0,0130) (0,0129) (0,0107) (0,0117) (0,0121) (0,0098) (0,0111) (0,0249) (0,0114)
0,3409 0,5457 0,5262 0,5018 0,4956 0,5304 0,5236 0,4524 0,4480 0,4550
(0,0093) (0,0088) (0,0125) (0,0163) (0,0107) (0,0115) (0,0128) (0,0092) (0,0245) (0,0088)
0,3589 0,5434 0,5235 0,4987 0,4911 0,5339 0,5221 0,4526 0,4389 0,4554
(0,0100) (0,0074) (0,0093) (0,0112) (0,0099) (0,0094) (0,0085) (0,0072) (0,0223) (0,0069)
0,3699 0,5614 0,5359 0,5114 0,5149 0,5476 0,5308 0,4585 0,4588 0,4634
(0,0076) (0,0093) (0,0081) (0,0094) (0,0113) (0,0089) (0,0087) (0,0090) (0,0178) (0,0094)
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A comparison with other features used in literature is done [5], [15]. For
simplicity we call our proposal ‘LZC (EmaxWPT)’. The other features extracted for
comparison are: the kurtosis extracted from the raw vibration signal (‘Kurtosis (raw
signal)’), the kurtosis of the node with maximum energy (‘Kurtosis (EmaxWPT)’), the
LZC extracted from the raw vibration signal (‘LZC (raw signal)’). Figure 4-17 and
Figure 4-18 show the results obtained for each method. The mean values of the
extracted features for OR fault and for IR fault for each fault severity and for each load
are represented. We can see that the mean of the LZC is monotonically increasing with
the severity of fault in the OR fault and monotonically decreasing with the fault
deterioration in the IR fault for the ‘LZC (EmaxWPT)’. In the case of the ‘Kurtosis (raw
signal)’ and the ‘Kurtosis (EmaxWPT)’ the values decrease for OR07 to OR14 and then
increase for OR14 to OR21. In the case of the IR fault, the results are just the opposite.
The values of the kurtosis increase for IR07 to IR14 and then decrease for IR14 to IR21.
For the case of the LZC raw, the values increase form OR07 to OR14 and then decrease

from OR14 to OR21. In the case of the IR fault the values decrease monotonically.
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Figure 4-17: Evolution of the mean values obtained for each method:
proposed method ‘LZC (EmaxWPT)’ (uppe-left), ‘LZC (raw signal)’
(upper-right), ‘Kurtosis (EmaxWPT)’ (bottom-left) and ‘Kurtosis (raw
signal)’ (bottom-right) for outer race fault with different severities and
different loads.
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Figure 4-18: Evolution of the mean values obtained for each method:
proposed method ‘LZC (EmaxWPT)’ (uppe-left), ‘LZC (raw signal)’
(upper-right), ‘Kurtosis (EmaxWPT)’ (bottom-left) and ‘Kurtosis (raw
signal)’ (bottom-right) for inner race fault with different severities and
different loads.

Figure 4-19 and Figure 4-20 show the same results as Figure 4-17 and Figure
4-18 with the normal condition added to the figures. In the case of OR fault, it can be
observed from Figure 4-19 that the proposed method ‘LZC (EmaxWPT)’ follows
monotonically the degradation from normal condition to OR fault condition,
outperforming the rest of methods.

~o-load 0 ~=- load 1 - load 2 ~+-load 3]

0,6 =09
: g & e

B = //’;Jr" g0l

: ; ,,--F’:—:;"/

E " g 0’73:::::‘:5_::::.’%"

8 0 T , § . b | | |
— 0N OR07  ORI4  OR2l N OR07  ORI4  OR21
) =

& 40 S 25

B «;ﬁ gl) é
o ' @ y

& B i

& 20 y E1s

Z e /5;;? a ........ t&‘===~~:==--

8 o -“~::Z::¥ 8 5 F e _~=::::“$

M q\f ORO07 OR14 OR21 M Q\I ORO07 OR14 OR21

Figure 4-19: Evolution of the mean values obtained for each method:
proposed method ‘LZC (EmaxWPT)’ (uppe-left), ‘LZC (raw signal)’
(upper-right), ‘Kurtosis (EmaxWPT)’ (bottom-left) and ‘Kurtosis (raw
signal)’ (bottom-right) for outer race fault with different severities and
different loads. The normal condition is also considered.
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Figure 4-20: Evolution of the mean values obtained for each method:
proposed method ‘LZC (EmaxWPT)’ (uppe-left), ‘LZC (raw signal)’
(upper-right), ‘Kurtosis (EmaxWPT)’ (bottom-left) and ‘Kurtosis (raw
signal)’ (bottom-right) for inner race fault with different severities and
different loads. The normal condition is also considered.

The robustness of the algorithm to Gaussian noise is also studied. Gaussian noise
was added to the original vibration signal with different signal to noise ratios (SNR):
20dB, 15dB, 10dB, 5dB and 0dB. Then, the proposed method is applied (with o = 4) for
each SNR and for the original signal without noise added. Kurtosis of the raw signal,
kurtosis of the maximum energy node and the LZC of the raw signal are also computed
for each SNR and for the original signal. The motivation of this experiment is to show
how the proposed method is more robuts to noise than computing the LZC from the raw
vibration signal. The LZC measures the complexity in a signal. For random signals, the
LZC is 1. Therefore, if the signals are contaminated with undesired Gaussian noise, the
LZC will increase its value. If LZC is extracted from the raw vibration signal, it will be
difficult to determine if the increasing or decreasing of the LZC is due to a fault or to
noise. However, if the LZC is extracted from the node of the maximal energy associated
to impulsive fault, the Gaussian noise will not affect in the same degree the signal. The
following figures (Figure 4-21-Figure 4-28) show the results for each method and
confirm our thoughts.
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Figure 4-21: Evolution of the mean values obtained for ‘Kurtosis (raw
signal)” method applied for outer race fault condition and normal
condition varying the amount of noise added to the original vibration
signal. The results are shown for load: load O (upper-left), load
1(upper-right), load 2 (bottom-left), load 3 (bottom-right).
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Figure 4-22: Evolution of the mean values obtained for ‘LZC (raw
signal)’ method applied for outer race fault condition and normal
condition varying the amount of noise added to the original vibration
signal. The results are shown for load: load O (upper-left), load
1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-23: Evolution of the mean values obtained for ‘Kurtosis
(EmaxWPT)’ method applied for outer race fault condition and
normal condition varying the amount of noise added to the original
vibration signal. The results are shown for load: load O (upper-left),
load 1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-24: Evolution of the mean values obtained for the proposed
method ‘LZC (EmaxWPT)’ applied for outer race fault condition and
normal condition varying the amount of noise added to the original
vibration signal. The results are shown for load: load O (upper-left),
load 1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-25: Evolution of the mean values obtained for ‘Kurtosis (raw
signal)” method applied for inner race fault condition and normal
condition varying the amount of noise added to the original vibration
signal. The results are shown for load: load 0 (upper-left), load
1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-26: Evolution of the mean values obtained for ‘LZC (raw
signal)’ method applied for inner race fault condition and normal
condition varying the amount of noise added to the original vibration
signal. The results are shown for load: load 0 (upper-left), load
1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-27: Evolution of the mean values obtained for ‘Kurtosis
(EmaxWPT)’ method applied for inner race fault condition and
normal condition varying the amount of noise added to the original
vibration signal. The results are shown for load: load 0 (upper-left),
load 1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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Figure 4-28: Evolution of the mean values obtained for the proposed
method ‘LZC (EmaxWPT)’ applied for inner race fault condition and
normal condition varying the amount of noise added to the original
vibration signal. The results are shown for load: load O (upper-left),
load 1(upper-right), load 2 (bottom-left) and load 3 (bottom-right).
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4.2.2 Evaluation with the UH-60 Helicopter Database for bearing degradation

assessment

The proposed method of the Lempel-Ziv complexity based on wavelet packet transform
Is also evaluated with UH-60 Black Hawk Helicopter database where a rolling element
of the bearing was damaged during an endurance test. Although our proposal does not
follow monotonically a fault in a rolling element, according to the results with the Case
Western database it should detect a ball fault. For this reason, we apply the proposal to
the UH-60 helicopter database.

As each dataset in the UH-60 database is 10 seconds (with a sample frequency
of 100kHz) and the computation of the LZC is very slow with such amount of data,

each dataset is divided in frames of 1 second each. The results are averaged per dataset.

The results are shown in Figure 4-29 for ‘Kurtosis (raw signal)’, ‘LZC (raw
signal)’, ‘Kurtosis (EmaxWPT)’ and the proposed method ‘LZC (EmaxWPT)’. As it is
observed, none of the features can detect the fault. The ‘LZC (raw signal)’ and our
proposal ‘LZC (EmaxWPT)’ shows an increase in their values in dataset 48, long after

the fault.
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0 10 20 30 40 50 60
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Figure 4-29: Evolution of the features using kurtosis and Lempel-Ziv
complexity from the raw signal and kurtosis and Lempel-Ziv
complexity from the node with maximal energy of the wavelet paket
transform.
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4.2.3 Evaluation with the IMS database

The IMS database is a run-to-failure experiment of 164 hours in where an outer race
fault is developed in a bearing. Previous paper indicates that the start of the fault is 89

hours after the beginning of the experiment [29].

In this case, the proposed method is applied to each sample of the database (each
sample has 20000 data points corresponding to 1 second of signal). As the sample

frequency is f, =20000Hz, the bandwidth of the signal is f, =10000Hz. Therefore,
X has a frequency interval (0,10000]Hz, X, , is the reconstructed signal in level 3 with a
frequency range of (0, 1250]Hz and X, ,is the reconstructed signal in level 3 with a

frequency range of (8750, 10000]Hz. Kurtosis from the raw signal, kurtosis from the
node of maximal energy of the WPT and the LZC from the raw signal are also extracted

and the results compared.

Figure 4-30, Figure 4-31, Figure 4-32 and Figure 4-33 show the evolution of the
features extracted by the ‘Kurtosis (raw signal)’ method, by the ‘Kurtosis (EmaxWPT)’
method, by the ‘LZC (raw signal)’ method and by the proposed method ‘LZC
(EmaxWPT)’ respectively. The figures reveal that the kurtosis extracted from the raw
vibration signal increase and then decrease again. Moreover, the first indication of fault
is at 117 hours from the beginning of the run-to-failure experiment. The kurtosis
extracted with the method KurtosisEmaxWPT shows a more consistent tendence that
the kurtosis extracted from the raw vibration signal and the first indication of fault is at
89 hours from the beginning of the experiment. The LZCraw shows values near 1 in the
normal condition. The reason can be the noise and signals of the rest of the gear that
interfere with the bearing signal. 89 hours after the beginning of the experiment, the
LZC values start decreasing. Then, the LZC values change with not clear tendency.
When the LZCEmaxWPT method (proposed method) is applied, the LZC increase their
values 89 hours after the beginning of the experiment (when the fault starts developing)

and remains around the same values of complexity until the end of the experiment.
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Figure 4-30: Evolution of the Kurtosis extracted from the raw
vibration signal of a run-to-failure experiment of the bearing that
eventually developed an outer-race fault.
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Figure 4-31: Evolution of the Kurtosis extracted from the node of
maximal energy of the WPT of a run-to-failure experiment of the
bearing that eventually developed an outer-race fault.
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Figure 4-32: Evolution of the Lempel-Ziv complexity extracted from
the raw vibration signal of a run-to-failure experiment of the bearing
that eventually developed an outer-race fault.
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Figure 4-33: Evolution of the Lempel-Ziv complexity extracted from
the node of maximal energy of the WPT of a run-to-failure experiment
of the bearing that eventually developed an outer-race fault.

4.2.4 Conclusions

We have proposed a method to assess the fault severity, also called fault identification
(how large the fault is), using the wavelet packet transform and the Lempel-Ziv
complexity for inner race fault and for outer race fault. In the case of inner-race fault,
the values of Lempel-Ziv complexity decrease when the fault evolves and in the case of
the outer-race fault the values of Lempel-Ziv complexity increase when the fault

evolves. The results obtained with the proposed method are in concordance with the
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results in literature [15], [16]. In [15] the Lempel-Ziv complexity was applied to raw
bearing vibration signals for normal and outer-race fault conditions. The Lempel-Ziv
complexity increases from normal to outer-race fault with high level of severity.
However, as we have shown in our experiments, when the raw bearing vibration signal
Is contaminated with Gaussian noise, the Lempel-Ziv complexity is affected, leading to
incorrect interpretation of the Lempel-Ziv complexity values. In [16], the authors
propose the use of the Lempel-Ziv complexity and the continuous wavelet transform in
outer-race fault and inner-race fault severity assessment. A method to select the best
scale in the continuous wavelet transform based on energy and kurtosis was proposed.
Then, the coefficients in the best scale are recovered and amplitude demodulated. The
final value of the Lempel-Ziv complexity is a weighted summed of the Lempel-Ziv
complexity extracted over the coefficients at the best scale and the Lempel-Ziv
complexity extracted over the amplitude demodulated coefficients at the best scale.
Using this method, they also found that the Lempel-Ziv complexity increase with the
outer-race fault severity and decrease with the inner-race fault severity. In our proposal,
it is not necessary to compute the amplitude demodulated signal of the signal in the
node with maximal energy and therefore we only compute Lempel-Ziv complexity one

time.

One of the main advantages of using Lempel-Ziv complexity is that it is
bounded between 0 and 1. With the use of the wavelet packet transform and the
selection of the node with maximal energy (the node in which the fault lies), the effects

of gaussian noise contamination is reduced.

In the case of outer-race fault, this method can follow the fault degradation from
normal condition to fault condition monotonically. It is worth to mention that the results
obtained with the ball fault are not monotonically increasing or decreasing with the fault

severity. However, the ball faut can be detected with the proposed method.

The method was applied to two run-to-failure experiments: UH-60 helicopter
database and IMS database. In the case of the UH-60 helicopter the proposed method
does not detect the fault in early stages. A possible reason is that the wavelet packet is
not detecting the correct node where the fault lies. More research is needed in this case.
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In the case of the IMS database the proposed method detects the fault in the outer race
and outperforms the other methods.

4.3 Contributions of this Chapter

The contributions of this Chapter are:

1. A new feature extraction methodology to detect bearing faults at inner race, outer
race and ball race using the Teger-Kaiser nonlinear operator with statistics features. A
comparison with conventional techniques is done and the proposed methodology
outperforms the conventional one. The method is also applied to follow the degradation

of a bearing with a ball fault. Several publications have been generated [1]-[3].
2. A new methodology to assess the severity of inner-race and outer-race faults is
proposed. The methodology is based on wavelet package transform and Lempel-Ziv

complexity measure. A publication has been generated [4].

Both contributions are based on nonlinear techniges.
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CHAPTER 5
Contributions to audio and vibration pump

monitoring

In Chapter 4, we have focused our research in vibration bearing fault diagnosis and fault
degradation. As stated before, vibration-based condition monitoring is a well-stablished
technique in research literature. In this Chapter, we focus our research to pump fault
diagnosis, specifically in hydraulic faults produced in the impeller, in seal fault and in
system faults (fluid contaminated with impurities and strange objects). As in bearing
fault diagnosis, vibration signal is one of the main sources of information in pump fault
diagnosis, apart from other signals commonly used in pump fault diagnosis such as
pressure, current, voltage, etc. As stated in Chapter 1, audio-based fault diagnosis in the
audible range 0-20kHz has received little attention in research mainly due to unwanted
contamination of the audio signal. However, acoustic signals can be acquired remotely,
without attaching the sensor to the machine housing, eliminating mounting problems in
certain machines and in certain environments. In pump fault diagnosis literature,
multiple features are extracted in different signal domains from vibration signals in
order to discriminate between different pump conditions: normal condition, mechanical
and hydraulic faulty conditions. However, the works on audio-based diagnosis are

limited only to the study of cavitation fault which is outside of the scope of this Thesis.
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This Chapter is devoted to exploring audio-based pump fault diagnosis focusing
on impeller-related faults, seal fault and system faults and using conventional features
extracted from vibration signals in the state of the art. Once the vibration features in the
state of the art are identified, they are implemented and then applied to the vibration and
audio signals simultaneously acquired from the centrifugal test rig. We also propose
new features to the state of the art mainly based on cepstrum, frequency and nonlinear
techniques to both vibration and audio signals. In order to make a comparison attending
to the nature of the signal i.e. vibration and audio signals, a deterministic feature
selection technique is applied for each sensor and the selected features are evaluated in
relevance order with two classifiers, a neural network classifier and a least-square
support vector (LS-SVM) classifier, so as the discrimination ability of the features is

evaluated.

This Chapter is divided in three main sections. In the first section, the
methodology of the experimentation is explained. In the second section, the set of
features extracted from vibration and audio signals are explained: features can be
extracted in different signal domains (i.e time domain, frequency domain, etc). For this
reason, we decide to divide the features according to different signal domains. For each
signal domain, vibration features and audio features used in the literature are shown.
Then, the features which are contributions of this Thesis are explained. The main
contributions regarding features in pump condition monitoring are: the application of
vibration features to the audio signal and the proposal of new features both in vibration
and audio signals. All features (state-of-the-art features and proposed features) are
evaluated with neural network and LS-SVM classifiers for each sensor individually.
Feature selection is also applied to obtain the best features for this application for each
sensor. In the third, fourth and fifth sections of the Chapter, the results of feature

selection and feature evaluation are shown for each sensor.

5.1 Methodology

To quantify the ability of the audio and vibration features in pump fault diagnosis the
squeme of Figure 5-1 is followed for vibration and audio signals. Signal represents the

signal to be featured: vibration or audio signal. As it was shown in Chapter 3, four
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sensors were used to acquire vibration and audio signals from the pump set up: two
accelerometers and two microphones. The squeme of Figure 5-1 is applied for each

sensor in order to obtain results for each sensor.

_»| Feature | | Feature | ,| Classification |_, -
Signal Extraction selection Clasification

Output

Figure 5-1: Squeme of the methodology used to quantify the ability of
the features for vibration and audio based pump fault diagnosis.

First, a set of features is extracted for each sensor (feature extraction block). The
features extracted are features from the state of the art of vibration and audio pump fault
diagnosis and features proposed in this Thesis. The features extracted and the features
proposed are explained in the second section of this Chapter. In order to extract the
features, each file of the database (i.e. each observation) is divided in frames of 8192

samples (371.5 ms). For each frame, the set of features are extracted. Finally, the mean

of each extracted feature is computed for each observation ( Hr o, ):

[Eq. 5-1]

frames

where Heo, is the final feature set: mean of each feature per each observation Oy
(k = 1,...,370 because there are 370 files in the database), F;; is the feature j (j =
1,...,98 because there are 98 features) in the frame i and Ny, is the number of

frames used in each observation. 53 frames equally spaced are used per observation, so

N =53. Before extracting the features and for each observation, the mean is

frames

removed and the signal is normalized between -1 and +1.

Once the features are extracted, the aim is to identify those most suitable
features per sensor that best discriminate between different pump conditions. The
process to select features from a feature set is called feature selection. The selection of
well-suited features providing fault-related information and the discarding or weakening

of irrelevant or redundant features improves system performance. In the feature
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selection block, the features are selected with the sequential floating forward feature
selection method (SFFS) and a relevance analysis (in a same way of Chapter 4) is
carried out to obtain a reduced group of selected features. The reason for choosing the
SFFS is that is a deterministic method so the same results are obtained with the same
data and the compotutional cost is low. After applying SFFS and the relevance analysis
a set of features will be obtained for each sensor.

The classifier block is related to assess the performance of the classification
between different conditions of the pump. In the classification block, the classifier
labels the observation using the extracted features into different classification units. The
discrimination ability of the features in the classification of different kinds of faults is
evaluated. Different configurations are implemented to discriminate between normal
and fault conditions. The classification units or classes considered in this Thesis are the

following:

o 8 classification units: normal condition (NOR), plate condition (PLA), leading
edge damage condition (LED), trailing edge damage condition (TED), seal
condition (SEA), sand condition (SAN) sand and paper condition (SAP) and pvc
balls condition (PVC).

e 17 classification units. In this case the severities of the plate condition, the
leading edge damage condition and the trailing edge damage condition are
considered. The 17 classification units are: normal condition (NOR), plate
condition with one portion of blade removed (PLAL), plate condition with two
portions of blade removed (PLA2), plate condition with three portions of blade
removed (PLAS3), leading edge damage of sieze 5mm (LED1), leading edge
damage of size 10mm (LED2), leading edge damage of size 15 mm(LED3),
trailing edge damage of size 5 mm (TED1), trailing edge damage of size 10 mm
(TED2), trailing edge damage of size 15 mm (TED3) seal condition (SEA), sand
condtion (SAN), sand and paper condition (SAP) and pvc balls condition (PVC).

Two different classifiers are used to implement the classifier block: neural
network classifier and LS-SVM classifier. In this Thesis, we have decided to use a

standard feedforward neural network classifier with a resilient backpropagation
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algorithm and a least-square support vector machine classifier to compare the results
obtained with the neural network. The methodology used to evaluate the different
databases for each sensor consists in dividing the data in a training set (70% of the
samples of each class) and in a test set (30% of the samples of each class). The training
set is divided into different folds to tune the classifiers parameters. The procedure is
repeated 20 times.

5.2 Features for pump fault diagnosis

Centrifugal pump monitoring is mainly addressed using vibration signal or pressure
signal as source of information with features extracted from time domain and from
frequency domains. Time-frequency domain, especially the discrete wavelet transform
is also investigated by some authors. In this subsection, a set of features from the state
of the art of centrifugal pump fault diagnosis using vibration signal as source signal is
implemented. In this Thesis, we contribute with the application of state-of-the-art
vibration features to audio signal. We also propose new features not previously used in
centrifugal pump fault diagnosis: features related to energy in the frequency, cepstrum

and time-frequency domains and complexity measures and nonlinear measures.

Features are extracted from both vibration and audio signals acquired in the
experimental test rig of this Thesis in different signal domains: time domain, frequency
domain, cepstrum domain, time-frequency domain and nonlinear domain. In this Thesis
we focus on the following faults: faults related to impellers, seal fault and system faults.
For this reason we focus on features related to diagnose such kinds of faults in
centrifugal pumps. For each signal domain, vibration and audio features in the state of
the art are shown as well as the contributions carried out in this Thesis. In each feature,
the kind of signal from which it is extracted is shown in parenthesis just beside the

name of the feature.

5.2.1 Time Domain: Vibration and Audio Features in the state of the art

In pump fault diagnosis, the raw vibration signal (vibration signal in time domain) is

featured with statistical and energy features from the pattern recognition field in order to
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characterize different pumps conditions [3]-[8], [31] including impeller-related faults,
system faults, seal faults and also mechanical faults. Kawabe et al. [3] proposed a set of
statistical features applied to the time vibration signal of a centrifugal pump for
discriminating between normal and fault conditions. Those features are based on the
pattern recognition field. Wang et al. [31] use the same set of statistical features in
vibration time signal and in reconstructed signals of discrete wavelet transform. In more
recent research, Sakthivel et al. [4]-[6] and Farokhzad et al. [7] also applied a set of
statistical features (mean, standard deviation, median, skewness, kurtosis, etc.) to the
time vibration signal of a mono-block centrifugal pump with damage in the impeller
plate, seal damage, outer-race damage in bearing, cavitation and normal condition. The

statistical features proposed for the aforementioned authors are formulated next.

From now on s[n] is a frame of vibration or audio time series from which the

features are extracted.

Mean value (vibration)

Sakthivel et al. [4]-[6] and Farokhzad et al. [7] feature the time vibration signal with the
mean value. The estimator of the mean value for a discrete frame s[n] with N samples
is:

-~ Sl

Hersion1 = ZW [Eq. 5-2]
i=1

Other authors use the mean value of the absolute vibration signal |s[n]| [3] (mean

value absolute):

N isfi]
Huersion2 = Z| N | [Eq 5'3]
i=1

The two versions of the mean value (mean value and mean value absolute) are

implemented for N = 8192. For each observation, the mean value is obtained.
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Standard deviation (vibration)

The standard deviation, a second order statistics, measures the power content of the
vibration signal. The power contect differs from different pump conditions. There are
two versions in the standard deviation computation: Sakthivel et al. [4]-[6] and
Farokhzad et al. [7] use the standard deviation of the vibration signal and Kawabe et al.
[3] uses the standard deviation of the absolute value of the signal (standard deviation

absolute). These two versions are implemented.

Z (S[I] - /uversionl) ?

O-versionl = [Eq 5_4]
N -1
where o 1S the mean of the vibration signal
- 2
(S[I] — Hyersion )
o Zl: st ’ [Eq. 5-5]
version2
N -1

where Hrsione 1S the mean of the absolute value of the vibration signal:

The two versions of the standard deviation (standard deviation and standard
deviation absolute) are implemented for N = 8192. For each observation, the mean

value is obtained.

Variance (vibration)

The variance of the time signal was also used by Sakthivel et al. [4]-[6] and Farokhzad
et al. [7] to discriminate between different pump conditions. The variance value is also a

measure of energy content in a signal, which varies between different pump conditions.

N
z (S[I] - :uversionl) ?
2 ) — i=1
versionl N _1

o [Eq. 5-6]
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[Eq. 5-7]

2

N
Z (S[I] ~ Hyersion2 ) 2
O-versionz = = N _ 1

The two versions of the variance (variance and variance absolute) are

implemented for N = 8192. For each observation, the mean value is obtained.

Skewness (vibration)

Skewness is a third order moment and a measure of symmetry, or the lack of symmetry
around the mean of the probability distribution of a signal. It reflects positive or
negative deviations from the mean. An estimator of the skewness was used by Sakthivel
et al. [4]-[6], Wang et al. [31] and by Farokhzad et al. [7] using the time vibration signal
and by Kawabe et al. [3] using the absolute value of the time vibration signal (skewness

absolute).

N
Z (S[I] - /uversiorfl)3
i=1
versionl — (N _1)0_3

versionL

SK [Eqg. 5-8]

N
(S[I] ~ Hyersion )3
SK orciorn = ; | | 2 [Eqg. 5-9]
version2 (N _1)0_3

versionl

The two versions of skewness (skewness and skewness absolute) are

implemented and the mean value for each observation is obtained.

Skewness of peak values (vibration)

Wang et al. [31] used the skewness of the peak values of the vibration signal s[n],

S peaks [n] .
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P

Z (S peaks[i] - /uspeaks )3

SK . == [Eq. 5-10]
peaks (P _ 1)O'S3peaks
P . P
Zspeaks[l] Z(S peaks [I] - :uspeaks)2
where 4, = 'le and o, =\"=——F5— are the mean value and

the standard deviation value of s, [n], P is the number of peaks (i.e. the number of

samples in s ., [n]). The peaks values of the signal s[n] where computed and then the

skewness of these values calculated. Finally, the mean value per each observation is

obtained.
The skewness of the peak values characterizes the asymmetry of the envelope
signal in time domain respect to the mean value of the envelope. It is a measure of the

shape of the time signal.

Skewness of valley values (vibration)

Wang et al. [31] also used the skewness of the valley values of the vibration signal s[n],

Svalleys [n] :

\Y
Z (Svalleys [I] - 'usvaneys )3
=1

SKvaIIeys = (V —1)(73 [Eq 5-11]
Svalleys
v ] v
stalleys [I] z (Svalleys [I] - :usva"eys )2
where :'ﬂT and o, = = V1 are the mean value and

standard deviation value of s,.[N], V is the number of valleys (i.e. the number of
samples in s,,,,s[N]). The peaks values of the signal s[n] where computed and then the

skewness of these values calculated. Finally, the mean value per each observation is
obtained.
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The skewness of the valleys values as well as the skewness of the peaks
characterizes the asymmetry of the envelope signal in time domain respect to the mean

value of the envelope. It is a measure of the shape of the time signal.

Kurtosis (vibration)

Kurtosis is a fourth order moment and a measure of whether the data in a probability
distribution are peaked or flat relative to a Gaussian distribution. Higher kurtosis means
more of the variance is due to infrequent extreme deviations. An estimator of the
kurtosis was used by Sakthivel et al. [4]-[6], Wang et al. [31] and by Farokhzad et al.
[7] using the time vibration signal and by Kawabe et al. [3] using the absolute value of

the time vibration signal.

N
Z (S[I] - :uversiom)4

K ) — i=1
versionl (N _1)04

versionl

[Eq. 5-12]

N
(|S[|]| ~ Huersio )3
version2 (N _1)04

versionl

The two version of kurtosis (kurtosis and kurtosis absolute) are implemented.

Finally, the mean value per each observation is obtained.

Kurtosis of peak values (vibration)

Wang et al. [31] used the kurtosis of the peak values of the vibration signal s[n],

S peaks[n] '

P

Z(S peaks[i] - ‘uspeals )4
eraks == (P 1) 2 [Eq. 5-14]
— GS

peaks
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where Mo and O, ATE the mean value and standard deviation value of s_...[n], P

peaks

is the number of samples in s__,.[n]. The peaks values of the signal s[n] where

peaks
computed and then the kurtosis calculated. Finally, the mean value of Kurtosis of Peak

values per each observation is obtained.

Kurtosis of valley values (vibration)

Wang et al. [31] used the kurtosis of the valley values of the vibration signal s[n],-

Svalleys [n] '

v
Z(Svalleys[i] - 'usvaueys )4
valleys = = (v —1)04

valleys

K [Eq. 5-15]

where Hs and o, are the mean value and standard deviation value of s

lleys valleys [n] ' \Y
is the number of samples in s..[N]. The valleys values of the signal s[n] where

computed and then the kurtosis calculated. Finally, the mean value of Kurtosis of Valley

values per each observation is obtained.

The kurtosis of the valleys values as well as the kurtosis of the peaks

characterizes the shape of the envelope signal in time domain.

Median (vibration)

Sakthivel et al. [4]-[6] applied also the median for the vibration signal s[n]. The median

of a signal s[n] with N samples, s[1], ..., S[N] can be computed reordering them so that

Y, <Y, <...<Yy where Y (i=1...,N) are the values of s[n] in increasing order, being

Y1 the minimum value of s[n] and YN the maximum value of s[n]. The median is:
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Y na1)12 if Nisodd

MEDIAN =
2 + Vo) i Niseven [Eq. 5-16]

The median value is computed per each frame and finally the average value is
obtained per observation.

Minimum value (vibration)

The minimum value refers to the minimum value of the signal and also was used by
Sakthivel et al. [4]-[6] in pump condition monitoring. According to Sakthivel et al.
when the pump parts get degraded the vibration level increases, so the minimum value

of the vibration signals also increases.
MIN = min(s[i]) [Eq 5_17]

The minimum value is computed per each frame and finally the average value is

obtained per observation.

Maximum value (vibration)

The maximum value refers to the maximum value of the signal and also was used by
Sakthivel et al. [4]-[6] in pump condition monitoring. When the pump parts degrade the

vibration level increases, so the maximum value also increases.

The maximum value is computed per each frame and finally the average value is

obtained per observation.
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Range (vibration)

The range or peak-to-peak value measures the excursion of the signal (i.e. the difference
between the minimum value and the maximum value of the signal) and it has also

applied in pump condition monitoring [4]-[6].

RANGE = MAX — MIN [Eq. 5-19]

The range value is computed per each frame and finally the average value is

obtained per observation.

Sum (vibration)

The sum of all data point values in a given signal is also a measure used in pump fault

diagnosis [4]-[6] as a measure of the energy in a signal.

SUM = > si] [Eq. 5-20]

The sum value is computed per each frame and finally the average value is
obtained per observation.

Variation rate (vibration)

The variation rate is used by Kawabe et al. [3] in pump fault diagnosis. The variation
rate is the ratio between the standard deviation of the absolute value of the signal s[n]
and the mean value of the absolute value of the signal s[n]. The variation rate is a
measure of dispersion independent of the units of the mean. The higher the variation

rate, the greater the dispersion of the signal.

O-versionZ
VR=—" [Eq. 5-21]

:Uversionz
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The variation rate is computed per each frame and then the average value is
obtained per observation.

Variation rate of peak values (vibration)

The variation rate of the peak values is the ratio between the standard deviation and the

mean of the peaks of s[n] (S .,[N]):

speaks
VRpeaks = [Eq 5'22]

Speaks

where 4 and o,  are the mean value and standard deviation value of s .[n].

The variation rate of peak values is a measure of dispersion of the envelope of
the signal s[n]. The variation rate of peak values is compute per each frame and the

average value is obtained per each observation.

Variation rate of valley values (vibration)

The variation rate of the valleys values is the ratio between the standard deviation and

the mean of the valleys of s[N] (S e,s[N]):

(o3
Sva lleys

VRvaIIeys = [Eq 5-23]

S

va lleys

where 4, and o, are the mean value and standard deviation value of s ,;...[N].
valleys val ys

lleys

The variation rate of valleys values is a measure of dispersion of the envelope of
the signal s[n]. The variation rate of valleys values is compute per each frame and the

average value is obtained per each observation.
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Ratio of number of peaks and number of zero-crossing (vibration)

Another measure in time domain is the ratio between the number of peaks and the

number of zero-crossing in the vibration signal [31]. It can be expressed as:

p
PeakzC = E [Eq 5'24]

where P is the number of samples of s ,[n] and ZC is the number of s[n] passing

zero. The ZC is also a feature itself. The zero-crossing feature and the ratio of number
of peaks and number of zero-crossing are computed per each frame and the mean value

is obtained per observation.

Ratio of number of valleys and number of zero-crossing (vibration)

The ratio between the number of valleys and the number of zero-crossing in the

vibration signal [31] can be expressed as:
ValleyZC = v
yel =56 [Eq. 5-25]

where V is the number of samples of Syaiey and ZC is the number of zero-crossing in
s[n]. This feature is computed per each frame and the mean value is obtained per

observation.

Ratio of averaged peaks and mean value absolute (vibration)

Kawabe et al. [3] proposed the ratio between the mean value of the peaks and the mean

value of the absolute value of the signal.

] A
AvPRatio = —== [Eq. 5-26]

:uversionZ
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where 4 is the mean value of s, [n] (peak values of s[n]) and 4eon, IS the mean

peaks

value of |s[n]|. This feature is computed per each frame and the mean value is obtained

per observation.

Ratio of averaged ten peaks and averaged peaks (vibration)

Kawabe et al. [3] proposed the ratio between the mean of the ten higher peaks in the
signal and the mean value of the peaks.

‘ﬂlOpeaks

M

Av10PRatio = [Eq 5_27]

peaks

where Hs . is the mean value of s ., [n] (peak values of s[n]) and 4, IS the mean

peaks

value of the 10 peak values (from top peak value to tenth value). This feature is

computed per each frame and the mean value is obtained per observation.

Ratio of averaged peaks and standard deviation of peaks (vibration)

Kawabe et al. [3] proposed the ratio between the mean and standard deviation of the

peaks values of s[n].

. Hs .
AVO'Rath = ﬂ [Eq 5_28]

Speaks

where Hs e is the mean value of s__. . [n] (peak values of s[n]) and O e the standard

peaks

deviation of s__ [n]. This feature is computed per each frame and the mean value is

peaks

obtained per observation.

Ratio of averaged valleys and standard deviation of valleys (vibration)

Kawabe et al. [3] proposed the ratio between the mean and standard deviation of the

valley values of s[n].
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] Hs
AvoVRatio = —=

O,

[Eq. 5-29]

valleys

where u and o are the mean value and standard deviation value of s [n].
Salkys Svalleys valleys

This feature is computed per each frame and the mean value is obtained per observation.

Energies in time (vibration)

Three ways of quantifying the energy in time are used in [3], [31] for vibration pump

fault diagnosis.

N

2 lsfi]
EnergyTime 1=—"“__ [Eq. 5-30]

N A O-versionZ

N
> (slin?
EnergyTime _2=""—— [Eq. 5-31]
Jversionz
N
Z log 10|S[i]|
EnergyTime 3=—1= : s[i]=0 [Eq. 5-32]

N IOg 10 Uversionz

The energy in time 1, 2 and 3 are computed per frame and the average value is
obtained per observation.

Root Mean Square (RMS) (vibration)

Farokhzad et al. [7] applies the root mean square of the vibration signal to pump fault

diagnosis in a pump with impeller fault, seal fault and cavitation. The root mean square

(Syms ) quantifies the energy in a signal.
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[Eq. 5-33]

This feature is computed per each frame and the mean value is obtained per

observation.

Crest factor (vibration)

Farokhzad et al. [7] applies the crest factor, which quantifies the impulsiveness in a
signal. Crest factor of a time series s[n] is the ratio between the maximum value of a

signal and the root mean square of the signal.

MAX
Screstractor — m [Eq 5'34]

The crest factor is computed per each frame and the average value is computed
per each observation.

Fourth, fifth and sixth central moments (vibration)

Farokhzad et al. [7] features the vibration time signal with the fourth central moment,
the fifth central moment and the sixth central moment which are defined in the

following equations.

N

z (S[I] - :uversionl)4

S4thmoment = H N [Eq 5_35]
N . s
Z (S[I] - :uversionl)
S _ix [Eq. 5-36]
Sthmoment — N
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N

; (S[I] - :uversionl) [Eq 5_37]

S =
6thmoment
N

These features are computed per each frame and finally the mean value is
computed per each observation.

5.2.2 Contributions in time domain features

In pump fault diagnosis the features extracted from time domain are aimed to
statistically characterize the time vibration signal in order to discriminate between
different pump conditions. All the previous features extracted from time domain are
applied in vibration and pressure signals for diagnosis of impeller related faults, seal
faults, system faults and bearing faults in centrifugal pumps. As far as the author of this
Thesis knowledge, there is no research papers dealing with pump monitoring in the
audible spectrum (0-20kHz) apart from papers related to cavitation faults in centrifugal

pumps where root mean square, crest factor and variance features have been used [8].

In Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 examples of vibration and
audio time signals acquired from sensors Radial Inlet Accel and Inlet Micro of the test-
rig of this Thesis are shown for different pump conditions. Normal and plate conditions
are shown in Figure 5-2. In Figure 5-3 leading edge damage and trailing edge damage
conditions are shown. Figure 5-4 shows seal and sand conditions and finally Figure 5-5
shows sand and paper and PVC balls conditions. From the figures, it is obvious that the
signals have different shapes in different conditions for vibration and audio signals. So
the energy and statistical features in time domain might discriminate between different
pump condition both in vibration and audio signals.
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Figure 5-2: Time frames (8192 samples) from sensor Radial Inlet
Accel (vibration) and Inlet Micro (audio) for normal (NOR) and plate
(PLA) condition.
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Figure 5-3: Time frames (8192 samples) from sensor Radial Inlet
Accel (vibration) and Inlet Micro (audio) for leading edge damage
(LED) and trailing edge damage (TED) condition.
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Figure 5-4: Time frames (8192 samples) from sensor Radial Inlet
Accel (vibration) and Inlet Micro (audio) for seal (SEA) and sand
(SAN) condition.
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Figure 5-5: Time frames (8192 samples) from sensor Radial Inlet
Accel (vibration) and Inlet Micro (audio) for sand and paper (SAP)
and pvc balls (PVC) condition.

5.2.3 Frequency Domain: Vibration and Audio Features in the state of the art

Most research in pump monitoring is carried out using features extracted from
frequency domain. Frequencies at pump frequency (or rotation frequency) RF, vane-
passing frequency (also called blade-passing frequency) VPF and their harmonics are
widely used to detect impeller damage [9]-[17], [31]. Usually the change of energy at
the frequency of rotation of the pump rotor and vane-passing frequency may be an
indicator of an impeller-related fault [9]-[17]. An obstacle in inlet, outlet or conduits

provoke an energy loss at the location of the obstacle and can cause energy changes at
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rotational frequency [10], [11]. Cavitation is usually detected using measures of broad-
band noise in spectra [9]-[17]. Changes in amplitude (an energy measure) of the
mentioned frequencies can characterize an impeller, seal or system faults [10], [11].
Other studies in centrifugal pump use statistical features on spectra [32]. The spectral

amplitudes are also used as features [14].

To extract features in frequency domain, the spectrum of the signal has to be
estimated. The spectrum estimator is the periodogram: it can be defined as the Fourier

transform of a frame (of vibration or audio signal) s[n]:

1
=Neer S [Eq. 5-38]

S(w)
where |S(w)| is the Fourier transform of the frame s[n].

There are some authors that extract statistical features in frequency domain [32]

to discriminate between different kinds of faults (impeller damage, cavitation,

misalignment, etc.) in centrifugal pumps. Once the Fourier transform of the frame is

obtained, the following statistical features in frequency domain are extracted in [32]:

Center frequency (vibration)

The center frequency is defined as [32]:

NFFT

2w, S(w,)
=l
W= e [Eq. 5-39]
> S(w,)
i=1
where S(w,) is the spectrum for w, i =212,...,NFFT , NFFT is the number of

spectrum lines and W; is the frequency value of the ith spectrum line. The center

frequency is computed per each frame with NFFT = 8192 points and the mean value is

obtained per observation.
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Standard deviation frequency (vibration)

The standard deviation frequency is a measure of energy in spectrum [32]:

NFFT

—W)2S(w.
_ izﬂ:(w' w)"S(w) [Eq. 5-40]

o =
fred NFFT -1

The standard deviation frequency is computed per each frame with NFFT =

8192 points and the mean value is obtained per observation.

Skewness frequency (vibration)

The skewness frequency is a measure of symmetry of the probability distribution of the

spectra [32]:

NFFT _
Z(Wi _W)BS(Wi)
SK g = = [Eq. 5-41]
red o3 NFFT

The skewness frequency is computed per frame and the mean value is computed

per observation.

Kurtosis frequency (vibration)

The kurtosis frequency is a measure of how peaked is the probability distribution of the

spectra [32]:
NFFT _
Z(Wi _W)4S(Wi)
Kireg = [Eq. 5-42]
O reg NFFT

The kurtosis frequency is computed per frame and the mean value is obtained

per observation.
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Energies in frequency (vibration)

Other features that measure the energy distribution in the spectrum are the following
[32].

> - wis o)

EnergyFreq 1= [Eq. 5-43]
O treg NFFT

EnergyFreq 2= [Eq. 5-44]
NFFT
2 WS (w,)
EnergyFreq _3= |i——— [Eq. 5-45]
D WiS(w;)
i=1
NFFT
D wiS(w;)
EnergyFreq 4= — [Eq. 5-46]

[Esm) Suist)

Each energy feature is computed per frame and its mean value is obtained per

observation.

Maximum amplitude in frequency (vibration)

The maximum amplitude in frequency is computed as follows [32]:
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MAX = max(S (w)) [Eq. 5-47]

This feature is computed per frame and then the mean value is obtained per observation.

Variation Rate frequency (vibration)

Variation rate frequency is defined in the same way of time domain: the ratio of the

standard deviation and the center frequency [32].

VR o freq

freq Eal—

Eq. 5-48
- [Eq. 5-48]
The variation rate frequency is computed per frame and its mean value is

obtained per observation.

Different works on vibration, pressure and flow spectra in pump fault diagnosis
focus their analysis at the discrete frequencies produced by the fluid-dynamic forces
[10], [11], [19], [21] which are the rotor frequency (RF), the vane-passing frequency
VPF (RF x number of blades of the impeller) and their harmonics. Zhao et al. [15], [16]
extracted energy features from spectra of vibration signal from a slurry centrifugal
pump. Impeller with no fault and impeller with damage in the trailing vane edge and in
the leading vane edge were considered. The features extracted in works [15], [16] are
the following:

Enerqgy at rotor frequency and their harmonics (vibration)

The spectrum amplitudes at the pump characteristic frequencies, i.e. pump frequency
(RF = 1X), the second harmonic (2X), the third harmonic (3X), the fourth harmonic
(4X), the VPF and twice the VPF are used as features [15]. In this Thesis, the pump has

seven blades and the RPM is 2925. In Table 5-1, the corresponding frequencies are

shown:

TABLE 5-1: CHARACTERISTIC FREQUENCIES IN A CENTRIFUGAL PUMP
Rotor 2"%harmonic | 3 harmonic | 4™ harmonic | Vane-pass | Twice vane-
frequency frequency | pass freq
RF=1X 2X 3X 4X VPF=7X | 2VPF
48.75 Hz | 97.50 Hz 146.25 Hz 195 Hz 341.25Hz | 682.50 Hz
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The features extracted are the amplitudes in the spectrum at the characteristic
frequencies of the pump for each frame. In order to compute the amplitudes at the
characteristic frequencies of the pump, a range of frequencies around the characteristic

frequencies is considered. The mean value is obtained per observation.

Root mean squares in frequency range related to rotor frequency and their harmonics

(vibration)

The root mean square in the spectra in the following six frequency ranges [15] are
extracted for each frame: [0-1X], [0-2X], [0-3X], [0-4X], [0-VPF], [0-2VPF]. The mean

value is obtained per observation.

Energy ratios at rotor frequency and their harmonics (vibration)

In [16], the valuable frequencies are the pump characteristic frequencies and the other

frequencies in spectrum are treated as noise. The noise is computed as follows:

- _ 1 NF'_—r 2 - -
Noise _\/ﬁ S75%(j), j #1X,2X,3X,4X,VPF ,2VPF [Eq. 5-49]

=t

where S(j)are the amplitudes in spectrum of the frequencies different of the pump

characteristic frequencies and NFFT is the number of spectrum lines. The total
amplitude is then:

S = S(X) +S(2X) +S(3X) + S(4X) + S(VPF) + S(2VPF) + Noise £ 5.50]

where S(1X), S(2X), S(3X), S(4X), S(VPF), S(2VPF) are the amplitudes at 1X, 2X, 3X,
4X, VPF and 2VPF in spectrum. In order to implement the algorithm to compute the
value of the spectrum at the characteristic pump frequencies, a range of frequencies

around the characteristic pump frequencies is considered.

The features extracted per frame are the amplitude ratios at the pump

characteristic frequencies, which are computed as follows:
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S, ratio = % [Eq. 5-51]
S,y ratio = % [Eq. 5-52]
S, ratio = S(i:) [Eq. 5-53]
S, ratio = S(::) [Eq. 5-54]
S.pe Fatio = % [Eq. 5-55]
S,ee ratio = % [Eq. 5-56]
Noiseratio = 1\01S€ [Eq. 5-57]

total

The mean value of the amplitude ratios extracted per frame is computed per

observation.

Normalised spectral entropy (audio and vibration)

The normalised spectral entropy [19] was proposed for detecting onset of cavitation in a
centrifugal pump using vibration and airborne (audio) signals. This feature was
previously used in bearing degradation assessment [20]. We propose to use this feature
to impeller-related faults, system faults and seal fault. The normalised spectral entropy

of the spectrum S is computed as follows [19]:

First, the spectrum S of a frame s[n] is normalised:
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S(i)
Pi =t/ —

Zs(j) [Eq. 5-58]

NFFT

where Zpi =1 and NFFT is the length of spectrum sequence. The spectrum is
i=1

considered like a probability distribution and then the spectral entropy (SE) can be
computed as the entropy of the distribution:

NFFT

SE = Z p; log,(p;) [Eq. 5-59]

i=1

As SE may change with the length of the spectrum sequence, the spectral
entropy is normalized by the length of the spectrum sequence, obtaining the normalized

spectral entropy (SEn):

En — S—E
log, (NFFT) [Eq. 5-60]

Normalised spectral entropy ranges between 0 and 1. For spectra with flat
amplitude distribution, the value of normalised spectral entropy is larger. For spectra
with the same amplitudes at each frequency, the value of normalised spectral entropy is
1. For spectra with amplitudes concentrated in few frequency components, the value of
normalised entropy is near 0, especially when a unique frequency component has non-
zero amplitude. As the spectrum of different fault pump conditions considered in this
Thesis has different shapes, it is reasonable to use this feature to characterize the

vibration and audio signals (see Figure 5-6 and Figure 5-7).

The normalized spectral entropy is computed per each frame and then the mean

value is obtained per observation.
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5.2.4 Contributions in frequency domain features

As in time domain, most features extracted from frequency domain in centrifugal pump
monitoring are extracted from vibration and pressure signals. The espectral entropy [19]
and statistical features in the frequency domain such as kurtosis are features also
extracted from audio signal in centrifugal pump monitoring to detect cavitation [48].

Most state-of-the art frequency features are related to energy distribution in
vibration spectrum. This seems reasonable because impeller-related faults and systems
faults produce changes in flow that can affect vane-passing frequency, rotor frequency
and their harmonics and can also generate broadband noise. In Figure 5-6 and Figure
5-7 spectra of different pump conditions (free-fault condition, plate condition, leading
edge damage condition, trailing edge damage condition, seal condition, sand condition,
sand and paper condition and pvc balls condition) are shown for vibration and audio
signals simultaneously acquired. There are changes in the energy distribution between
normal and fault conditions both in vibration and audio signals. So, it is reasonable to

apply the state-of-the-art features to audio signals.
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Figure 5-6: Spectra of vibration frames (8192 samples) from sensor
Radial Inlet Accel for different pump conditions: normal (NOR), plate
(PLA), leading edge damage (LED), trailing edge damage (TED), seal
(SEA), sand (SAN), sand and paper (SAP) and pvc balls (PVC)
conditions.
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Figure 5-7: Spectra of audio frames (8192 samples) from sensor Inlet
Micro for different pump conditions: normal (NOR), plate (PLA),
leading edge damage (LED), trailing edge damage (TED), seal (SEA),
sand (SAN), sand and paper (SAP) and pvc balls (PVC) conditions.

In order to obtain a better representation, Figure 5-8 and Figure 5-9 show the
spectra in the range [2.6-1000]Hz of the Figure 5-6 and Figure 5-7 respectively. In
audio signal, the normal condition spectrum has the characteristic pump frequencies
(rotor frequency, vane-passing frequencies and their harmonics) as well as the fan motor
frequency. As stated in Chapter 3 when an initial analysis of the baseline spectrum of
audio signal was carried out, the discrete frequencies dominate in the spectrum and
there is no noise. In PLA, LED and TED conditions, amplitude changes in the pump
characteristic frequencies are observed. Moreover, broad-band noise is present in low
frequency range (from 2.6Hz to 100Hz approximately). This might be due to possible
recirculation of the flow. In the case of PLA condition this is not so evident. For SEA,
SAN, SAP, PVC (seal condition and system fault conditions) more noise is present in
the range 400-1000 Hz than in the case of normal condition. System fault conditions can
lead to partial obstruction of the piping system, producing low flow rate and the
generation of turbulence (broadband) noise. In Figure 5-7, it is also observed the peak at
1077Hz. As stated in Chapter 3, it is believed that this peak is due to structural
resonances. Some noise is also present in fault conditions at higher frequencies than

1kHz in audio spectra.

In the case of the vibration signals, the change in the amplitude of the pump

characteristic frequencies is also observed. The noise is less evident in the vibration
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signals of fault conditions in frequency range [2.6-1000]Hz (Figure 5-8) than in audio
spectra. However, there are differences between conditions in higher frequencies (from

1kHz-6kHz).
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Figure 5-8: Spectra of vibration frames (8192 samples) from sensor
Radial Inlet Accel in frequency range [0-1000]Hz for different pump
conditions: normal (NOR), plate (PLA), leading edge damage (LED),
trailing edge damage (TED), seal (SEA), sand (SAN), sand and paper
(SAP) and pvc balls (PVC) conditions.
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Figure 5-9: Spectra of audio frames (8192 samples) from sensor Inlet
Micro in frequency range [0-1000]Hz for different pump conditions:
normal (NOR), plate (PLA), leading edge damage (LED), trailing
edge damage (TED), seal (SEA), sand (SAN), sand and paper (SAP)
and pvc balls (PVC) conditions.
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Based on the observations of audio and vibration spectra, we propose three
features in both vibration and audio signals in frequency domain: harmonic to noise
ratio, harmonic to noise ratio (iterative method) and normalised noise energy. These
features can quantify the relationship between the harmonic components (multiples of
the rotor frequency and vane-passing frequency) and noise components of the vibration

and audio signals.

Harmonic to Noise ratio

The harmonic to noise ratio is the relationship between the pump characteristic
frequencies (1X, 2X, 3X, 4X, VPF, 2VPF) and the rest of frequencies in the spectra

which are treated as noise. The harmonic to noise ratio can be defined as:

HNR :lmogw(sam +S(2X)+S(3X) Ljiii)() +S(VPF) + S(ZVPF)) (Eq. 5-61]

The harmonic to noise ratio is computed per frame and then the mean value is

obtained per observation.

Harmonic to Noise ratio (iterative method)

The harmonic to noise ratio (iterative method) is a measure from speech
characterization field which measures the relationship between the harmonic and noise

components of a voice signal [25]. It can be defined as:

ZIH( w)’
1 EET— [Eq. 5-62]

N 2N

i=1

HNR =10log,,

iterative

where H(w) is the harmonic component and N(w) is the noise component. To separate

between the harmonic and noise components in a voice signal iterative methods are
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used [27]. The following steps are used to obtain an estimation of the noise components

in a frame of vibration and in a frame of audio signal:

1. The Fast Fourier transform (FFT) of N points is computed for each frame.

2. The harmonic components of the spectrum of the frame are removed and
replaced by a null value. In this case, the harmonic components of the spectrum

are the multiples of the pump frequency (1X), i.e. nX wheren=1, ..., 452.

3. The inverse Fast Fourier transform is computed and the samples with indexes

higher than N are removed.

4. The FFT is computed again and the noise spectral components are replaced by

the spectral components of the original frame.
5. Steps 3 and 4 are repeated five times.
Once the noise components of the spectrum are obtained, the harmonic component
is computed as the difference of the FFT of the original frame and the noise

components.

The Harmonic to Noise ratio is computed per each frame and the mean value is

obtained per observation.

Normalised Noise Enerqy (iterative method)

The normalised noise ratio is another feature from the voice signal characterization field
[26] that estimates the ratio between the noise components (noise energy) and the total

energy of the signal. The normalized noise ratio can be expressed as:

N
Z|N( W)
NNR =10log,, T\ll [Eq. 5-63]

~ Syse’
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where the numerator is the noise energy and the denominator is the energy of the
signal. To obtain the noise component the iterative procedure explained in Harmonic to

Noise ratio measure is used.

The normalized noise energy is computed per each frame and the mean value is

obtained per observation.
5.2.5 Cepstrum Domain: Vibration and Audio Features in the state of the art

Cepstrum domain is used in fault diagnosis of different machines or part of machines
such as gears and bearings [49]. However, as author knowledge, there are not features
extracted from cepstrum domain in centrifugal pump fault diagnosis with faults related

to impellers, seal or the system.
5.2.6 Contributions in cepstrum domain features

In cepstrum domain, we contribute with a set of features that characterize energy in the
characteristic pump quefrencies (harmonic components) and relationships between

harmonic components and noise components.

The power cepstra of a discrete signal s[n] of length N are defined as:
_ 2
P, (n) = F*{log(|S(w)| )} [Eq. 5-64]
where F{ } represents the inverse Fourier transform.

Using the power cepstrum the harmonic components of the vibration and audio
signal from the centrifugal pump can be identified. The cepstrum are rectified to obtain
a better representation. As an example, in Figure 5-10 and Figure 5-11 the representations
of the rectified cepstrum of two audio signals in normal condition and in LED condition
are shown. The cepstral energy at the rotor frequency (RF = 1X) and twice the rotor

frequency are marked. In Figure 5-12 and Figure 5-13 the rectified cepstra of vibration
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signals in normal and LED condition acquired simultaneously that the audio signals are

shown.
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Figure 5-10: Rectified cepstrum of an audio frame from sensor Inlet
Micro in normal condition.
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Figure 5-11: Rectified cepstrum of an audio frame from sensor Inlet
Micro in LED condition.
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Radial Inlet Accel: normal condition
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Figure 5-12: Rectified cepstrum of a vibration frame from sensor
Radial Inlet Accel in normal condition.
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Figure 5-13: Rectified cepstrum of a vibration frame from sensor
Radial Inlet Accel in LED condition.

Cepstral energies at pump characteristic quefrencies

Once the rectified power cepstrum is computed, the cepstral energies at pump
characteristic quefrencies are estimated (1/1X, 1/2X, 1/3X, 1/4X, 1/VPF, 1/2VVPF) as
the sum of the cepstral components around those quefrencies. Six cepstral energies are
obtained. Each of them is computed per frame and the mean value is obtained per

observation.

194 Universidad de Las Palmas de Gran Canaria



Advances in preventive monitoring of machinery through audio and vibration signals

Cepstral energy ratios at pump characteristic quefrencies

The cepstral energy ratios are the cepstral energy at the characteristic pump quefrencies
divided by the total energy of the rectified cepstrum. Six cepstral energy ratios are

obtained per frame and the mean value is computed per observation.

Cepstral Harmonic to Noise ratio

The cepstral harmonic to noise ratio quantifies the ratio between the harmonic
component (the pump characteristic quefrencies) and the noise components in the
cepstral domain. The harmonic energy in cepstrum domain is estimated as the sum of
the energies at the pump characteristic quefrencies. The noise energy is estimated as the
difference between the total energy of the rectified cepstrum and the energies at each
pump characteristic quefrencies. The cepstral harmonic to noise ratio can be expressed

as follows:
1 L
EZ|CH (n)|
IZ:l]CN (n)|

where the numerator is the estimation of the energies at the pump characteristic
quefrencies (harmonic component) and the denominator is the estimation of the noise
energy in cepstrum domain. The cepstral harmonic to noise ratio is computed for each

frame. The mean value is obtained per observation.

Cepstral Normalised Noise Energy

The cepstral normalised noise energy quantifies the relationship between the noise
component and the total energy in the rectified power cepstrum domain. The noise
component is estimated as in the Cepstral Harmonic to Noise ratio. The cepstral

normalized noise energy can be expressed as:
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ZIC ()

Sem

where the numerator is the estimated noise energy and the denominator the estimated
total energy in the rectified cepstrum. The cepstral normalized noise energy is computed

per frame and the mean value is obtained per observation.
5.2.7 Time-Frequency Domain Vibration and Audio Features in the state of the art

Most analysis in time-frequency domain in centrifugal pump diagnosis is carried out
using the wavelet transform. Continuous and discrete wavelet transforms have been
applied in fault diagnosis of different pump conditions: impeller damage, cavitation,
bearings damage [28]-[33]. In general, the vibration signal is decomposed in different
levels and statistical time features and statistical frequency features are extracted from
the different levels of decomposition and are used as features in a classification system.
In this Thesis, we have decided implement other kind of wavelet transform, the wavelet
packet transform, already explained in Chapter 4 for bearing fault degradation, due to its
versatility to decompose the signal in both high and low frequency levels. As the
wavelet packet transform is a generalization of the discrete wavelet transform, we have
decided not implement the continuous and discrete wavelet transform. We contribute
with the use of the wavelet packet transform and the extraction of energy features from

the nodes of the wavelet packet.
5.2.8 Contributions in time-frequency domain features

In this Thesis, we propose the use of the wavelet packet transform to centrifugal pump
fault diagnosis. The selection of the wavelet mother was studied in a previous work
(part of which is published in [1]). The selected wavelet mother is the ‘Daubechies 2
(‘db2”). We selected the level of decomposition according to the frequency range of each
node so as each node encompass a frequency range up to VPF. The level of
decomposition selected is 5. As the sample frequency is 22050Hz, in the fifth level of

decomposition we have 32 nodes and each node has a frequency range of 344.5 Hz. We
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have to take into account that the bandwith of the radial accelerometer is up to 2.6kHz.
In order to obtain the same number of features for each sensor, we decided to use only
the seven first nodes of the 5™ level of decomposition (from 0-2411.7Hz). The relative
energy of the five-level nodes is computed as the energy of each node divide by the

energy of the frame signal. So, we have 7 features in the time-frequency domain.

Relative energies in nodes 1-7 of the wavelet packet transform

The wavelet packet transform is applied at a frame s[n] using the wavelet mother
Daubecheis 2 (‘db2’) and five levels of decomposition. The relative energies (energy of
the node divided by the energy of the original frame s[n]) of the first seven nodes of

fifth level are computed.

Seven relative energies are computed per frame. The mean value of each feature

is obtained per observation.

5.2.9 Nonlinear Domain Vibration and Audio Features in the state of the art

Centrifugal pumps operate with flowing fluids and have complicated interaction
between the machine components and the flow itself [10], [11]. For this reason, it is
reasonable to use measures to quantify complexity and predictability in a time series in
order to discriminate between different pump conditions. However, there are few works
investigating those kinds of features in pump fault diagnosis. Recently, Yunlong et al.
[35] proposed the use of the empirical mode decomposition (a time-frequency
technique) to decompose the original vibration signal into intrinsic mode functions
(IMFs). Authors take the first eigth IMFs and extract the Lempel-Ziv complexity for
each one. Then, the entropy of those eight values is computed. This procedure is applied
to a centrifugal pump with mechanical faults such as unbalance, incorrect alignment and
looseness. Dong et al. [34] applies the local mean decomposition (another technique in
time-frequency domain) to decompose the pressure signal in product functions and then
the entropy of the first two product functions is computed. This procedure is applied to
mechanical faults (outer-race fault, inner-race fault, cylinder leakage, relief valve
blockage and relief valve leakage) of an hydraulic pump system.
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No previous works using complexity measures or measures based on nonlinear
dynamics in pump fault diagnosis with fault related to impeller damage, seal damage or

system faults were found by the author of this Thesis.
5.2.10 Contributions in nonlinear domain features
In this section, we propose a set of features to quantify the complexity of audio and
vibration signals of a centrifugal pump. Some of the features are based on nonlinear

dynamic system theory and other features are complexity and predectibility measures.

Nonlinear Dynamics Systems: Taken's embedding

Deterministic dynamical systems describe the time evolution of a system in some phase
space I'e R" (m-dimensional vectorial space), where a state is specified by a vector. The
evolution in time can be expressed by ordinary differential equations or by maps in
discrete time. The dynamical system underlying the fluid dynamics and their interaction
with the pump components is very complex and its equations are unknown.
Nevertheless, Takens’ embedding theorem [36] establishes that it is possible to
reconstruct a phase space diffeomorphically equivalent to the original one from the time
series of a system. The delays method is used to reconstruct the state-space vector

formed by time-delayed samples of the observation (the vibration or the audio signal

s[n])
S, =[s[n],s[n-7],....s(n—(m-1)7]] [Eq. 5-67]

where s[n] is the vibration/audio signal, m is the minimum embedding dimension of the

phase space reconstructed and 7 is the time delay. The vibration and audio signals are
embedded in the reconstructed phase space and their long-term evolution in the
reconstructed phase space is called attractor. 7 can be determined by calculating the first
minimum of mutual information [37] and the false neighbors method [38] can be used

to estimate the minimum value of the embedding m.
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Mutual information function

The mutual information function measures the mutual dependency between two

variables. When these two variables are a discrete signal s[n]and its delayed version
s[n+z], the mutual information function measures the quantity of information we
already possess about the value of s[n+z]if we know s[n]. The mutual information

estimator reads as [37], [39]:

Pj; ()
|(T):Ziyj p.; (7) |n{ D pj(r)} [Eq. 5-68]

where p; is the probability of finding a value of s[n] inside the ith bin of the data

histogram and p; the joint probability that s[n] is in bin i and s[n+¢] in bin j.

The first minimum of the mutual information function marks the delay where
mutual information adds maximal information to the knowledge we have from s[n].
The value of the mutual information function in the first minimum (MI) quantifies the
degree of irregular behavior of a time series in the time of maximum difference of a

signal with its delayed version.

Correlation dimension

The correlation dimension gives an idea of the complexity of the dynamics. More
complex systems have a higher correlation dimension. In random processes, correlation
dimension is not bounded, while in deterministic systems there tends to be a finite value

and it can be a non integer number (fractal dimension). CD is given as [39]:

_dInC(&,N) _ AInC(g, N)

D =——""""2=]i _—
2 dine IM 1250 Alne [Eq. 5-69]
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with C(g,N) being the correlation sum of a set of points Sn (n =1,...,N) of the vibration
or audio signal attractor in the reconstructed embedding.

1 N N o
C(e,N) =m§;9(8—ﬂsi -55)) [Eq. 5-70]

J#i
where 6(s) = 0 if s <0 and 6(s) = 1 if s > 0 which counts the number of points inside the
sphere with radius ¢ around S;. C(g,N)is the average fraction of points within a
distance of ¢from any other point. D, is estimated by calculating the local slope of the

curve InC(g) against Ine when the curve has a plateau for different values of the

embedding dimension.

In this Thesis, the Takens-Theiler estimator [40] of D, is computed (CD).
Takens-Theiler estimator is a maximum-likelihood estimator of D, and can be obtained

as follows:
D (e) = &
j-c(g') de [Eq. 5-71]
0 gl

The procedure to compute CD is the following. First, the minimum embedding
dimension is estimated using the false neighbors method. Then, the Takens-Theiler
estimator of the correlation dimension (CD) is computed for different values of m. The
value of m varies from the minimum embedding dimension to the minimum embedding
dimension plus 3. For example, if the minimum embedding dimension estimated for the
frame is 3, the Takens-Theiler estimator is computed for the following embedding
dimensions: 3, 4, 5 and 6 and therefore four different curves are obtained. When a
plateau is found in the curves (the scaling range where the value of the Takens-Theiler
estimator is independent of m and &), the value of the straight line that fits this plateau is
the CD estimator.
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Shannon entropy

Entropy describes the quantity of disorder or complexity of a system. Shannon entropy

(SE) and correlation entropy (CE) were estimated as follows.

Shannon entropy of a system reads as:

H=->.pInp [Eq. 5-72]

If we consider a system in which its output falls into the unit interval and we
divide it into bins, p; is the probability that one of the outputs falls into th bin. The SE
measures the degree of disorder of the probability distribution of a time series [39]. The

SE is estimated as the maximum value of the mutual information function.

Correlation entropy

The correlation entropy estimator (CE) quantifies the loss of information in time in a
dynamic system [39]. It is zero, positive, and infinite for regular, chaotic and random
systems respectively. The correlation entropy is the Rényi entropy of order 2. In order

to formulate the correlation entropy, let us consider observables where the partition

elements are intervals I; of size e. Let us introduce joint probabilities [ ;, i that an
arbitrary time n the observable falls into the interval |i1 and in time n+1 it falls into the

interval |i2 and so on. Then, the block entropies of block size m is given as [39]:

1
Hy(m, &)= g Ny Pl [Eq. 5-73]

g

The correlation entropy is defined as:

. 1
h, =sup, Ilmm_,wE H,(m,¢) [Eq. 5-74]
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The correlation entropy is estimated using the same procedure of the correlation

dimension estimator.

Normalised Lempel-Ziv complexity

The normalized Lempel-Ziv complexity [41], [42] is a complexity measure that
quantifies the degree of order or disorder and development of spatiotemporal patterns in
a time series. Lempel-Ziv complexity was presented and studied in Chapter 4, so we do
not repeat here the formulation. We compute the Lempel-Ziv complexity with 4
symbols for each frame. The average value is obtained per observation.

Hurst exponent

The rescaled-range (RS) method was introduced by Hurst [43] as a tool for evaluating
the persistence or antipersistence of a time series. The method consists of dividing the
series into intervals of a given size 1 and calculating the average ratio R/S of the range
(the difference between the maximum and minimum values of the series) to the standard
deviation from each interval. The size 4 is varied and a curve of the rescaled range R/S
as a function of A is obtained. The Hurst exponent can be estimated as the slope of the
curve. A Hurst exponent (H) equal to 0.5 corresponds to a regular Brownian motion
(random motion) and to the absence of memory effects, H > 0.5 (H < 0.5) corresponds
to persistent (antipersistent) behaviour of the time series and to the presence of memory

affecting the motion.

In an anti-persistent time series an increase will most likely be followed by a
decrease or vice-versa (i.e., values will tend to revert to a mean). The closer the H value
is to 0, the stronger is the tendency for the time series to revert to its long-term means
value. This means that future values have a tendency to return to a long-term mean. In a
persistent time series an increase in values will most likely be followed by an increase
in the short term and a decrease in values will most likely be followed by another
decrease in the short term. The closer the H value is to 1, the stronger the trend.

Mathematically, the Hurst exponent is computed as follows:
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Given an interval of size 4, whose left end is located a point ig, the average of the

time series x of the interval is computed as:

(), =7 2% [Eq. 5-75]

An accumulated deviation from the mean is defined as

X(t,A) = Z;‘X“ -(x), [Eq. 5-76]

A range is extracted from the above operations
R(A) = max( X (t, 1)) —min( X (t, 1)) [Eq. 5-77]

And the corresponding standard deviation

5 - J;{xa) ~(x),¥ [Eq. 5-78]

Finally, the rescaled range R(z)/S(z) is obtained and its average is determined

over all intervals. The rescaled range should satisfy the scaling form:

R(A) .
RS(1) = ﬁ ~ A [Eqg. 5-79]

where H is the Hurst exponent.

The Hurst exponent is extracted per each frame and the average value is

obtained per observation.
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Hiqguchi fractal dimension

The Higuchi’s algotihm is a technique for computing the fractal dimension of a time
series directly without the embedding process. The fractal dimension quantifies the
complexity of the time series. In order to obtain the fractal dimension D, Higuchi [44]

considered the times series s[1],s[2],...,S[N] as a set of observations taken at regular

interval. From this series, a new one, s," is constructed, which is defined as follows:

s™: s[m], s[m + k], s[m + 2k],...., s[m +(N - mjk] [Eq. 5-80]

with m=1,2,...,k, where (.) that is the bigger integer, and both k and m are integers,

indicating m and k the initial time and the interval time, respectively.

Higuchi defines the length of the curve associated to each time series, SIT as
follows:

Lm(k)=% Y- s(m-+ik) = s(m+ (i ~1)k) [N'\'_—ml [Eq. 5-81]
i=1 k
|

average value <L(k)> of the lengths associated to the time series given by Eq 5-80. If

where the term , represents a normalization factor. Higuchi takes the

the average value follows a power law:

(LK) oc k

then the curve is fractal with dimension D.
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5.3 Feature identification

Once the features are extracted from each sensor, the feature selection procedure
is applied. In the following table the 98 features extracted from the vibration and audio

signals of each sensor are enumerated and an identifier is added to each feature (1d.).

TABLE 5-2: FEATURES EXTRACTED FROM VIBRATION AND AUDIO SIGNALS

Feature | Feature Name Signal
Id domain
1 Mean of mean value Time
2 Mean of mean value absolute Time
3 Mean of standard deviation Time
4 Mean of standard deviation absolute Time
5 Mean of variance Time
6 Mean of variance absolute Time
7 Mean of skewness Time
8 Mean of skewness absolute Time
9 Mean of skewness of peak values Time
10 Mean of skewness of valley values Time
11 Mean of kurtosis Time
12 Mean of kurtosis absolute Time
13 Mean of kurtosis of peak values Time
14 Mean of kurtosis of valley values Time
15 Mean of median Time
16 Mean of minimum values Time
17 Mean of maximum values Time
18 Mean of range values Time
19 Mean of sum values Time
20 Mean of variation rate Time
21 Mean of variation rate of peak values Time
22 Mean of variation rate of valley values Time
23 Mgan of the number of peaks and number of zero-crossing | Time
ratio
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Feature | Feature Name Signal

Id domain

24 Mgan of the number of valleys and number of zero-crossing | Time

25 Ir\ilte;gn of the ratio of averaged peaks and mean value absolute | Time

26 Mean of ratio of averaged ten peaks and averaged peaks Time

27 Mean of ratio of averaged peaks and standard deviation of | Time

28 R/elzlgs of ratio of averaged valleys and standard deviation of | Time
valleys

29 Mean of energy in time 1 Time

30 Mean of energy in time 2 Time

31 Mean of energy in time 3 Time

32 Mean of root mean square Time

33 Mean of crest factor Time

34 Mean of 4th central moment Time

35 Mean of 5th central moment Time

36 Mean of 6th central moment Time

37 Mean of Zero crossing rate Time

38 Mean of amplitude at rotor (1X) frequency Frequency

39 Mean of amplitude at 2X frequency Frequency

40 Mean of amplitude at 3X frequency Frequency

41 Mean of amplitude at 4X frequency Frequency

42 Mean of amplitude at vane-passing frequency Frequency

43 Mean of amplitude at twice vane-passing frequency Frequency

44 Mean of amplitude at 1X ratio Frequency

45 Mean of amplitude at 2X ratio Frequency

46 Mean of amplitude at 3X ratio Frequency

47 Mean of amplitude at 4X ratio Frequency

48 Mean of amplitude at vane-pass frequency ratio Frequency

49 Mean of amplitude at twice vane-pass frequency ratio Frequency

50 Mean of noise ratio Frequency

51 Mean of root mean square in [0-1X] Frequency

52 Mean of root mean square in [0-2X] Frequency

53 Mean of root mean square in [0-3X] Frequency
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Feature | Feature Name Signal

Id domain

54 Mean of root mean square in [0-4X] Frequency
55 Mean of root mean square in [0-VPF] Frequency
56 Mean of root mean square in [0-2VPF] Frequency
57 Mean of harmonic to noise ratio (dB) Frequency
58 Mean of normalized noise energy (iterative method) (dB) Frequency
59 Mean of harmonic to noise ratio (iterative method) (dB) Frequency
60 Mean of central frequency Frequency
61 Mean of standard deviation frequency Frequency
62 Mean of skewness frequency Frequency
63 Mean of kurtosis frequency Frequency
64 Mean of frequency rate Frequency
65 Mean of energy in frequency (energy freq 1) Frequency
66 Mean of maximum amplitude in spectrum Frequency
67 Mean of energy in frequency (energy freq 2) Frequency
68 Mean of energy in frequency (energy freq 3) Frequency
69 Mean of energy in frequency (energy freq 4) Frequency
70 Mean of normalized spectral entropy Frequency
71 Mean of cepstral energy at 1/1X Cepstrum
72 Mean of cepstral energy ratio at 1/1X Cepstrum
73 Mean of cepstral energy at 1/2X Cepstrum
74 Mean of cepstral energy ratio at 1/2X Cepstrum
75 Mean of cepstral energy at 3X Cepstrum
76 Mean of cepstral energy ratio at 1/3X Cepstrum
77 Mean of cepstral energy at 1/4X Cepstrum
78 Mean of cepstral energy ratio at 1/4X Cepstrum
79 Mean of cepstral energy at vane pass quefrency Cepstrum
80 Mean of cepstral energy ratio at vane pass quefrency Cepstrum
81 Mean of cepstral energy at twice vane pass quefrency Cepstrum
82 Mean of cepstral energy ratio at twice vane pass quefrency Cepstrum
83 Mean of cepstral normalized Noise Energy Cepstrum
84 Mean of cepstral Harmonic to Noise ratio Cepstrum
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Feature | Feature Name Signal

Id domain
85 Mean of relative energy in node 1 wavelet packet Wavelet
86 Mean of relative energy in node 2 wavelet packet Wavelet
87 Mean of relative energy in node 3 wavelet packet Wavelet
88 Mean of relative energy in node 4 wavelet packet Wavelet
89 Mean of relative energy in node 5 wavelet packet Wavelet
90 Mean of relative energy in node 6 wavelet packet Wavelet
91 Mean of relative energy in node 7 wavelet packet Wavelet
92 Mean of Lempel Ziv complexity value (n = 4) Nonlinear
93 Mean of Hurst exponent value Nonlinear
94 Mean of 1° minimum of mutual information function Nonlinear
95 Mean of Shannon entropy Nonlinear
96 Mean of correlation dimension Nonlinear
97 Mean of correlation entropy Nonlinear
98 Mean of Higuchi fractal dimension Nonlinear

5.4 Relevance study of the selected features

In this section, the results of the relevance study of the selected features (methodology
explained in Chapter 4) are shown for each sensor. Two different cases are considered:
8 classification units (i.e. 8 pump conditions) and 17 classification units (i.e. 17 pump

conditions).
5.4.1 Case study: 8 classification units
The results of the selected features sorted by relevance order are shown for each sensor

for the case of 8 classification units in Table 5-3. Freq is the frequency of appearance of

a feature.
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TABLE 5-3: RELEVANCE ORDER FOR 8 CLASSIFICATION UNITS

(NOR, PLA, LED, TED, SEA, SAN, SAP, PVC)

8 classification units

Relevance | RadiallnletAccel Radial Accel InletMicro OutletMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
1 68 53.3% |92 55% 47 71.6% |68 65%
2 7 36.6% |71 35% 90 50% 15 35%
3 22 31.6% |91 31.6% |24 26.6% | 47 35%
4 77 30% 68 30% 86 26.6% | 23 30%
5 9 21.6% |21 26.6% | 92 25% 44 28.3%
6 25 20% 8 21.6% |38 21.6% | 87 28.3%
7 8 15% 9 18.3% | 25 20% 46 26.6%
8 10 15% 24 18.3% | 60 18.3% | 42 25%
9 24 15% 72 16.6% | 87 16.6% |7 23.3%
10 37 15% 14 13.3% |21 15% 8 23.3%
11 44 15% 49 13.3% | 10 11.6% | 14 21.6%
12 70 15% 7 11.6% |41 11.6% | 86 21.6%
13 83 15% 28 10% 45 11.6% |50 20%
14 23 13.3% | 75 10% 9 83% |85 20%
15 78 13.3% | 90 10% 28 8.3% |90 20%
16 71 11.6% |2 6.6% |44 83% |12 16.6%
17 21 10% 26 6.6% |23 6.6% |35 16.6%
18 67 10% 83 5% 48 6.6% |43 16.6%
19 69 10% 23 5% 7 5% 45 16.6%
20 38 83% |37 5% 27 5% 48 16.6%
21 72 83% |45 5% 37 5% 57 16.6%
22 86 8.3% |47 5% 39 5% 24 15%
23 14 6.6% | 62 5% 93 5% 25 15%
24 41 6.6% | 69 5% 8 33% |93 15%
25 62 6.6% |86 33% |14 33% |10 11.6%
26 84 6.6% |10 33% |22 33% |9 10%
27 12 5% 11 3.3% |26 33% |11 10%
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8 classification units
(NOR, PLA, LED, TED, SEA, SAN, SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InletMicro OutletMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
28 17 5% 12 3.3% 42 3.3% 71 10%
29 27 5% 20 3.3% ol 3.3% 91 10%
30 28 5% 41 3.3% 68 3.3% 94 10%
31 33 5% 50 1.6% 85 3.3% 22 8.3%
32 43 5% 13 1.6% |12 1.6% |56 8.3%
33 A7 5% 15 1.6% |15 1.6% |60 8.3%
34 49 5% 25 1.6% 40 1.6% 13 6.6%
35 60 5% 38 1.6% 43 1.6% 20 6.6%
36 79 5% 48 1.6% |46 1.6% |37 6.6%
37 85 5% 58 1.6% 49 1.6% 38 6.6%
38 2 3.3% 59 1.6% 59 1.6% 53 6.6%
39 26 33% |60 1.6% |67 1.6% |62 6.6%
40 40 3.3% 76 1.6% 69 1.6% 69 6.6%
41 73 3.3% 77 1.6% 91 1.6% 1 5%
42 87 3.3% 84 1.6% 98 1.6% 26 9%
43 88 3.3% 85 1.6% 1 0% 27 5%
44 94 3.3% 87 1.6% 2 30 5%
45 3 1.6% 93 1.6% 3 31 9%
46 4 1.6% 1 0% 4 51 5%
47 5 1.6% 3 5 54 5%
48 11 1.6% 4 6 70 5%
49 34 1.6% 5 11 84 5%
50 45 1.6% 6 13 28 3.3%
51 58 1.6% |16 16 39 3.3%
52 64 1.6% 17 17 40 3.3%
53 80 1.6% 18 18 41 3.3%
54 90 1.6% 19 19 49 3.3%
55 91 1.6% 22 20 52 3.3%
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8 classification units
(NOR, PLA, LED, TED, SEA, SAN, SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InletMicro OutletMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
56 92 0% 27 0% 29 0% 67 3.3%
57 1 29 30 73 3.3%
58 6 30 31 83 3.3%
59 13 31 32 88 3.3%
60 15 32 33 2 1.6%
61 16 33 34 3 1.6%
62 18 34 35 4 1.6%
63 19 35 36 5 1.6%
64 20 36 50 19 1.6%
65 29 39 52 21 1.6%
66 30 40 53 29 1.6%
67 31 42 54 33 1.6%
68 32 43 55 55 1.6%
69 35 44 56 58 1.6%
70 36 46 57 64 1.6%
71 39 51 58 65 1.6%
72 42 52 61 66 1.6%
73 46 53 62 89 1.6%
74 48 54 63 97 1.6%
75 50 55 64 6 0%
76 51 56 65 16
77 52 57 66 17
78 53 61 70 18
79 54 63 71 32
80 55 64 72 34
81 56 65 73 36
82 57 66 74 59
83 59 67 75 61
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8 classification units
(NOR, PLA, LED, TED, SEA, SAN, SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InletMicro OutletMicro
Order
Feature | Freq Feature | Freq Feature | Freq Feature | Freq
84 61 0% 70 0% 76 0% 63 0%
85 63 73 77 72
86 65 74 78 74
87 66 78 79 75
88 74 79 80 76
89 75 80 81 77
90 76 81 82 78
91 81 82 83 79
92 82 88 84 80
93 89 89 88 81
94 93 94 89 82
95 95 95 94 92
96 96 96 95 95
97 97 97 96 96
98 98 98 97 98

5.4.2 Case study: 17 classification units

The results of the selected features sorted by relevance order are shown for each sensor
for the case of 17 classification units in Table 5-4. In this case, the severity of the faults

is considered.
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TABLE 5-4: RELEVANCE ORDER FOR 17 CLASSIFICATION UNITS

17 classification units
(NOR, PLA1, PLA2, PLA3, LED1, LED2, LED3, TED1, TED2, TED3, SEA, SAN,

SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InMicro OutMicro
Order

Feature | Freq | Feature | Freq | Feature | Freq | Feature | Freq
1 68 83.3% | 86 48.3% | 90 73.3% | 90 68.8%
2 87 36.6% | 24 43.3% | 14 53.3% | 48 55%
3 14 31.6% | 68 40% | 42 51.6% | 42 50%
4 22 31.6% | 90 38.3% | 47 50% |43 45%
5 66 31.6% | 23 36.6% | 92 50% | 87 45%
6 70 31.6% | 91 33.3% | 87 48.3% | 47 41.6%
7 21 30% |46 30% |59 46.6% | 98 41.6%
8 91 30% |89 30% |27 45% | 24 40%
9 27 28.3% | 25 28.3% | 28 43.3% | 68 40%
10 28 26.6% | 28 26.6% | 8 41.6% | 46 38.3%
11 41 26.6% | 7 25% |41 41.6% | 69 36.6%
12 72 26.6% | 76 25% |44 41.6% | 23 33.3%
13 10 23.3% | 88 25% | 67 41.6% | 86 31.6%
14 24 23.3% | 69 23.3% | 25 40% | 93 31.6%
15 43 23.3% | 10 21.6% | 26 40% |94 30%
16 46 23.3% | 27 21.6% | 12 38.3% | 9 28.3%
17 67 23.3% | 83 21.6% | 21 36.6% | 14 28.3%
18 83 23.3% | 8 20% |33 36.6% | 71 26.6%
19 90 23.3% | 15 20% | 38 36.6% | 22 25%
20 25 18.3% | 37 20% | 69 36.6% | 37 25%
21 37 18.3% | 72 20% | 13 35% | 49 25%
22 49 18.3% | 74 20% |19 3% |51 25%
23 84 18.3% | 77 20% | 37 3% |25 23.3%
24 85 18.3% | 87 20% | 60 35% |50 21.6%
25 35 16.6% | 20 18.3% | 9 33.3% | 8 20%
26 44 16.6% | 21 18.3% | 23 33.3% | 10 20%
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17 classification units
(NOR, PLA1, PLA2, PLA3, LED1, LED2, LED3, TED1, TED2, TED3, SEA, SAN,

SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InMicro OutMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
27 88 16.6% | 30 18.3% | 53 33.3% | 13 20%
28 89 16.6% | 73 18.3% | 86 33.3% | 54 20%
29 51 15% | 75 18.3% | 11 31.6% | 89 20%
30 60 15% |84 18.3% | 22 31.6% | 91 20%
31 61 15% | 92 18.3% | 54 31.6% | 11 18.3%
32 17 13.3% | 9 16.6% | 85 31.6% | 57 18.3%
33 34 13.3% | 29 16.6% | 52 30% |60 18.3%
34 36 13.3% | 39 16.6% | 68 30% |64 18.3%
35 57 13.3% | 45 16.6% | 89 30% |67 18.3%
36 69 13.3% | 67 16.6% | 91 30% |72 18.3%
37 73 13.3% | 60 15% | 20 28.3% | 12 16.6%
38 93 13.3% | 71 15% | 39 28.3% | 27 16.6%
39 98 13.3% | 96 15% | 56 28.3% | 53 16.6%
40 7 11.6% | 98 15% | 88 28.3% | 84 16.6%
41 8 11.6% | 12 13.3% | 93 28.3% | 85 16.6%
42 9 11.6% | 13 13.3% | 55 26.6% | 26 15%
43 15 11.6% | 26 13.3% | 62 26.6% | 29 15%
44 40 11.6% | 31 13.3% | 24 25% |33 15%
45 47 11.6% | 48 13.3% | 45 25% |39 15%
46 52 11.6% | 78 13.3% | 48 25% | 56 15%
47 55 11.6% | 94 13.3% | 97 25% |20 13.3%
48 58 11.6% | 47 11.6% | 10 23.3% | 31 13.3%
49 59 11.6% | 85 11.6% | 29 23.3% | 52 13.3%
50 71 11.6% | 1 10% | 40 23.3% | 55 13.3%
o1 74 11.6% | 14 10% |71 23.3% | 83 13.3%
52 94 11.6% | 19 10% | 98 23.3% | 88 13.3%
53 95 11.6% | 33 10% |51 21.6% | 21 11.6%
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17 classification units

(NOR, PLA1, PLA2, PLA3, LED1, LED2, LED3, TED1, TED2, TED3, SEA, SAN,

SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InMicro OutMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
54 18 10% | 56 10% | 58 21.6% | 38 11.6%
55 19 10% |79 10% |50 20% |73 11.6%
56 23 10% 11 83% |7 18.3% | 30 10%
57 26 10% | 53 8.3% |15 18.3% | 59 10%
58 29 10% |57 8.3% |30 18.3% | 95 10%
59 39 10% | 70 8.3% |95 18.3% | 7 8.3%
60 50 10% | 93 8.3% |49 16.6% | 15 8.3%
61 77 10% |97 8.3% |61 16.6% | 44 8.3%
62 86 10% | 22 6.6% | 46 15% | 45 8.3%
63 16 8.3% |44 6.6% | 63 15% |1 6.6%
64 42 8.3% |52 6.6% |70 15% | 28 6.6%
65 64 8.3% |54 6.6% |72 15% |41 6.6%
66 92 8.3% |58 6.6% |31 11.6% | 74 6.6%
67 5 6.6% |64 6.6% |35 11.6% | 97 6.6%
68 11 6.6% |2 5% 43 11.6% | 17 5%
69 20 6.6% | 34 5% 83 11.6% | 19 5%
70 30 6.6% | 40 5% 96 11.6% | 62 5%
71 32 6.6% |42 5% 74 10% | 63 5%
72 33 6.6% |49 5% 81 10% | 65 5%
73 53 6.6% |51 5% 84 10% |61 3.3%
74 54 6.6% | 63 5% 94 10% |81 3.3%
75 56 6.6% | 66 5% 73 8.3% |92 3.3%
76 96 6.6% |81 5% 3 6.6% | 96 3.3%
77 2 5% 5 33% |5 6.6% |2 1.6%
78 3 5% 16 33% |36 6.6% | 16 1.6%
79 6 5% 35 3.3% |82 6.6% |18 1.6%
80 31 5% 38 3.3% |58 5% 35 1.6%
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17 classification units
(NOR, PLA1, PLA2, PLA3, LED1, LED2, LED3, TED1, TED2, TED3, SEA, SAN,

SAP, PVC)

Relevance | RadiallnletAccel Radial Accel InMicro OutMicro
Order

Feature | Freq Feature | Freq Feature | Freq Feature | Freq
81 38 5% 41 3.3% |64 5% 36 1.6%
82 62 5% 55 3.3% |66 5% 40 1.6%
83 65 5% 62 3.3% |76 5% 70 1.6%
84 76 5% 65 33% |2 33% |75 1.6%
85 82 5% 80 33% |17 33% |78 1.6%
86 97 5% 95 3.3% |18 33% |3 0%
87 1 33% |3 1.6% |65 33% |4
88 4 33% |4 1.6% |75 33% |5
89 12 33% |6 1.6% |79 33% |6
90 13 3.3% |17 1.6% |80 3.3% |32
91 45 3.3% |36 1.6% |1 1.6% |34
92 48 3.3% |50 1.6% |4 1.6% |58
93 75 3.3% |59 1.6% |6 1.6% | 66
94 78 3.3% |61 1.6% |16 1.6% |76
95 79 3.3% |82 1.6% |32 0% 77
96 63 1.6% |18 0% 34 79
97 81 1.6% |32 77 80
98 80 0% 43 78 82

5.5 Evaluation of the features for pump fault diagnosis

In this section, the features are incrementally evaluated from the feature with higher
relevance (higher probability of appearance in the group of selected features) to the

feature with less relevance in two different classifiers: a neural network classifier and a

LSSVM classifier. This procedure is done for each sensor.
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The success rate is obtained for each classifier and each sensor. The experiment
Is repeated 20 times and the results are averaged.

5.5.1 Case study: 8 classification units

In Figure 5-14 the incremental evaluation of the features for a neural network classifier
and for each sensor is shown. In Figure 5-15, the evaluation using a LSSVM classifier is
shown. From the figures it is obvious that the LSSVM classifier gives higher success

rates with less number of features evaluated.

Neural Network 8 classification units
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Features in relevance order

Figure 5-14: Sequential evaluation of the features for each sensor in
pump fault diagnosis using a neural network classifier to discriminate
between 8 pump conditions.
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Figure 5-15: Sequential evaluation of the features for each sensor in

pump fault diagnosis using a LSSVM classifier to discriminate
between 8 pump conditions.
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5.5.2 Case study: 17 classification units

In Figure 5-16 the incremental evaluation of the features for a neural network classifier
and for each sensor is shown. In In Figure 5-17, the evaluation using a LSSVM

classifier is shown. The LSSVM classifier has better success rates than the neural
network classifier.
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Figure 5-16: Sequential evaluation of the features for each sensor in

pump fault diagnosis using a neural network classifier to discriminate
between 17 pump conditions.
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Figure 5-17: Sequential evaluation of the features for each sensor in
pump fault diagnosis using a LSSVM classifier to discriminate
between 8 pump conditions.
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5.5.3 Selected features per sensor

As the number of features is incremented in the incremental evaluation curves, the
success rate is stabilized. In some cases with 17 classification untis, the success rate
slightly decreases when increasing the number of features. Moreover, the number of
features to obtain a stabilized success rate differs for each sensor. Therefore, in order to

select a final number of features for each sensor, we propose the following method:

1) For each sensor the maximum success rate in the classification between pump
conditions is found: SRyax

2) 2% of SRmax Is calculated and the number of features that first encounters with
the 2% of SRyax is obtained.

Using this procedure a reduced number of features with high classification rates
are obtained. This procedure is applied in the case of the neural network classifier
because it is the worst case. Following this procedure, the number of the final selected
features per sensor for 8 classification units and for 17 classification units is shown in
Table 5-5 and Table 5-6 respectively. The success rate of the selected features is shown
both for neural network and LS-SVM ckassifiers. For example, for Radial Inlet Accel
and for 8 classification units, the first 13 features in the relevance order table (Table
5-3) are selected which give a 96.98% of success rate with the neural network classifier
and a 99.59% of success rate with the LS-SVM classifier.

TABLE 5-5: SELECTED FEATURES AND CLASSIFICATION RATES PER SENSOR
FOR 8 CLASSIFICATION UNITS.

Sensor Selected  Features | Neural Network LS-SVM
from Table 5-3 Success Rates Success Rates

Radial Inlet Accel 13 first features 96.98%, 99.59%

Radial Accel 11 first features 97.07% 99.91%

Inlet Micro 7 first features 96.53% 99.82%

Outlet Micro 13 first features 96.98% 99.59%
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TABLE 5-6: SELECTED FEATURES AND CLASSIFICATION RATES PER SENSOR
FOR 17 CLASSIFICATION UNITS.

Sensor Selected Features | Neural Network LS-SVM
from Table 5-4 Success Rates Success Rates

Radial Inlet Accel 16 first features 83.11% 86.71%

Radial Accel 16 first features 82.39% 87.30%

Inlet Micro 14 first features 84.01% 87.48%

Outlet Micro 16 first features 88.29% 94.23%

5.6 Discussion and Conclusions

According to the incremental evaluation of the features, the success rate reaches values
near 100% in discriminating between 8 pump conditions and between 85% and 90% in
discriminating between 17 pump conditions with the exception of the Outlet Micro
sensor with a classification rate near 95% in discriminating between 17 pump
conditions. This shows that Outlet Micro sensor is more robust when the number of

classification units increases.

From the incremental evaluation curves it is obvious that LSSVM classifier has
better success rates than the neural network classifier. In the case of 8 classification
units LSSVM increase the classification rates between 0.5% and 2% respect to the
neural networkd classifier. In the case of 17 classification units the increment is between

4% and 6% in the success rates. This shows the superiority of the LSSVM classifier.

Provided that the number of features to obtain a stabilized success rate differs for
each sensor, we proposed a method to select a final number of features for each sensor
(see Table 5-5 and Table 5-6). The success rates of the selected features are high for all
the sensors considered, both vibration and audio signals. Therefore, the audio signal has
proven to be a good option in pump fault diagnosis for impeller-related fault, seal fault
and system faults. A study of the fusion of audio and vibration signals with the selected

features per sensor is carried out in Chapter 6.

Regarding the selected features per sensor the following observations can be

made. In general, the selected features for all sensors are energies at pump characteristic
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frequencies (in frequency and cepstral domains), the distribution of energy in spectrum
and in the wavelet packet tree, statistical features in time domain (especially skewness
and kurtosis) and periodicity in time domain (zero-crossing ratios). Some features
related to harmonic to noise ratio and related to noise energy are also selected.
Complexity features such as Lempel-Ziv complexity and Hurst exponent are also
selected.

It is obvious that as more classification units we have, more information is
needed. For this reason, in discriminating between 17 pump conditions, the number of
final selected features increases. In general, in discriminating between 17 pump
conditions, more features related to energies at pump charactacteristic frequencies are

selected.

As a conclusion, most of the selected features are related to energy changes in
spectrum. This seems reasonable since the hydraulic faults considered in this Thesis
change the flow inside the pump therefore changing the energy at pump characteristic
frequencies as well as the energy distribution in spectrum and generating turbulence

noise.

5.7 Contributions

The contributions of this Chapter are:

1. The application of state-of-the-art features extracted from vibration signals in pump

fault diagnosis to audio signals. Part of this contribution is in two conference papers [1],

2]

2. The proposal of 31 new features in pump fault diagnosis extracted from both
vibration and audio signals. The new features are extracted in frequency domain,
cepstrum domain, time-frequency domain and nonlinear domain. Part of this

contribution is in two conference papers [1], [2].

3. The study of feature selection for audio and vibration signals.
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CHAPTER 6
Results of Audio and Vibration fusion in pump

monitoring

This Chapter is devoted to fusion of audio and vibration signals acquired from the
centrifugal pump to diagnose different kinds of faults. Our aim is to analise how the
fusion of audio and vibration signals affects the results in classification. In the first part
of this Chapter, the methodology carried out is explained. Then the results of the fusion

are shown.

6.1 Methodology for audio and vibration fusion in pump fault diagnosis

In literature, there are several methods for data fusion. In this Thesis, we apply some
conventional methods in order to fusion audio and vibration information at different
levels: feature level, score level and abstract level (also called decision level) [1].
Combinations of 2, 3 and 4 sensors are evaluated for the fusion at each level using

neural network and LS-SVVM classifiers.
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The fusion at feature level comprises the concatenation of features extracted
from different sensors. The selected features obtained for each sensor (see Table 5-5 and
Table 5-6 of Chapter 5) are concatenated and evaluated with two different classifiers:
neural network classifier and LSSVM classifier. As in the case of individual sensor
evaluation, the evaluation is repeated 20 times with different training and test sets and
the results are averaged. In subsection 6.2, the results of the feature fusion for each case
study (8 classification units and 17 classification units) are shown in Table 6-1, Table
6-3, Table 6-2 and Table 6-4.

The fusion at score level is carried out using simplifications of the Bayes rule
[1]. The scores of the classifiers are fused using the sum rule, the product rule, the
minimum rule and the maximum rule. The scores of a classifier are the outputs of a
classifier before a class label is assigned, i.e. before a decision is made. The sum rule
consists in averaging the scores of two or more classifiers. In the product rule, the
scores are multiplied. The minimum and the maximum scores are selected in the

minimum and maximum rules respectively.

In the fusion at score level, the selected features for each sensor are evaluated
individually with a neural network classifier. Then the scores of each evaluation are
fusioned with the forementioned rules using different sensor combinations. This
procedure is repeated for each case study (8 classification units and 17 classification
units). The whole process is also carried out using the LS-SVM classifier. In Table 6-5,
Table 6-6, Table 6-7, Table 6-8, the results for each case study (8 classification units
and 17 classification untis) and for each classifier (neural network classifier and

LSSVM classifier) are shown.

In the fusion at decision level, the majority vote rule is applied. The majority
vote rule is a function of the votes received for each class from each single classifier.
The class with the largest number of votes is the winner class. In the fusion at decision
level, the features selected for each sensor are evaluated with a classifier. Therefore, a
class is assigned for each sensor by the classifier. Then the class with the largest number
of votes is selected. This process is carried out for each case study (8 classification units
and 17 classification units) and for each classifier. When there is a tie in the votes, the
class with the highest score at score level is selected. In Table 6-9, Table 6-10, Table
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6-11 and Table 6-12, the results of the fusion at decition level for each case study and

for each classifier are shown.

The tables with the results of the fusion at each level are shown in subsections
6.2, 6.3, and 6.4 for feature fusion, score fusion and decision fusion respectively. For
each sensor combination, the average and standard deviation of the classification
success rates are shown. In all tables the results for each individual sensor are shown for

making comparison easier.

For simplicity, the sensors are renamed as follows: Radial Inlet Accel is RI,
Radial Accel is RA, Inlet Micro is IN, Outlet Micro is OU. For example, the

combination of Radial Inlet Accel and Inlet Micro is shown as RIIN.
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6.2 Results of fusion at feature level

TABLE 6-1: FEATURE FUSION USING NEURAL NETWORK CLASSIFIER AND 8 CLASSIFICATION UNITS

Combination of 2 sensors

RI RA IN ou RIRI RARA ININ ouou RIRA RIIN RIOU RAIN RAOU INOU
96.98 97.07 96.53 95.68 96.76 95.45 97.16 96.08 97.88 97.75 98.11 97.93 98.20 98.38
(1.78) (2.32) (1.50) | (2.16) (3.09) (3.35) (1.41) (2.01) (1.06) (1.48) (0.87) (0.97) (1.55) (1.19)

Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
96.98 97.07 96.53 95.68 97.12 96.22 96.26 96.35 98.69 98.47 98.20 98.38
(1.78) (2.32) (1.50) (2.16) (1.04) (2.08) (2.07) (1.5) (0.80) (2.23) (1.60) (1.48)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ | OUOUOUOU | RIRAINOU
96.98 97.07 96.53 95.68 97.03 95.90 96.26 95.86 98.15
(1.78) (2.32) (1.50) (2.16) (1.85) (1.69) (2.07) (2.38) (1.12)
TABLE 6-2: FEATURE FUSION USING NEURAL NETWORK CLASSIFIER AND 17 CLASSIFICATION UNITS
Combination of 2 sensors

RI RA IN ou RIRI RARA ININ OUOU | RIRA RIIN RIOU RAIN RAOU | INOU
83.11 82.39 84.01 88.29 95.72 95.14 96.67 95.72 95.99 96.89 96.58 97.34 96.17 96.94
(2.88) (3.71) (3.24) | (4.61) (3.21) (2.03) (2.01) (1.49) (2.52) (2.04) (2.28) (1.53) (1.7) (2.31)

Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
83.11 82.39 84.01 88.29 96.08 94.14 97.34 96.40 97.16 96.04 97.12 94.14
(2.88) (3.71) (3.24) (4.61) (2.34) (2.8) (1.45) (1.83) (1.69)) (3.41) (1.51) (1.81)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ OuUOUOUOU | RIRAINOU
83.11 82.39 84.01 88.29 94.86 93.60 96.98 94.19 97.48
(2.88) (3.71) (3.24) (4.61) (3.14) (3.87) (1.69) (3.13) (2.10)
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TABLE 6-3: FEATURE FUSION USING LSSVM CLASSIFIER AND 8 CLASSIFICATION UNITS
Combination of 2 sensors
RI RA IN ou RIRI RARA ININ OuUOU | RIRA RIIN RIOU RAIN RAOU | INOU
99.59 99.91 99.82 99.73 99.59 98.96 99.73 99.50 99.59 99.59 99.82 99.41 99.68 99.77
(0.74) (0.28) (0.37) | (0.51) (0.9) (1.2) (0.51) (0.68) (0.68) (0.62) (0.47) (0.73) (0.6) (0.4)
Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
99.59 99.91 99.82 99.73 99.55 98.87 99.86 99.10 99.73 99.82 99.86 99.59
(0.74) (0.28) (0.37) (0.51) (0.69) (1.09) (0.33) (0.65) (0.51) (0.37) (0.44) (0.62)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ OuUOUOUOU | RIRAINOU
99.59 99.91 99.82 99.73 99.73 99.14 99.77 99.41 99.59
(0.74) (0.28) (0.37) (0.51) (0.59) (0.74) (0.5) (0.67) (0.8)
TABLE 6-4: FEATURE FUSION USING LSSVM CLASSIFIER AND 17 CLASSIFICATION UNITS
Combination of 2 sensors
RI RA IN ou RIRI RARA ININ OUOU | RIRA RIIN RIOU RAIN RAOU | INOU
86.71 87.30 87.48 94.23 99.19 99.10 99.28 99.28 99.37 99.23 99.32 98.87 99.55 99.55
(1.57) (1.62) (2.09) | (1.32) (0.92) (1.01) (0.86) (0.55) (1.17) (0.89) (0.77) (0.82) (0.75) (0.55)
Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
86.71 87.30 87.48 94.23 99.41 98.83 99.41 99.32 99.46 99.23 99.64 99.73
(1.57) (1.62) (2.09) (1.32) (0.89) (1.28) (0.79) (0.77) (0.74) (0.79) (0.68) (0.51)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ OuUOUOUOU | RIRAINOU
86.71 87.30 87.48 94.23 99.59 99.19 99.46 99.19 99.77
(1.57) (1.62) (2.09) (1.32) (0.85) (1.24) (0.90) (0.77) (0.58)
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6.3 Results of Fusion at score level

TABLE 6-5: RESULTS OF SCORE FUSION IN NEURAL NETWORK CLASSIFIER USING 8 CLASSIFICATION UNITS

Combination of 2 sensors

RI RA IN ou RIRI RARA ININ | OUOU | RIRA RIIN RIOU RAIN | RAOU | INOU
96.98 | 97.07 | 96.53 | 95.68 Sum 96.98 97.07 96.53 95.68 98.51 98.69 98.78 99.01 98.83 98.11
(1.78) | (2.32) | (1.50) | (2.16) (1.78) (2.32) (1.50) (2.16) (1.71) (1.15) (1.06) (0.77) (1.06) (0.92)
Product | 96.98 96.89 96.40 95.50 98.51 98.74 98.60 98.92 98.96 98.11
(1.76) (2.27) (1.7) (2.43) (1.76) (0.97) (0.99) (0.95) (0.73) (1.24)
Min 96.98 97.07 96.53 95.68 98.38 98.33 98.24 98.47 98.42 97.84
(1.78) (2.32) (1.5) (2.16) (1.69) (1.02) (1.26) (1.37) (0.82) (1.18)
Max 96.98 97.07 96.53 95.68 98.06 97.88 98.02 98.24 98.06 97.79
(1.78) (2.32) (1.5) (2.16) (1.83) (1.06) (1.29) (1.07) (1.32) (1.29)
Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA INININ OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
96.98 | 97.07 | 9653 | 95.68 Sum 96.98 97.07 96.53 95.68 99.28 99.23 99.01 99.19
(1.78) | (2.32) | (1.50) | (2.16) (1.78) (2.32) (1.50) (2.16) (0.69) (0.79) (0.58) (0.87)
Product 96.98 97.07 96.53 95.68 99.01 99.05 98.69 99.01
(1.78) (2.32) (1.50) (2.16) (1.17) (0.95) (0.90) (0.71)
Min 96.98 97.07 96.53 95.68 98.96 98.87 98.51 98.87
(1.78) (2.32) (1.50) (2.16) (1.14) (0.96) (1.18) (0.77)
Max 96.98 97.07 96.53 95.68 98.20 98.38 98.06 98.15
(1.78) (2.32) (1.50) (2.16) (1.17) (1.29) (0.98) (1.07)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ ouououou RIRAINOU
96.98 | 97.07 | 96.53 | 95.68 Sum 96.98 97.07 96.53 95.68 99.37
(1.78) | (2.32) | (1.50) | (2.16) (1.78) (2.32) (1.5) (2.16) (0.78)
Product 96.98 96.89 96.40 95.50 98.92
(1.76) (2.27) (1.7) (2.43) (1.04)
Min 96.98 97.07 96.53 95.68 99.05
(1.78) (2.32) (1.5) (2.16) (0.90)
Max 96.98 97.07 96.53 95.68 98.24
(1.78) (2.32) (1.5) (2.16) (1.15)
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TABLE 6-6: RESULTS OF SCORE FUSION IN NEURAL NETWORK CLASSIFIER USING 17 CLASSIFICATION UNITS

Combination of 2 sensors

RI RA IN ou RIRI RARA ININ ouou RIRA RIIN RIOU RAIN RAOU INOU
83.11 82.39 84.01 88.29 Sum 83.11 82.39 84.01 88.29 85.95 86.40 90.59 86.67 91.17 91.53
(2.88) (3.71) | (3.24) | (4.61) (2.88) | (3.71) (3.24) (4.61) (2.08) (2.22) (2.56) (2.86) (2.57) (2.84)

Product | 82.30 81.58 83.51 87.84 85.95 86.89 90.99 87.07 91.04 91.58

(2.98) (3.64) (3.19) (4.59) (2.14) (2.20) (2.34) (2.96) (1.86) (2.27)

Min 83.11 82.39 84.01 88.29 84.95 86.44 91.08 86.31 89.91 90.86

(2.88) (3.71) (3.24) (4.61) (3.22) (2.27) (2.41) (2.33) (2.12) (2.45)

Max 83.11 82.39 84.01 88.29 83.83 84.68 87.70 85.23 88.33 88.78

(2.88) (3.71) (3.24) (4.61) (3.46) (2.83) (4.11) (3.90) (3.81) (4.30)
Combination of 3 sensors

RI RA IN ou RIRIRI RARARA INININ OUOUOU | RIRAIN RIRAOU INOURI INOURA
83.11 82.39 84.01 88.29 Sum 83.11 82.39 84.01 88.29 87.21 92.39 92.39 91.89
(2.88) (3.72) (3.24) (4.61) (2.88) (3.71) (3.24) (4.61) (1.79) (2.12) (2.57) (2.28)

Product 83.11 82.39 84.01 88.29 86.71 92.07 92.21 91.40

(2.88) (3.71) (3.24) (4.61) (2.26) (2.33) (1.97) (1.72)

Min 83.11 82.39 84.01 88.29 87.03 91.58 91.40 91.04

(2.88) (3.71) (3.24) (4.61) (2.35) (1.92) (1.93) (2.12)

Max 83.11 82.39 84.01 88.29 84.32 86.94 87.84 88.20

(2.88) (3.71) (3.24) (4.61) (3.96) (3.88) (4.60) (4.20)
Combination of 4 sensors

RI RA IN ou RIRIRIRI RARARARA ININININ ouououou RIRAINOU
83.11 82.39 84.01 88.29 Sum 83.11 82.39 84.01 88.29 92.16
(2.88) (3.72) (3.24) (4.61) (2.88) (3.71) (3.24) (4.61) (2.03)

Product 82.30 81.58 83.51 87.84 91.71
(2.98) (3.64) (3.19) (4.59) (1.97)

Min 83.11 82.39 84.01 88.29 91.17
(2.88) (3.71) (3.24) (4.61) (2.24)

Max 83.11 82.39 84.01 88.29 86.94
(2.88) (3.71) (3.24) (4.61) (4.61)
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TABLE 6-7: RESULTS OF SCORE FUSION IN LSSVM CLASSIFIER USING 8 CLASSIFICATION UNITS

Combination of 2 sensors

RI RA IN ou RIRI | RARA ININ | OUOU | RIRA RIIN RIOU RAIN RAOU | INOU
99.59 99.91 99.82 99.73 Sum 99.59 99.91 99.82 99.73 100 100 100 100 100 99.95
(0.74) (0.28) (0.37) | (0.51) (0.74) (0.28) (0.37) (0.51) (0) (0) (0) (0) (0) (0.20)
Product | 14.50 15.05 10.45 14.68 8.69 7.21 7.21 9.19 10.50 7.07
(4.84) (3.89) (4.29) (4.69) (3.35) (3.38) (3.01) (3.82) (2.67) (3.11)
Min 99.59 99.91 99.82 99.73 99.95 99.95 99.91 100 99.91 99.91
(0.74) (0.28) (0.37) (0.51) (0.2) (0.2) (0.28) (0) (0.28) (0.28)
Max 99.59 99.91 99.82 99.73 99.95 99.95 99.95 100 100 99.95
(0.74) (0.28) (0.37) (0.51) (0.2) (0.2) (0.20) (0) (0) (0.20)
Combination of 3 sensors
RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
99.59 99.91 99.82 99.73 Sum 99.59 99.91 99.82 99.73 100 100 100 100
(0.74) (0.28) (0.37) | (0.51) (0.74) (0.28) (0.37) (0.51) (0) (0) (0) (0)
Product 99.59 99.91 99.82 99.73 99.28 99.23 99.23 99.55
(0.74) (0.28) (0.37) (0.51) (1.00) (0.79) (0.67) (0.55)
Min 99.59 99.91 99.82 99.73 99.95 99.95 99.91 100
(0.74) (0.28) (0.37) (0.51) (0.20) (0.20) (0.28) (0)
Max 99.59 99.91 99.82 99.73 99.95 99.95 99.95 100
(0.74) (0.28) (0.37) (0.51) (0.20) (0.20) (0.20) (0)
Combination of 4 sensors
RI RA IN ou RIRIRIRI RARARARA ININININ ouououou RIRAINOU
99.59 99.91 99.82 99.73 Sum 99.59 99.91 99.82 99.73 100
(0.74) (0.28) (0.37) | (0.51) (0.74) (0.28) (0.37) (0.51) (0)
Product 14.50 15.05 10.45 14.68 4.32
(4.84) (3.89) (4.29) (4.69) (1.91)
Min 99.59 99.91 99.82 99.73 99.95
(0.74) (0.28) (0.37) (0.51) (0.20)
Max 99.59 99.91 99.82 99.73 99.95
(0.74) (0.28) (0.37) (0.51) (0.20)
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TABLE 6-8: RESULTS OF SCORE FUSION IN LSSVM CLASSIFIER USING 17 CLASSIFICATION UNITS

Combination of 2 sensors

RI RA IN ou RIRI | RARA | ININ | OUOU | RIRA RIIN RIOU RAIN | RAOU | INOU
86.71 87.30 87.48 94.23 Sum 86.71 87.30 87.48 94.23 87.39 87.88 93.65 88.29 93.92 94.32
(1.57) (1.62) (2.09) (1.32) (1.57) (1.62) (2.09) (1.32) (1.60) (2.01) (1.81) (2.19) (1.34) (1.52)

Product | 7.97 8.42 6.98 10.90 3.74 3.02 3.51 3.56 4.95 4.19

(3.30) (3.47) (3.34) (3.88) (2.75) (1.85) (1.87) (2.59) (2.45) (2.62)

Min 86.71 87.30 87.48 94.23 87.34 88.02 93.29 88.29 93.11 93.69

(1.57) (1.62) (2.09) (1.32) (1.42) (1.46) (1.77) (2.19) (1.44) (2.11)

Max 86.71 87.30 87.48 94.23 87.52 87.84 93.02 88.24 93.74 93.56

(1.57) (1.62) (2.09) (1.32) (1.78) (1.95) (2.20) (2.18) (1.88) (1.76)
Combination of 3 sensors

RI RA IN ou RIRIRI | RARARA | INININ | OUOUOU | RIRAIN | RIRAOU | INOURI | INOURA
86.71 87.30 87.48 94.23 Sum 86.71 87.30 87.48 94.23 88.20 92.39 92.84 92.57
(1.57) (1.62) (2.09) (1.32) (1.57) (1.62) (2.09) (1.32) (2.04) (2.20) (2.16) (2.34)

Product 86.71 87.30 87.48 94.23 88.42 90.59 90.18 90.23

(1.57) (1.62) (2.09) (1.32) (2.29) (2.64) (2.10) (2.78)

Min 86.71 87.30 87.48 94.23 88.15 92.57 92.97 92.75

(1.57) (1.62) (2.09) (1.32) (2.19) (1.70) (2.08) (1.86)

Max 86.71 87.30 87.48 94.23 88.20 92.43 92.25 92.97

(1.57) (1.62) (2.09) (1.32) (1.80) (1.99) (1.71) (2.35)
Combination of 4 sensors

RI RA IN ou RIRIRIRI RARARARA ININININ OououououU RIRAINOU
86.71 87.30 87.48 94.23 Sum 86.71 87.30 87.48 94.23 91.89
(1.57) (1.62) (2.09) (1.32) (1.57) (1.62) (2.09) (1.32) (2.56)

Product 7.97 8.42 6.98 10.90 1.08
(3.30) (3.47) (3.34) (3.88) (1.33)
Min 86.71 87.30 87.48 94.23 92.39
(1.57) (1.62) (2.09) (1.32) (2.04)
Max 86.71 87.30 87.48 94.23 91.98
(1.57) (1.62) (2.09) (1.32) (1.80)
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6.4 Results of Fusion at abstract level

TABLE 6-9: ABSTRACT FUSION USING NEURAL NETWORK CLASSIFIER WITH 8 CLASSIFICATION UNITS

RI RA IN Oou RIRA | RIIN | RIOU | RAIN | RAOU | INOU | RIRAIN | RIRAOU | INOURI | INOURA | RIRAINOU
96.98 | 97.07 | 96.53 | 95.68 | 97.21 | 96.49 | 96.22 | 96.35 96.67 95.45 98.83 98.83 98.47 98.69 98.92
(1.78) | (2.32) | (1.50) | (2.16) | (1.65) | (1.37) | (1.86) | (1.59) | (2.28) | (1.64) | (0.78) | (0.78) | (0.93) | (1.19) (0.75)

TABLE 6-10: ABSTRACT FUSION USING NEURAL NETWORK CLASSIFIER WITH 17 CLASSIFICATION UNITS

RI RA IN Oou RIRA | RIIN | RIOU | RAIN | RAOU | INOU | RIRAIN | RIRAOU | INOURI | INOURA | RIRAINOU
83.11 | 82.39 | 84.01 | 88.29 | 82.79 | 83.33 | 86.44 | 83.42 | 85.72 | 85.63 86.71 88.47 89.10 89.10 89.41
(2.88) (3.71) (3.24) (4.61) (3.02) (3.60) (4.23) (3.19) (3.46) (3.68) (3.52) (2.69) (2.69) (2.94) (2.83)

TABLE 6-11: ABSTRACT FUSION USING LSSVM CLASSIFIER WITH 8 CLASSIFICATION UNITS

RI RA IN Oou RIRA | RIIN | RIOU | RAIN | RAOU | INOU | RIRAIN | RIRAOU | INOURI | INOURA | RIRAINOU
99.59 | 99.91 | 99.82 | 99.73 | 99.64 | 99.73 | 99.68 | 99.77 99.82 99.73 100 100 100 100 100
(0.74) | (0.28) | (0.37) | (0.51) | (0.74) | (0.51) | (0.53) | (0.40) | (0.37) | (0.42) (0) (0) (0) (0) (0)

TABLE 6-12: ABSTRACT FUSION USING LSSVM CLASSIFIER WITH 17 CLASSIFICATION UNITS

RI RA IN Oou RIRA | RIIN | RIOU | RAIN | RAOU | INOU | RIRAIN | RIRAOU | INOURI | INOURA | RIRAINOU
86.71 | 87.30 | 87.48 | 94.23 | 87.21 | 86.98 | 90.54 | 87.52 91.13 90.45 87.21 89.91 90.18 90.95 90
(1.57) | (1.62) | (2.09) | (1.32) | (1.93) | (2.54) | (1.50) | (2.45) | (2.01) | (1.90) | (1.84) | (1.72) | (1.87) | (2.33) (1.85)
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6.5 Discussion and Conclusions

As shown in Chapter 5 and repeated in this chapter, the classification success rates for
each individual sensor, both vibration and audio sensors, are quite high in
discriminating between 8 pump conditions using both neural network and LS-SVM as
classifiers. The classification rates are higher than 95.5% in all individual sensors and
the sensor with the highest success rate is Radial Accel vibration sensor with 99.91%
using LS-SVM classifier.

The classification success rates for each individual sensor are also quite good in
discriminating between 17 pump conditions. All sensors have individual classification
rates higher than 82% and the sensor with the highest classification rate is Outlet Micro

audio sensor with 94.23% using LS-SVM classifier.

As the individual sensors have high classification success rates in discriminating
between 8 pump conditions, the sensor fusion increase slightly the classification
accuracy. Sensor fusion sometimes even decrease the classification accuracy respect the
individual sensor with higher classification accuracy in the fusion. The highest
increment in the classification accuracy accurs at score level where there is an
increment around 2% with respect to the classification accuracy of an individual sensor
using neural network classifiers. In the case of using LS-SVM classifiers, success rates
of 100% are reached at score level in the combination of two sensors, three sensors and
all sensors. Abstract level fusion has an increment around 1% in the classification
success rates with respect to individual sensors using neural network classifier and
increments lower than 1% or no increment when using LS-SVM. The abstract fusion of
3 and 4 sensors reaches 100% of success rates using LS-SVM classifier. In general,

fusion at feature level does not increase the success rates.

In the case of discriminating between 17 pump conditions, the fusion at feature
level greatly increase the classification success rates with respect to the individual
success rates. There is an increment between 9% and 13% in the success rate using

neural network classifiers and an increment between 5% and 13% using LS-SVM
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classifiers. This seems reasonable because the classifier obtains more information from
the new features. Moreover, the fusion rule which gives better results is the sum rule.
The combination at feature level of only one vibration sensor and one audio sensor
gives success rates near 100% using a LS-SVM classifier. However, fusion at score and

abstract levels gives slight increments in the success rates.

As a conclusion, the fusion of audio and vibration sensors increase significantly
the success rates with respect to individual sensors at feature level in the case of
discriminating between 17 pump conditions. In the case of discriminating between 8
pump conditions, the increment in the success rates with the fusion is not so
significative. The reason is that the success rates of individual sensors are quite high.
According to the results, a pump monitoring system which a success rate near 100% in
discriminating between 17 pump conditions could be implemented with only two

sensors: a vibration sensor and an audio sensor.

6.6 Contributions

In this Chapter we contribute with a study of vibration and audio fusion at feature level,
score level and abstract level in fault pump diagnosis.
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CHAPTER 7
Conclusions and future work

This Chapter is devoted to the conclusions and future lines of the research work carried

out in this Thesis.

7.1 Conclusions

The objective of this Thesis is to improve the performance in condition monitoring
system in fault diagnosis and fault identification using vibration and audio signals in
two applications (bearings and pumps) with special emphasis in the feature extraction
stage and in the use of audio signals as source of information. Based on the research
carried out in the two application areas of this Thesis (bearings and pumps) and the
results obtained we can conclude that both the use of audio signals as source of
information and the use of nonlinear techniques can improve the performance in

condition monitoring systems.

In bearing application, bearing vibration databases with free-fault bearings and
bearings with faults are collected from repositories in Internet. Two methods based on
nonlinear techniques are proposed for bearing fault diagnosis and bearing fault
degradation. These methods show to have good classification success rates
discriminating between different bearing faults and also showed to be good indicators of
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bearing degradation. Based on the results we can conclude then that the application of
nonlinear methods in bearing fault diagnosis and in bearing fault degradation can

improve condition monitoring performance.

Provided that most fault diagnosis is carried out using vibration signals and less
attention has been paid to audio signal as source of information in fault diagnosis, an
exploratory study of the use of audio signals in fault diagnosis is carried out in this
Thesis. For such a study, a database of audio and vibration signals (two vibration
sensors and two audio sensors) acquired simultaneously from a centrifugal pump test rig
is recorded in our laboratory. A set of state-of-the-art features is extracted from
vibration signals and applied to audio signals. Moreover, a set of 31 new features
extracted from frequency, cepstrum, time-frequency domains as well as complexity
features and features related to nonlinear dynamics time series is proposed in vibration
and audio pump fault diagnosis. After feature selection, the state-of-the-art features and
the proposed features are evaluated using two classifiers for both vibration and audio
signals. The results of the evaluation show that audio signals have similar success rates
than vibration signals. In discriminating between 8 pump conditions, the success rates
99.82% and 99.59% for audio sensors and 99.91% and 99.59% for vibration sensors are
obtained. In discriminating between 17 pump conditions, the success rates are 87.48%
and 94.23% for audio sensors and 86.71% and 87.30% for vibration sensors. Based on
these results, we can conclude that audio signals might be used as information source in

pump fault diagnosis.

In order to analyse whether audio and vibration fusion improve the results in
classification, combination of audio and vibration signals are carried out at feature level,
score level and decision level. The results show a significant increment in the success
rates when combining one audio sensor and one vibration sensor in discriminating
between 17 pump conditions: a success rate of 99.55% is achieved. In discriminating
between 8 pump conditions, the diagnosis success rate reaches 100% when combining
one audio sensor and one vibration sensor. Based on the results in the fusion study, we

can conclude that vibration and audio fusion improves the classification success rate.

In summary, the main results and contributions obtained from this Thesis are:
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The methods based on nonlinear techniques for bearing fault diagnosis and fault

identification.

The centrifugal pump audio and vibration database acquired, which will be

released for research purposes in the near future.

The experimental evaluation of features extracted from audio signals in pump
fault diagnosis which shows the feasibility of using audio signals as source of

information in pump monitoring.

The set of features proposed for centrifugal pump fault diagnosis.

7.2 Future Work

A number of future research lines arise from the work carried out in this Thesis. We

consider of special interest the following ones:

Searching for an indicator to follow the severity in bearings with ball faults. In
Chapter 4 we propose a method for fault severity assessment in bearings that can assess
the severity of inner-race and outer-race faults in bearings. However, the ball fault
severity can not be followed monotonically by the proposed method. More research is
needed in this case.

Extending the evaluation of audio signals to other kinds of pumps and
machinery. The research carried out in this Thesis about using audio signals in pump
fault diagnosis can be applied to other kinds of pumps in order to generalize the results.
Moreover, it can be extended to other kinds of machines to study the feasibility of

audio-based monitoring.

Searching for an indicator of damage in pump monitoring. In this Thesis, we
have study the feasibility of using audio signals for pump fault diagnosis for impeller-

related faults, seal fault and system faults. It is also important in pump monitoring to
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find indicators that follow the evolution of a fault from normal condition to a fault

condition with different severities. This research line will be explored in the future.

The study of audio-based monitoring in real industrial scenarios. Audio signals
can be affected by unwanted sources of noise in industrial scenarios. Research efforts

need to be made in order to include audio-based monitoring in industrial scenarios.
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Extension to VVoice

Nonlinear and complexity measures used in this Thesis can also be applied in other
kinds of signals different from vibration and audio signals of machines. An example of
such signals is the voice signal. There are evidences of a nonlinear voice production
system. For this reason, and for the fact that the background of the author of this Thesis
in research is related to voice pathology detection using nonlinear features, a set of
nonlinear features based on chaos theory as well as complexity measures have been
extracted from voice signals for voice pathology detection (i.e.discrimination between
normal and pathological voice using recorded voice signals) and emotional voice
detection (i.e. discrimination between normal and different emotional states through the
recorded voice signal). This Appendix of the Thesis is devoted to the motivation,
description and results of the work carried out on such signals using nonlinear and
complexity features. The first part of this Appendix is devoted to the work carried out in
voice pathology detection and the second part is devoted to the work carried out in
emotional detection through voice signal. The structure of the first part of the Appendix
is based on a publication by the author of this Thesis [1] and the second part is based on
the following publications by the author of this Thesis [38]-[40].
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8.1 Voice pathology detection

The author of this Thesis proposed nonlinear measures based on the nonlinear dynamics
theory to quantify the quality of the recorded voice [1]. The aim was to study the
usefulness of six nonlinear chaotic measures in the automatic discrimination of two
levels of voice quality (healthy and pathological speakers) measured from voice
recordings. In order to assess the usefulness of the measures an automatic classification
system based on neural networks was used. This research work was the first in voice
pathology detection literature using the proposed feature together in order to
discriminate between healthy and pathological speakers for screening purposes. The
results obtained in the experimentation show that these characteristics provide high

classification rates in the discrimination between healthy and pathological voice signals.

8.1.1 Motivation

The main methods used by the medical community to evaluate the speech production
system and diagnose pathologies are either direct ones which require direct inspection
of vocal folds (using laryngoscopical techniques such as fiberscope) and cause
discomfort to the patient, or subjective ones in which voice quality is evaluated by a
doctor’s direct audition (GRBAS and RBH methods [2], [3]). These techniques require
trained expert doctors. The use of voice quality measures obtained from recorded voice
allows us to quantify the voice quality and to document the patient evolution using
objective measures. They are noninvasive, quick and automatic techniques and can be a

help to traditional techniques used in medicine.

The use of these techniques combined with classification methods provides the
development of expert aided systems for the detection of speech system pathologies. In
the last decades, some studies have provided objective measures of voice quality.
Measures are obtained of the voice signal in time, spectral and cepstral domains. The
most important measures used in existing literature are: fundamental frequency [4], [5]
whose determination is important because several measures depend on its correct
estimation, pitch perturbation (jitter) [6], [7], amplitude perturbation (shimmer) [6], [7]

harmonic to noise ratio [8], low to high energy ratio [9], normalized noise energy [10],
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glottal to noise excitation ratio (GNE) [11], dynamic time warping and Itakura—Saito
distorsion measure [12]. Using a combination of these sets of measures, laryngeal
pathologies detection systems using recorded voice signal have been developed
obtaining different success rates in the classification between healthy and pathological
voices: 93.5% [13], 85.8% [14], 76.67% [15], 96.1% [16].

Nevertheless, most measures considered in these works do not take into account
nonlinearity in the speech system despite the fact that some studies show the underlying
process of speech generation exhibiting nonlinear components [17]-[21]. As a result,
some works consider this new approach in order to reveal discriminative measures
between healthy and pathological voices. Examples are measures based on high order
statistics (HOS) [22], [23] and AM-FM modelling of voice signal [24]-[27].

Chaos theory, an area of nonlinear dynamics systems theory, applied to
nonlinear time series has recently been adopted as a new nonlinear approach to speech
signal processing. The application of nonlinear chaotic techniques in speech signal
processing so far are based on chaotic modelling or extraction of chaotic characteristics
(Lyapunov exponents, correlation dimension, etc.). The main chaotic characteristics
studied are the Lyapunov exponents [28]-[30] and dimensions of attractor, especially
the correlation dimension. The correlation dimension has been shown to be capable of
distinguishing healthy voices from pathological ones [28], [31]-[33] and even
distinguishing between different types of pathologies such as ataxic dysarthia and
hyperkinetic extrapyramidal dysarthia [33]. A high-quality vowel synthesizer based on
chaotic techniques has also been developed [34]. The entropy has been applied to detect

complex dynamics in disordered speech [35] in a preliminary study.

In this work, we propose the use of six nonlinear features based on chaos theory
to discriminate between healthy and pathological voices. The characteristics studied are:
the Takens—Theiler estimator of correlation dimension (CD), first- and second-order
Rényi entropies (RE1, RE2) correlation entropy (CE), the Shannon entropy (SE) and the
value of the FMMI function. The motivation of this study is to assess the usefulness
of complexity measures to discriminate between healthy and pathological voices.

Pathological voice shows a more irregular behavior than healthy voice. For that
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reason, it is feasible to use complexity measures. Two databases were used in order to

validate and compare results: a multiquality database [22] and the MEEI database [36].

8.1.2 Experimentation

The proposed features are a set of six nonlinear features including: first and second-
order Rényi entropies, the correlation entropy, the correlation dimension, the value of

the first minimum of mutual information function and Shannon entropy.

The process used in the experiment is divided in three stages: signal
preprocessing, extraction of the measurements and classification. In the signal
preprocessing stage, the samples of the database are normalized between -1 and 1 and
the mean is removed. Then, a selection of the stable part of the phonation for each
vowel is carried out (this part is skipped in the case of the MEEI database). The central

second of each vowel is used for the experiment.

Each vowel is segmented into 10 equally spaced asynchronous frames
(nonoverlapped) using rectangular windows. The length of each frame is 30 ms.
Measurements are extracted from these frames. In the case of the Shannon entropy, the
entire voice is used. Finally, the values of the measurements per frame are averaged.

This way, it is obtained a value per vowel and measurement.

The delay was chosen as a tradeoff between the FMMI function and the FZA
function. FMMI and FZA were computed for each sample of the database. Then, the
average values of FMMI and FZA were obtained. Finally, the mean value of these
values was computed. The value of the delay is 8 samples (0.36 ms because the sample
frequency used was 22050 Hz). The embedding dimension was varied between 1 and
10.

In the classification stage, each set of measurements per vowel is the input of a
classifier, so five classifiers are used, one for each vowel. Each classifier is based on a
standard neural network. They evaluate the measurements in a quantitative way and

discriminate between healthy and pathological vowels. A sample of the database is
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diagnosed as pathological if the number of pathological vowels detected is equal to or

more than three.

For each classifier, multilayer feedforward neural networks with one hidden
layer are used. Supervised learning is carried out using backpropagation train algorithm.
The input layer is made up of either as many inputs as characteristics (when all
characteristics are evaluated combined) or is made up of one input (when only one
characteristic is evaluated). The output layer has one node. The activation functions on
the hidden nodes are tansigmoids (hyperbolic tangents) and the activation function
of the output node is linear. The connection weights and biases are initialized according
to the Nguyen-Widrow initialization algorithm [37]. The training process is stopped

when a relative error of 0.005 is reached.

The database is split into a training subset and a testing subset with 70% and
30% of each type of voice, respectively. The data in the training set are z-score
normalized. The test set is normalized by subtracting the training set mean and dividing
by the training set standard deviation for each characteristic. The test set is normalized
according to the normalization values used for the training set. The characteristics are
evaluated individually and combined. The experiments were repeated 20 times, each

time using different training and test sets randomly chosen.

The equal error rate (EER), the point for which the false positives rate (healthy
files classified as pathological files) equals the false negative rate (pathological files
classified as healthy files), is obtained varying the threshold in the output of each
classifier and computing the false positive rate and false negative rate (each

characteristic individually and combined).

8.1.3 Results

An analysis of the data distribution for each measure and for each kind of voice (healthy
and pathological voice) is carried out. Then, a neural network classifier is applied to
obtain a quantitative value of the discrimination between healthy and pathological

voices.
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Study of the discrimination of the features

In Figure 8-1 the data distributions for each measurement extracted from the /a/ vowel

of the multiquality database are shown. Figure 8-2 shows the same distributions for the
MEEI database.
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Figure 8-1: Data distribution of each kind of voice (H: healthy voice,
P: pathological voice, LP: light pathological voice, MP: moderate
pathological voice, SP: severe pathological voice) for each
measurement extracted from the /a/ vowel of the multiquality database
(FMMLI: first minimum of the mutual information function. CD:
correlation dimension. CE: correlation entropy. RE1: first-order Rényi
block entropy. RE2: second-order Rényi block entropy. SE: Shannon
entropy). Source: [1].
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Figure 8-2: Data distribution of each kind of voice (H: healthy voice,
P: pathological voice) for each measurement extracted from the MEEI
database (FMMI: first minimum of the mutual information function.
CD: correlation dimension. CE: correlation entropy. RE1: first-order
Rényi block entropy. RE2: second-order Rényi block entropy. SE:
Shannon entropy). Source: [1].

1.First minimum of the mutual information (FMMI)

The minimum value of the mutual information between a signal and its delayed version
is higher in healthy voices. This means that in the time of maximum difference (i.e.,
when the FMMI occurs) of a signal with its delayed version, this difference is lower in

healthy voices than in pathological voices.

2.Correlation dimension

More complex system has a higher CD, up to infinite value for stochastic signals. In the
case of frames of healthy voices the CD has a lower value than in the case of frames of
pathological voices. This is an indicator of a more complex geometrical structure in a
pathological voice. According to Figure 8-1, the differences between the medians of H,
P, LP, MP, and SP are evident. As a conclusion, CD is discriminative between H and P

voices and between different kinds of pathological voices.
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3.Shannon entropy and Rényi entropies

The RE1, RE2, and SE also show higher values in P voices than in H voices. This is an
indicator of a more complex geometrical structure in pathological voices. These
measurements are discriminative between H and P voices. However, they are less
discriminative between the different kinds of pathological voices and even between LP
and H voices (in the case of the RE1 measurement).

4.Entropy Correlation

The medians are higher in frames of pathological voices, as in the case of correlation
dimension. This is an indicator that a P voice presents more loss of information in time
than a H voice. Besides, the value of the CE is higher in SP than in MP and LP voices.
The median of the MP is slightly higher than the median of LP voices. The CE is also

discriminative between the different kinds of quality voices.
The data distribution for healthy (H) and pathological (P) voices of the MEEI database
shows similar results to the multiquality database in the discrimination between H and P

voices.

The main conclusion after observing the data distribution of the nonlinear measures is

that the medians of H and P voices differ at the 5% significance level in all the cases.

Classification results

It has been shown that the studied measurements have different values for different
kinds of voices. Once this fact is evident, we use a classification system in order to
evaluate the discriminative usefulness of the characteristics against two voice qualities

(healthy and pathological voices).

The results for the multiquality database [22] are shown in Table 8-1. The EER
is shown for each vowel and each characteristic individually and combined. These
results were obtained after evaluating the characteristics with different numbers of

neurons in the hidden layer of the neural network. Finally, the best results were obtained
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with 60 neurons in the hidden layer. According to Table 8-1, combination of all
characteristics yields the lowest EER for each vowel. Once a threshold for each vowel
has been chosen, the performance of the system is computed. Then a voice is diagnosed
as pathological if the number of pathological vowels is equal to or more than three.
Table 8-2 shows the confusion matrix of the system with the mean and standard
deviation values obtained averaging the results for each individual experiment. The
averaged global success of the system is 82.47% with a standard deviation of 3.1.

In the case of the MEEI database the same procedure was followed. In this case,
the best results were obtained using ten neurons in the hidden layer. Table 8-3 shows
the EER for each characteristic individually and combined. Shannon entropy and
correlation dimension are the characteristics that show the better EER. Consequently,
they show the better success rate. According to Table 8-4, in which the confusion
matrix for MEEI database is shown for the EER point, the success rate for all

characteristics combined is 99.69% with a standard deviation of 0.2.

TABLE 8-1: EQUAL ERROR RATES FOR MULTIQUALITY DATABASE:
MEASURES INDIVIDUALLY AND COMBINED

Equal Error Rate (%)

Vowel FMMI* | CD* CE* RE1* RE2* SE* Combined
Alal 29.23 29.17 39.84 42.69 40.00 43.69 20

E /e/ 43.86 45 35.28 37.78 42.5 40.38 29.44

I /i 49.04 50.28 50.56 48.61 44.17 39.78 33.62

O /ol 35.28 28.85 37.22 41.11 41.54 34.72 31.9

U lu/ 38.18 47.5 41.54 46.11 48.69 36.75 28.08

* FMMI: First minimum of the mutual information function. CD: Correlation
dimension. CE: Correlation entropy. RE1: first-order Rényi block entropy. RE2:
second-order Rényi block entropy. SE: Shannon entropy.

TABLE 8-2: SUCCESS RATE IN A CONFUSION MATRIX FOR
MULTIQUALITY DATABASE
Detector’s Actual diagnosis
decision (%)

Pathological Healthy
Pathological 81.67 (6 =7.68) 16.73 (6 =5.19)
Healthy 18.33 (6 =7.68) 82.27 (6 =5.19)
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TABLE 8-3: EQUAL ERROR RATES FOR MEEI DATABASE: MEASURES
INDIVIDUALLY AND COMBINED

Equal Error Rate (%)

Vowel FMMI* | CD* CE* RE1* RE2* SE* Combined

Alal 38.81 8.66 41.96 44.42 41.25 3.12 0.31

* FMMI: First minimum of the mutual information function. CD: Correlation
dimension. CE: Correlation entropy. RE1: first-order Rényi block entropy. REZ2:
second-order Rényi block entropy. SE: Shannon entropy.

TABLE 8-4: SUCCESS RATE IN A CONFUSION MATRIX FOR MEEI DATABASE
Detector’s Actual diagnosis
decision (%)

Pathological Healthy
Pathological 99.69 (6 =0.12) 0.31 (6=0.12)
Healthy 0.31 (6=0.12) 99.69 (6 =0.12)

8.1.4 Conclusions

The usefulness of six nonlinear chaotic characteristics: first and second-order Rényi
entropies, the correlation entropy, the correlation dimension, the value of the first
minimum of mutual information function and Shannon entropy, has been evaluated

in order to distinguish between two voice qualities (healthy and pathological voices).

Two databases were used to evaluate the characteristics, a multiquality database
[22] and a commercial one (MEEI Voice Disorders [36]) in order to obtain comparative
results between them. The multiquality database comprises samples labeled with
different kinds of voice quality according to the hoarseness (G) of the GRBAS scale.
The MEEI database only has samples labeled as healthy and pathological voices.

A previous statistical study was carried to check the discrimination of the
characteristics for both databases. In the multiquality database, the statistical study
showed remarkable differences between healthy and pathological voices and even
between the three different levels of pathologies for each of the characteristics studied.
Generally, the quantitative evaluation of the measurements was correlated with the

medical assessment.
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The correlation dimension and the value of the first minimum of mutual
information function were the characteristics that better discriminated among the
different voice qualities of the multiquality database. The MEEI database also showed
significative differences between the medians of the two classes of voice (healthy and
pathological voices). As a conclusion, the medians of the healthy and pathological
voices differ at the 5% significance level in both databases and in all the characteristics.
The characteristics were evaluated with neural networks to discriminate between
healthy and pathological voices. Successful results were obtained for both databases.
The global success rate obtained with the multiquality database [22] was 82.47% and
with the MEEI database [36] 99.69%. This demonstrates that the six proposed
characteristics are useful to discriminate between healthy and pathological speakers.
The difference between the two classification rates of both databases is due to the
nonexistence of LP speakers in the MEEI database. LP speakers are more likely to be
classified as normal speakers because the difference between healthy and LP or MP
speakers is lower than between a healthy and an MP or an SP speaker. In the results, if
the LP and MP speakers are removed, the success rate of the multiquality database is
similar to the MEEI database (see SP speaker in Table 8-2 and compare with the MEEI
results in Table 8-4).

The measurements studied in this research can be used to document the patient
evolution. They can also be used in help systems for pathology diagnosis in the speech
production system. As a new step, we propose the combination of the nonlinear
characteristics evaluated here and classical characteristics used previously in order to

evaluate if the combination results in better classification rates.

8.2 Emotional voice detection

During the period of the Thesis, we also worked on emotional speech characterizarion
using complexity measures including mutual information, dimension correlation,
entropy correlation, Shannon entropy, Lempel-Ziv complexity and Hurst exponent
aiming at automatic emotion recognition. It was also the first study ever in emotional
speech characterization. The complexity measures were extracted in a first work from

the samples of a german emotional speech database [38], [39]. In a later work [40], two
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more databases were added to the study: the Polish emotional speech database and the
English LCD emotional database. Then, statistics such as mean, standard deviation,
skewness and kurtosis are applied on the extracted measures. A three—class problem
(neutral, fear and anger emotional states) was considered. A procedure to select a group
of global optimal features is also proposed in this work. The selection is based on an
affinity analysis of the previously selected features using the standard feature selection
algorithm called Sequential Floating Forward Selection procedure. This method will not
be explained in this Chapter. The feature selection procedure is accomplished over the
Polish emotional speech database to select a reduced number of features. Then, the
selected features are evaluated in the Berlin emotional speech database and in the LDC
emotional database using a neural network classifier in order to assess the usefulness of
the selected features. The results obtained in the experimentation show that complexity
measures provide high classification rates in the discrimination between neutral, fear
and anger emotional states in recorded voice signals.Global success rates of 72.28%,
75.4% and 80.75%, were obtained for the Polish emotional speech database, the Berlin

emotional speech database and the LDC emotional speech database respectively.

8.2.1 Motivation

Speech is one of the main modes of communication between human beings and an
effective way to express emotions. Automatic recognition of human emotions in speech
aims at automatically detecting the speaker emotional state based on speech and has
attracted the research community in the last few years due to its applications in industry.
Emotion recognition systems open new horizons in artificial intelligence with the
improvement of voice synthesizer. The addition of emotional speech in voice
synthesizer produces more natural speech facilitating human-computer interaction or
computer aided communications [41]. Another application is the automatic recognition
of negative emotions (e.g. anger or rage) in call centers based on interactive-voice-
response systems. It is useful to detect problems in the customer-system interaction to
help the customer by offering a human operator, for example [42]-[44]. In surveillance
applications, speech emotion recognition can take an important role in detecting security

threats using word-spotting techniques with the combination of emotional recognition.
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One of the key steps in automatic recognition of emotional speech is the
extraction of features that effectively distinguish between the emotions to be classified.
In emotion recognition literature, features can be divided in linguistic and acoustic
features. Linguistic features focus on explicit linguistic message (dialog related
features) and acoustic features focus on implicit message. Acoustic features include
prosodic features (which are mostly related to pitch, energy and speaking rate) [45],
spectral and cepstral features such as Mel Frequency Cepstral Coefficients [45], [46]
and voice quality features such as harmonics-to-noise ratio, jitter or shimmer [47].
Features are usually extracted in a short-term basis, obtaining different number of
features for each sample in the emotional database. Statistics variations of these features
(functionals), such as their average, skewness, minimum, maximum and standard
deviation are also frequently used. The use of functionals is probably justified by the

supra-segmental nature of the phenomena found in emotional speech [47].

The success rates achieved in different works on automatic recognition of
emotional speech are very difficult to compare due to the lack of a freely available
corpus of reference and the lack of a standard methodology. Another issue is the
different ways of considering emotions: as categorical discrete emotions or as
continuous emotions in a multidimensional space (i.e. activation, valence, etc.). In the
next few lines, we show examples of recent results obtained in the literature: using the
Berlin emotional speech database [48] and classifying between 7 discrete emotions with
both modulation spectral features and prosodic features a 91.6% of success rate is
achieved [45]. A success rate of 88.6% is obtained using spectro-temporal features and
prosodic features [45] using the same database [48] and classifying between 7 discrete
emotions as well. In another work, a maximum of 79% of accuracy is obtained with a
set of linguistic and acoustic features in the classification between anger and no-anger
speech using three different databases of real emotions [44], [45].

Nonlinear dynamics systems theory has been adopted as a nonlinear approach to
speech signal processing in the last two decades. Complexity features studied in the
speech processing literature include dimension correlation, Rényi entropies [1],
Lyapunov exponents [28], Hurst exponent [50] and Lempel-Ziv complexity [51]. These
features have proved to be useful in distinguishing between different voice quality and

in voice pathology detection.
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We propose the study of a set of nonlinear measures or complexity measures in
emotional speech to assess its discrimination ability between neutral state, fear
emotional state and anger emotional state produced by actors in three different
emotional speech database: the Polish emotional speech database [52], the Berlin
emotional speech database [48] and the Emotional Prosody Speech and Transcripts of
the Linguistic Data Consortium (LCD) [53]. The study of the discrimination ability
between neutral and negative emotional states such as fear or anger is very useful in
surveillance applications to detect security threats. The complexity measures extracted
are: the value of the first minimum of the mutual information function (MI), the
Shannon entropy (SE), the Taken's estimator of the correlation dimension (CD), the
correlation entropy (CE), the Lempel-Ziv complexity (LZC) and the Hurst exponent
(H). Mean (u), standard deviation (o), skewness (sk) and kurtosis (k) are applied to the

extracted measures, obtaining 24 features.

8.2.2 Experimentation

This section describes the different steps of the experimental procedure: preprocessing
and feature extraction, feature selection procedure and evaluation with the selected
features using a neural network classifier. The feature selection procedure is
accomplished in the Polish emotional speech database. In the evaluation step, the
selected features are evaluated in the three databases in order to validate their usefulness

in discriminating between neutral, fear and anger states.

Preprocessing & Feature Extraction

The data is preprocessed using a voice activity detector in order to remove the silences
from the speech samples of the database. From each speech signal the mean is removed.
After that, the signal is normalized between -1 and 1. Then, a short-term processing is
applied in order to extract the features: each audio signal is divided into 50%
overlapping windows (frames) of 55ms. According to Ruelle [25], the number of
samples needed to carry out the embedding of the signal has to be chosen in the
following way: if the calculated dimension of the system is below 2logioN, where N is
the total number of points in the original time series, then we are using a sufficient

number of data points. In this paper, N = 880, so 2log:oN = 5.889 and the median values
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of the correlation dimension of each emotion are below this quantity (see Figure 8-3)
where the data distributions of the correlation dimension estimated for each database are

shown).

The delay (z) and the minimum embedding dimension (m) are estimated for each
frame using the first minimum of the mutual information function technique and the
false neighbours technique respectively. Then, six complexity measures are extracted
for each frame: value of the first minimum of mutual information function (Ml), Taken-
Theiler estimator of the correlation dimension (CD), Shannon entropy (SE), correlation
entropy (CE), Lempel-Ziv complexity (LZC) and Hurst exponent (H). Finally, for each
measure, four statistical are computed: mean (x), standard deviation (o), skewness (sk)
and kurtosis (k). Therefore, 24 features are extracted for each frame (mean of MI: uMl,

mean of CD: xCD and so on).

Feature selection and evaluation of the selected features

A set of features are selected using a feature selection technique proposed by the author
of this Thesis. In this Chapter, the proposed feature selection procedure will not be
explained (see [39]). Once the selected features are identified, their discrimination
ability between the different emotions is evaluated using a neural network. The database
is split into a training subset and a test subset with 70% and 30% of each kind of
emotional speech recordings, respectively. The experiments are repeated 25 times, each
time using different training and test sets randomly chosen and the global success rate is

computed as an average of the success rates in each iteration.

8.2.3 Results

The results obtained in the experiments are shown and discussed. First, we show a data
distribution analysis of the complexity measures (MI, SE, CD, CE, LZC and H). Then,
we show the results of the feature selection procedure. The feature selection procedure
is performed in the Polish emotional speech database. Finally, we show the success
rates for the three emotional databases: the Polish emotional speech database, the Berlin
emotional speech database and the LDC emotional speech database using the GOFS
previously identified.
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Analysis of complexity measures

The complexity measures extracted from the three databases are analyzed. Figure 8-3,
Figure 8-4 and Figure 8-5 show the distribution of the six complexity measures (Ml,
SE, CD, CE, LZC and H) for the Polish emotional speech database, for the Berlin
emotional speech database and for the LDC emotional speech database respectively
using boxplots. The boxes have lines at the lower quartile, median (center line) und
upper quartile values. The whiskers are lines extending from each end of the boxes to
show the extent of the rest of the data. Boxes whose notches do not overlap indicate that
the medians of the two groups differ at the 5% significance level. In Figure 8-3, Figure
8-4 and Figure 8-5 the upper left illustration corresponds to the MI, the upper right
illustration corresponds to the SE, the middle left illustration corresponds to the CD, the
middle right illustration corresponds to the CE, the bottom left illustration corresponds

to the LZC and finally the bottom right illustration corresponds to the H.
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Figure 8-3: Data distribution of neutral, fear and anger emotional
speech for each complexity measure extracted from the Polish
emotional database. MI: value of the first minimum of the mutual
information function (upper left), SE: Shannon entropy (upper right),
CD: Taken's estimator of the correlation dimension (middle left), CE:
correlation entropy (middle right), LZC: Lempel-Ziv complexity

(bottom left), H: Hurst exponent (bottom right) [40].
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Figure 8-4: Data distribution of neutral, fear and anger emotional
speech for each complexity measure extracted from the Berlin
emotional database. MI: value of the first minimum of the mutual
information function (upper left), SE: Shannon entropy (upper right),
CD: Taken's estimator of the correlation dimension (middle left), CE:
correlation entropy (middle right), LZC: Lempel-Ziv complexity
(bottom left), H: Hurst exponent (bottom right) [40].
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Figure 8-5: Data distribution of neutral, fear and anger emotional
speech for each complexity measure extracted from the LDC
emotional database. MI: value of the first minimum of the mutual
information function (upper left), SE: Shannon entropy (upper right),
CD: Taken's estimator of the correlation dimension (middle left), CE:
correlation entropy (middle right), LZC: Lempel-Ziv complexity
(bottom left), H: Hurst exponent (bottom right) [40].

According to the Figure 8-3 the median of the values of the first minimum of the
mutual information function (MI) between a signal and its delayed version is higher in
neutral speech than in fear emotional speech and in anger emotional speech. This means
that in the time of maximum difference (i.e. when the first minimum of the mutual
information occurs) of a signal with its delayed version, this difference is lower in
neutral speech than in fear or anger emotional speech. This tendency is the same in the
three databases. In the case of the Shannon entropy distributions, there are not clear
differences between neutral, fear and anger emotional speech. The median of the
distributions are overlapped in the case of the LDC database. However, they are more
clearly separated in the case of the Berlin emotional speech database and in the case of
the Polish emotional speech database.
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The distribution of the Taken's estimator of the correlation dimension (CD) also
shows a similar behavior in the three databases. The median values of the CD are higher
in fear emotional speech and in anger emotional speech than in neutral speech. This is
an indicator of a more complex geometrical structure in anger and fear emotional
speech. However, there are not clear differences in the values of the CD between anger
and fear emotional states in the Berlin database. The median of the correlation entropy
(CE) distribution for neutral speech shows lower values than the median for anger and
fear emotional speech. This is an indicator of a more complex structure in anger and
fear speech than in neutral speech. The CE measure shows to be discriminative between
neutral and fear and anger emotional speech. However, CE is less discriminative

between fear and anger emotional speech.

The Lempel-Ziv complexity (LZC) distribution shows values more near to 1 for
fear and anger emotional speech than in the case of neutral speech. This means that
anger and fear emotional speech records show more complexity than neutral speech
records. Finally, the Hurst exponent (H) shows that the median value of neutral speech
is higher than median of fear and anger emotional speech. Values of H for fear and
anger emotional speech are closer to 0.5, showing that this signals has more randomness

components.

According to the data distributions, the six complexity measures are
discriminative between neutral speech and negative emotional speech (anger emotional
speech and fear emotional speech). However, in the case of the CE and CD the
discrimination between fear emotional speech and anger emotional speech are less clear.
Moreover, the data distributions are very similar in the three databases. This means that

the discriminative ability of the complexity measures is independent from the language.

Results of feature selection

The following features were selected in the feature selection procedure: uMI, uH, sSE,
sLZC.
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Results of the databases evaluation with the selected features

The selected features (uMI, pH, sSE and sLZC) were evaluated with a neural network
classifier (with 5 neurons in the hidden layer) for the three emotional speech databases
(Polish, Berlin and LDC databases). The global success rates for the different emotional
databases are shown in Table 8-5 with the standard deviation (¢). According to the
results, the selected features show a good discrimination ability between three
emotional speech states (neutral state, fear emotional state and anger emotional state) in

the three databases.

TABLE 8-5: GLOBAL SUCCESS RATES OF THE SELECTED FEATURES IN
THREE EMOTIONAL DATABASES

Polish database Berlin database LDC database

Success rates (%) 72.78 (6 = 5.13) 75.40 (c = 3.86) 80.75 (o = 3.75)

Table 8-6, Table 8-7 and Table 8-8 show the confusion matrix of the selected
features in the three emotional speech databases with the mean and standard deviation
(o) values obtained averaging the results for each individual experiment. According to
the results, the selected features show good discrimination ability in the three databases
between neutral, fear emotional state and anger emotional state. The discrimination
ability between neutral and negative emotional states are higher than between fear and
anger emotional speech in the case of the Polish emotional speech database and the
Berlin emotional speech database. However, the LDC database shows good
discrimination ability in anger emotional state against fear and neutral states. The
similar results in the three databases show that the selected features are independent of

the language.

TABLE 8-6: CONFUSION MATRIX OF THE SELECTED FEATURES IN
POLISH EMOTIONAL SPEECH DATABASE

Classifier decision (%) Actual emotional state
Neutral Fear Anger
Neutral 88.00 (c=11.04)  8.00 (c=10.34) 4.00 (c =4.88)
Fear 17.00 (6 =10.06)  64.00 (c=14.77)  19.00 (o =14.54)
Anger 7.33 (o = 8.44) 2633 (6=13.32)  66.33 (o =15.86)
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TABLE 8-7: CONFUSION MATRIX OF THE SELECTED FEATURES IN
BERLIN EMOTIONAL SPEECH DATABASE

Classifier decision (%) Actual emotional state

Neutral Fear Anger
Neutral 78.80 (o = 7.81) 15.00 (o = 6.45) 6.20 (c = 3.89)
Fear 16.00 (6=10.10)  63.20 (c=11.35)  20.80 (c = 10.07)
Anger 4.20 (o = 5.34) 11.60 (o = 8.38) 84.20 (o = 8.74)

TABLE 8-8: FUSION MATRIX OF THE SELECTED FEATURES IN LDC
EMOTIONAL SPEECH DATABASE

Classifier decision (%) Actual emotional state

Neutral Fear Anger
Neutral 77.57 (c = 8.76) 16.70 (o = 7.50) 5.74 (c = 4.65)
Fear 19.30 (6 =9.57) 72.17 (6 = 8.33) 8.52 (0 =4.78)
Anger 3.30 (6 =3.82) 4.17 (6 =3.19) 92.52 (o = 4.44)

8.2.4 Conclusions

The usefulness of complexity features in discriminating between neutral state, fear
emotional state and anger emotional state is evaluated. Six complexity measures
including the value of first minimum of mutual information function, the Shannon
entropy, the Takens estimator of the correlation dimension, the correlation entropy, the
Lempel-Ziv complexity and the Hurst exponent are extracted from three emotional
databases (the Polish emotional speech database, the Berlin emotional speech database
and the LCD database). Then, the mean, standard deviation, skewness and kurtosis are
applied to the six complexity measures and 24 features are obtained. Feature selection is
accomplished to select a reduced number of features over the Polish emotional database.
Finally, the selected features are evaluated in the Berlin emotional speech database and

in the LDC emotional database using a neural network classifier.

A qualitative analysis of the six complexity measures extracted from the three
emotional databases is accomplished with the observation of the data distribution of the
complexity measures. From this analysis, the following conclusions are extracted.
According to the data distributions analysis, the six complexity measures are
discriminative between neutral speech, fear emotional speech and anger emotional
speech. In general, fear and anger emotional speech records show more complexity than
neutral speech records. The reason can be that in fear and anger speech records, people
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tend to use more fricative sounds than in neutral state. Fricative sounds are noisier than
voiced sounds. Moreover, the behavior of the data distributions of the six complexity
measures is the same in the three databases. The databases consist of emotional speech
records in Polish, German and English languages. We can conclude, therefore, that the

complexity measures are independent from the language.

The four selected features (mean of the value of the first minimum of the mutual
information function, the mean of the Hurst exponent, the standard deviation of the
Shannon entropy and the standard deviation of the Lempel-Ziv complexity) were
evaluated with a neural network classifier in the three databases. Global success rates of
72.28%, 75.4% and 80.75%, were obtained for the Polish emotional speech database,
the Berlin emotional speech database and the LDC emotional speech database
respectively in the discrimination between neutral, fear and anger emotional states.
Possibly applications of an automatic recognition system that discriminate between
neutral emotion and negative emotions such as fear and anger can be applied in call
centers in order to detect problems in costumer-system interaction and in security

applications in order to detect security threats.

8.3 Contributions

The contributions of this Chapter are the studies of nonlinear and complexity measures

in pathological voice detection and in emotional voice detection.
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Avances en monitorizacién preventiva de maquinaria a través de sefiales de audio y vibracion

Resumen de la Tesis

1 Introduccion

La maquinaria en general y los equipos industriales en particular se deterioran a lo largo
del tiempo por el estrés que sufren durante su vida operativa. El fallo inesperado en una
maquina trabajando en un entorno industrial puede tener consecuencias graves tanto
desde el punto de vida humano, por el posible accidente que pueda causar, como desde
el punto de vista de costes de productividad. Es por ello que el mantenimiento de
equipos industriales se ha convertido en un aspecto estratégico en muchas empresas. La
palabra mantenimiento se emplea para designar las técnicas usadas para asegurar el uso
correcto y continuo de maquinaria, equipos e instalaciones. Monitorizar de forma
continua el estado de funcionamiento (o condicién) de un activo fisico (una maquina,
parte de una maquina o un sistema compuesto de varias maquinas) es de vital
importancia para la deteccion temprana de fallos y tiene una gran influencia en la

continuidad operacional de muchos procesos industriales. Ayuda a reducir costes de
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mantenimiento e incrementa la seguridad y confiabilidad de los equipos industriales. En
la siguiente tabla se muestran en porcentajes las ventajas del uso de un sistema de

monitorizacion de la maquinaria [1].

TABLA 1: VENTAJAS DE UN SISTEMA DE MONITORIZACION [1]

Costes de mantenimiento Reduccion del 50% al 80%
Dafios en los equipos Reduccion del 50% al 60%
Gastos en horas extras Reduccion del 20% al 50%
Esperanza de vida de la maquina Incremento del 50% al 60%
Productividad total Incremento del 20% al 30%

Los costes de mantenimiento se reducen debido al hecho de que se detectan
fallos incipientes, evitando que dichos fallos crezcan y se conviertan en un problema
grave y caro. Se reduce la probabilidad de aparicion de fallos destructivos que dafien a
los equipos y afecten a la seguridad de las personan. Se reducen las actividades de
reparacion y por lo tanto las horas extras dedicadas a ello. La esperanza de vida de la
maquina se incrementa asi como la productividad total puesto que se evitan paradas

innecesarias de la maquinaria.

El interés creciente en las técnicas de monitorizacion del estado de la maquinaria
para la deteccion, diagnéstico y degradacion de fallos tanto en el campo de la
investigacion como en el de la industria es evidente por la gran cantidad de articulos
publicados en el campo, por los esfuerzos de las organizaciones de estandarizacion
(ISO, SAE, etc) y por la organizacion de diferentes conferencias en el campo del
diagnostico de fallos, como por ejemplo la conferencia COMADEM (Condition

Monitoring and Diagnostic Engineering Management).
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Técnicas de mantenimiento

Desde tiempos antiguos, la humanidad ha usado diferentes técnicas de mantenimiento.
Los hombres primitivos afilaban sus enseres y armas y cosian sus pieles. Durante la
revolucién industrial, se empezaron a usar relés de proteccion de sobre-corriente y
proteccion de fallo de tierra mientras que los Gltimos desarrollos incluyen técnicas de

procesado de la sefial y reconocimiento de patrones.

Generalmente, las técnicas de mantenimiento se dividen en dos: mantenimiento
correctivo y mantenimiento preventivo. Este Gltimo se introdujo en los afios 1950 y se
divide a su vez en mantenimiento preventivo predeterminado y en mantenimiento
basado en la condicidn, conocido como CBM en sus siglas en inglés (condition-based
maintenance). EI mantenimiento basado en la condicion también se denomina

mantenimiento predictivo.

En el mantenimiento correctivo se toman acciones después de que el fallo haya
ocurrido. Estas acciones van dirigidas a arreglar el fallo o a postponer su reparacion de

acuerdo al criterio de personal cualificado.

En el mantenimiento preventivo predeterminado, se realizan actividades de
mantenimiento planificadas a intervalos periodicos para evitar que los componentes se
degraden hasta el punto de que la maquina deje de funcionar. La maquina o parte de la

maquina se repara o se cambia antes de que ocurra un fallo.
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Las técnicas correctivas y de mantenimiento preventivo predeterminado han
demostrado ser bastante costosas puesto que muchas veces se realizan cambios de pieza
innecesarios, al parar la maquina para realizar el cambio de pieza se para la produccion
con lo cual se aumentan los costes de produccion. Ademas las actividades planificadas
de mantenimiento sueles ser costosas. Por estas razones, algunas industrias empezaron a

realizar mantenimiento basado en la condicion en los afios 1980.

El mantenimiento preventivo basado en la condicion (CBM) o mantenimiento
predictivo se refiere a la monitorizacion del estado de la maquina en la cual se obtiene
de forma continua informacién de pardmetros que indican el estado de la maquina. La
desviacion de los pardmetros de la condicion normal indica el desarrollo de un fallo. La
CBM lleva a cabo acciones de mantenimiento sélo cuando hay evidencia de
comportamiento anormal. La CBM reduce el nimero de actividades planificadas

reduciendo por tanto costes [1].

Etapas de un sistema de monitorizacion basado en la condicién

En la figura 1 se muestran las etapas tipicas de un sistema de monitorizacién que
implementa mantenimiento basado en la condicion. Estas etapas incluyen la adquisicion
de datos, el procesado de los datos y un sistema de ayuda a la decision. La salida del
sistema de monitorizacion sera el diagnostico del fallo (detectar el fallo y saber donde se
ha producido) y posiblemente también la identificacion del fallo (qué grado de
severidad presenta el fallo) para asi determinar qué tiempo de vida atil le queda al

elemento que esta siendo supervisado.

278 Universidad de Las Palmas de Gran Canaria



Avances en monitorizacién preventiva de maquinaria a través de sefiales de audio y vibracion

A continuacion se detallan cada una de las etapas de un sistema de
monitorizacién de la condicion. Puesto que la presente Tesis se centra en diversos
aspectos de las distintas etapas de un sistema de monitorizacion de la condicion, se

explicara en cada etapa en qué se centra la presente Tesis.

Adquisicion de datos: esta etapa consiste en la obtencion de informacion relevante sobre
el estado de la maquina. Los datos adquiridos pueden variar segun la clase de maquina o
la naturaleza del fallo. La informacién adquirida puede ser de muchos tipos [2]: datos de
tipo valor como presion, temperatura, datos de analisis de aceite; datos de forma de
onda (es decir, sefiales) como sefiales de vibracion, de audio, sefiales de emision
acustica; y datos multidimensionales como imagenes. El conjunto de datos adquiridos
se denomina firma de la maquina. La presente Tesis se centra en sefiales de vibracion y

en sefiales de audio como fuente de informacion.

Procesado de datos: los datos obtenidos en la etapa anterior se analizan para obtener
informacion que permita detectar un posible fallo o diagnosticarlo. En esta Tesis se usan
técnicas de procesado de la sefial para analizar los datos y extraer informacion valiosa
para la monitorizacion de la condicidén. Este proceso se denomina extraccion de

caracteristicas.

Sistema de ayuda a la decision o la clasificacion de los datos previamente analizados en
diferentes estados de la condicion. En esta Tesis, se usan técnicas de reconocimiento de
patrones, en concreto dos clasificadores que permiten, una vez entrenados, diagnosticar

de forma automatica el estado de la maquina.
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Diagndstico de fallos/Prediccion de fallo. El objetivo de un sistema de monitorizacion
de la condicion es el diagnostico e identificacion de fallos. El diagndstico de fallo
consiste en la deteccion del fallo, que responde a la pregunta “;hay un fallo?” y al
aislamiento del fallo, que responde a la pregunta “;donde esta el fallo?” usando las
etapas mencionadas. La identificacion del fallo se refiere a la determinacion de la
severidad o el tamafio del fallo y a veces también a la determinacion del tiempo de
comienzo del fallo (o prediccion del fallo). En esta Tesis, se realiza diagndstico de fallo

e identificacion de fallo.

Adgquisicion de datos Procesado de Sistema de ayuda a

Diagnoéstico/
> datos > la decision > 1%

(Firma de la maquina) Prediccion

Figura 1: Etapas de un sistema de monitorizacion basado en la
condicion

Diagnostico de fallos basado en vibracion y audio: cojinetes y bombas centrifugas

Tal y como se ha explicado en el apartado anterior en las etapas de un sistema de
monitorizaciéon basado en la condicién, a la hora de adquirir datos de la maquina se
pueden usar multitud de datos diferentes. En esta Tesis nos centramos en sefiales de
vibracion y de audio (en el espectro audible 0-20kHz). Es por eso que en este sub-

apartado se introduce el diagndstico de fallos basados en estas dos sefiales.

Asimismo, la investigacion de la Tesis se centra en dos aplicaciones: cojinetes y
bombas centrifugas. Los cojinetes son elementos esenciales en las maquinas rotativas

puesto que soportan la estructura de la maquina permitiendo y facilitando su rotacion.
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Un fallo no detectado en un cojinete puede causar una averia catastrofica (contactos
indeseados entre partes fijas y mdviles de la maquina, bloqueo del motor, etc.). Las
maquinas rotativas estdn muy extendidas en la industria. Ejemplos de méaquinas
rotativas son los motores y los generadores. Debido a la gran utilizacion de este tipo de
maquinas, la aplicacion de técnicas encaminadas a la vigilancia y control del estado de
los cojinetes adquiere suma importancia. Aunque el coste de los cojinetes en
comparacién con la méaquina en si es muy bajo, el hecho de que haya que desmontar la
maquina casi en su totalidad para cambiar un cojinete hace que las técnicas de
monitorizacién basadas en la condicién sean muy Utiles para permitir que estos

elementos funcionen hasta el maximo de su vida Util.

Por otra parte, las bombas centrifugas son maquinas que forman parte
importante de muchos sistemas, puesto que permiten el movimiento de fluidos entre dos
puntos del sistema. Se usan en la industria eléctrica, en la quimica, en la industria de
extraccion de petréleo, en sistemas de refrigeracion, en spas y piscinas, etc. Por lo tanto,
la monitorizacion de esta clase de maquinas es muy importante para el correcto

funcionamiento de muchos sistemas industriales.

Tanto en los cojinetes como en las bombas centrifugas, asi como en muchas
otras clases de maquinas su monitorizacion se hace atendiendo normalmente a sefiales
de vibracion. Por supuesto también se usan otro tipo de datos como la corriente, voltaje
o temperatura en el caso de los cojinetes y la presion en el caso de las bombas
centrifugas. El diagnostico de fallos basado en vibracion (vibration-based fault
diagnosis) se refiere al diagnostico de fallos usando la sefial de vibracién como fuente

de informacion. El diagndstico de fallos basado en vibracion es un area de estudio muy
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desarrollada que incluye un amplio rango de técnicas que han evolucionado de forma
répida durante las ultimas décadas. En la monitorizacion de la condicion, las técnicas de
diagndstico de fallos basadas en vibracién han sido ampliamente usadas debido a la
facilidad de adquirir la sefial de vibracion de la maquina. Por esta razon, la mayoria de
los articulos de investigacion en la literatura del diagndstico de fallos estan enfocados al

diagnostico de fallos basado en vibracion [2],[3],[46].

El diagnostico de fallos basado en audio se refiere al diagnodstico de fallos
usando la sefial de audio como fuente de informacién (audio-based fault diagnosis o
también llamado airborne fault diagnosis). El diagnostico de fallos basado en audio
usando microfonos en el rango audible (0-20kHz) es un campo emergente con un gran
potencial en el campo del diagnostico de fallos puesto que los micr6fonos son sensores
no invasivos (no van montados encima de la maquina) y tienen mayores posibilidades
de localizacion que los acelerometros. Ademas, el uso de sefiales de audio podria
mejorar la inspeccion de ciertos entornos industriales en los cuales un sistema de
monitorizacién fijo es caro o el montaje de los sensores de vibracion es complicado
como por ejemplo en la industria de extraccion de petréleo. Por estas razones, pensamos
que el diagndstico basado en audio necesita mas esfuerzos de investigacion. De hecho,
la monitorizacién de la condicién con sefiales de audio presenta menos estudios

cientificos que la vibracion [2],[3],[46].

Por lo tanto, esta Tesis se enfoca en dos aplicaciones: cojinetes y bombas
centrifugas. En el caso de los cojinetes se usan diferentes bases de datos de vibracion
publicas y nos centramos tanto en el diagndstico de fallo como en la identificacion del

fallo (severidad del fallo). La investigacion se ha enfocado en la etapa de procesado de
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datos, proponiendo nuevos métodos basados en técnicas no lineales para extraer
caracteristicas que permitan diagnosticar e identificar fallos en cojinetes. Para evaluar la
habilidad a la hora de discriminar entre fallos se usan dos clasificadores: redes

neuronales y maquinas de soporte vectorial de minimos cuadrados (LS-SVM).

En el caso de bomba centrifuga, nos centramos tanto en sefiales de vibracion
como en sefiales de audio. Al no haber bases de datos publicas, se ha creado una base de
datos propia en la que se han adquirido sefiales de vibracion y audio de forma
simultanea de una bomba centrifuga de circulacion. La intencién es explorar el uso de
las sefiales de audio en el diagnostico de diversos fallos en la bomba centrifuga y
comparar los resultados con los obtenidos con las sefiales de vibracion, asi como
evaluar la combinacion de ambos tipos de sefiales. Nos enfocamos igualmente en la
etapa de procesado de datos, extrayendo caracteristicas del estado del arte y
proponiendo 31 nuevas caracteristicas. Para evaluar la habilidad a la hora de discriminar

entre fallos se usan los dos clasificadores comentados.

Estructura de la memoria de la Tesis

La memoria de la Tesis se estructura de acuerdo al tipo de estructura tradicional
compleja [4] con una revision de la técnica (o estado del arte) y dos aplicaciones
diferentes (cojinetes y bombas centrifugas) donde se proponen métodos que se aplican
en estudios experimentales. A continuacion se realiza un breve resumen de cada

capitulo de la memoria:
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El capitulo 1 de la memoria introduce el tema de la monitorizacion del estado de
maquinaria. Se expone la motivacion de la presente Tesis, asi como los objetivos, la
metodologia y las aportaciones realizadas. También se expone la estructura de la

memoria.

En el capitulo 2 se realiza una revision del estado de la técnica centrandose en
las diferentes etapas de un sistema de monitorizacion basado en la condicion
(adquisicién de datos, procesado de datos y sistema de ayuda a la decision). En
concreto, el capitulo se centra en trabajos que utilizan sefiales de vibracion y audio
como fuente de informacion, en técnicas de procesado de la sefial para extraer
caracteristicas de las sefiales de audio y vibracion y en técnicas de reconocimiento de
patrones para ayudar a diagnosticar e identificar el fallo. La mayoria de maquinas o
partes de maquinas analizados en el estado del arte de la presente Tesis son cojinetes,
engranajes, motores y bombas. La motivacion de la Tesis se basa en el analisis del
estado del arte. Ademas, el estado del arte realizado es una aportacion de esta Tesis. De
hecho, la redaccion del capitulo 2 esta basada en un articulo de revista con indice de

impacto publicado por la doctoranda [46].

El capitulo 3 se centra en las dos areas de aplicacion de la Tesis, cojinetes y
bombas centrifugas y en las bases de datos utilizadas y generadas de ambos elementos.
En el caso de los cojinetes se dan nociones basicas de los cojinetes y de como es la
sefial de vibracion producida por ellos en estado de normalidad y en caso de fallo
puntual. También se explican las bases de datos de vibracion de cojinetes que han sido
recopiladas de Internet para formar un corpus. Esta es otra aportacion de la presente

Tesis. En cuanto a la aplicacion de la bomba de agua, se describe el funcionamiento de
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las bombas centrifugas asi como los tipos de fallos mas comunes en ellas. También se
explica de forma detallada el proceso de adquisicion de la base de datos de vibracion y
audio de la bomba centrifuga, asi como la generacion de los diversos fallos y la
estructura final de la base de datos. La base de datos generada es otra aportacion de la

presente Tesis.

El capitulo 4 se centra en las aportaciones realizadas en cojinetes. En concreto
en el diagndstico e identificacion de fallos en cojinetes usando sefiales de vibracion
como fuente de informacion. Se explican los dos métodos propuestos que estan basados
en técnicas no lineales. La redaccion del capitulo 4 de la presente Tesis esta basada en

tres publicaciones, una de ellas en revista con indice de impacto [47]-[49].

El capitulo 5 se centra en las aportaciones realizadas en la aplicacién de la
bomba centrifuga en el diagndéstico de fallos usando sefiales de audio y de vibracion. El
capitulo expone la metodologia a aplicar en este estudio, se describen las caracteristicas
que se usan en la literatura del diagnostico de fallos de bombas centrifugas usando
sefiales de vibracion y de audio asi como también las caracteristicas propuestas en esta
Tesis. Finalmente se muestran los resultados de la evaluacion de las caracteristicas a la
hora de discriminar entre los diferentes fallos y normalidad. Parte de la redaccion del

capitulo 5 esté basada en dos publicaciones [51], [52].

El capitulo 6 se centra también en la aplicacion de la bomba centrifuga. En este
caso se realiza un estudio de la combinacion de la informacion aportada por las sefales

de vibracion y de audio y se presentan los resultados obtenidos.
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Los capitulos 4, 5 y 6 tienen una parte introductoria donde se explica la
metodologia usada, una segunda parte donde se aplica la metodologia a las bases de

datos y una parte de resultados y conclusiones.

Con el capitulo 7 se concluye la tesis con un resumen de las aportaciones
realizadas, los resultados obtenidos y las conclusiones generales y particulares

obtenidas. Asimismo se describen las lineas futuras.

El anexo de la Tesis es un capitulo extra donde se muestra un resumen de la
aplicacion de algunas de las técnicas no lineales descritas durante la Tesis a la sefial de
voz en dos aplicaciones: deteccion de patologias laringeas y deteccion de emociones. Es
necesario resaltar que la doctoranda inicia su investigacion en el campo de la sefial de
voz y que ha continuado con esa linea de investigacion en paralelo con el desarrollo de

la presente Tesis.

En la figura 2 se muestra la dependencia entre los capitulos de la memoria de
Tesis. Para leer el capitulo 2 en necesario haber leido el capitulo 1. El capitulo 3 puede
ser leido sin leer el capitulo 2 aunque se recomienda su lectura. Los capitulos 4,5y 6

deben ser leidos después del capitulo 3y el capitulo 6 después del capitulo 5.
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Capitulo 2:
Capitulo 1: “Estado del arte en monitorizacion
“Introduccion” de maquinaria con sefiales de audio y
vibracion”
\ ( ____________
Capitulo 3:
“Bases de datos: Cojinetes y bombas”
Capitulo 4: Capitulo 5: Capitulo 6:
“Aportaciones al “Aportaciones a la “Resultados de la
diagnostico e TR
s monitorizacion de [ ” :
identificacion de fallos _ fusion de audio y
con sefiales de bombas con audio y vibracion en la bomba”
vibracién en cojinetes” vibracion”
Capitulo 7:

“Conclusiones”

Figura 2: Esquema de dependencia entre los capitulos de la memoria.

—> : :
requiere leer bl nterior
Anexo: Se requiere leer bloque anterio

“Aportacionesavoz® | | 7" > Se recomienda leer bloque anterior

Figura 2: Esquema de dependencia entre los capitulos de la memoria.
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2 Planteamiento

En este apartado se expone la motivacion y planteamiento de la Tesis que estan basados
en al andlisis del estado del arte de monitorizacién de la condicion en sefiales de audio y

vibracion [2], [3], [46].

En la figura 3 se muestra la distribucién de los articulos de investigacion
analizados para llevar a cabo la redaccion del estado del arte de la presente Tesis [46].
Se observa la distribucion de los articulos por tipo de sefial utilizada para realizar la
monitorizacién (parte superior izquierda), también se muestra la distribucién por afios
de los articulos revisados (parte superior derecha), la distribucién de fallos en diferentes
elementos de la maquinaria cuando se usan sefiales de vibracion (parte inferior

izquierda) y cuando se usan sefiales de audio (parte inferior derecha).

Como se observa en la figura 3 y como se corrobora en anteriores estados del
arte [2], [3], la monitorizacion del estado de la maquina basada en sefiales de vibracién
es ampliamente usada. Esto es razonable por los siguientes dos aspectos: la facilidad de
adquirir la firma de la maquina usando sensores de vibracion y el hecho de que el
camino de transmision entre la maquina (o parte de la maquina) que es monitorizada y
el sensor es menos sensible a interferencias indeseadas, cosa que no sucede en igual
medida con las sefiales de audio. Por esto, en las aplicaciones que usan el audio como
fuente de informacion se suele colocar el sensor entre 2cm y 20cm alejado del elemento

que se quiere monitorizar [12].
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Figura 3: Distribucion de los articulos usados para la redaccion del
estado del arte: distribucion de articulos basados en sefiales de
vibracion y basados en sefiales de audio (superior izquierda); afios de
publicacion de los articulos (superior derecha); distribucion de
elementos donde se producen los fallos analizados con sefiales de
vibracion (inferior izquierda) como con sefiales de audio (inferior
derecha).

De la figura 3 se puede observar también que una gran cantidad de fallos se
produce en los cojinetes. De hecho, de acuerdo con una encuesta sobre confiabilidad de
motores [6] el 42% de los fallos de motores de mas de 200 caballos de potencia se
deben a fallos en los cojinetes. Motores de menor caballaje presentan aln mas
porcentaje de fallos en los cojinetes, llegando a ser del 90% [7]. Como ya se ha
comentado en la introduccion, las técnicas de monitorizacion de la condicién son muy
Gtiles para detectar si un cojinete presenta algun tipo de fallo. También en la figura 3 se

puede observar que la mayor parte de la monitorizacién de cojinetes se realiza usando
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sefiales de vibracion. Por otra parte, a lo largo de la elaboracion del estado del arte se
realiz6 una busqueda exhaustiva de bases de datos publicas, de libre acceso y gratuitas.
Fruto de esa busqueda se obtuvieron tres bases de datos de sefiales de vibracion de
cojinetes [30]-[32]. Basandonos en estas observaciones derivadas del estado del arte, la
primera parte de esta Tesis se centra en el estudio de sefiales de vibracion de cojinetes

para el diagndstico e identificacion de fallos.

En la literatura de diagnostico de fallos de cojinetes se encuentra una amplia
variedad de técnicas de procesado de la sefial usadas para extraer caracteristicas de la
sefial de vibracion en diferentes dominios de representacion: dominio del tiempo [37],
de la frecuencia [9], cepstral [10], tiempo-frecuencia [11]-[15], asi como técnicas no
lineales basadas en medidas de dindmica no lineal y medidas de complejidad y
predictibilidad [28], [43]. Las técnicas no lineales permiten extraer caracteristicas de la
firma de la méaquina que pueden revelar un entendimiento méas preciso de la sefial. De
hecho, se han encontrado indicios de no linealidad en el funcionamiento de cojinetes
[28]. Por este motivo, en la fase de procesado de la sefial (en donde se extraen las
caracteristicas), nos hemos centrado en el estudio de técnicas no lineales dentro de la

aplicacion de los cojinetes tanto para diagndstico como para identificacion de fallos.

Si bien la monitorizacion usando sefiales de vibracion es mucho mas usada en
comparacion con el audio, en los ultimos afios se ha incrementado la investigacion en
torno a la monitorizacion basada en sefiales de audio [5],[19]-[27]. Ademas, si bien la
localizacion de los micréfonos debe de ser lo méas cercana posible a la maquina para
evitar en la medida de lo posible interferencias con otros elementos, estos tienen mas

posibilidades de localizacion que los sensores de vibracion [5]. Ademas, no tienen que
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ser montados en la méaquina, por lo que son elementos no invasivos en absoluto.
Basandonos en estas observaciones, la segunda parte de la presente Tesis se centra en

explorar la monitorizacion del estado de la maquina usando sefiales de audio.

Puesto que hay una carencia de bases de datos publicas de sefiales de audio en
diagnéstico de fallos en maquinaria, en la presente Tesis se opta por grabar una base de
datos propia. Dicha base de datos consta de sefiales de audio y de sefiales de vibracion
adquiridas simultaneamente de una bomba centrifuga de agua. Se adquieren también

sefiales de vibracion para comparar resultados.

Como ya hemos explicado, las sefiales de audio son menos usadas que las de
vibracion en el campo de diagnéstico de fallos, y el caso de las bombas centrifugas no
es una excepcion. Es por esto que la mayoria de caracteristicas usadas en diagnéstico de
fallos en bombas de agua son extraidas de sefiales de vibracién. Por este motivo, en esta
Tesis se realiza un estudio de las medidas usadas en sefiales de vibracién para
diagndstico de fallos en bombas centrifugas y estas medidas se extraen también de las
sefiales de audio. De igual forma se pretende, en base al estudio de las sefiales de audio
y vibracion de la bomba centrifuga proponer otras medidas que sean capaces de

discriminar entre diferentes estados de normalidad y fallo de la bomba centrifuga.

Otra conclusion que se puede extraer al analizar el estado del arte es que hay
escasos estudios en los que se trabaje conjuntamente con sefiales de audio y vibracion
[5], [22], [23]. Es por este motivo que en la presente Tesis se realiza un estudio de la

combinacion de sefiales de audio y vibracion.
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3 Objetivos

El objetivo de la presente Tesis es la mejora de los sistemas de monitorizacion del
estado de la maquinaria en diagnéstico e identificacion de fallo usando sefiales de
vibracion y de audio en dos aplicaciones (cojinetes y bombas de agua) con especial
énfasis en la etapa de extraccion de caracteristicas y en la utilizacién del audio como

fuente de informacién audio.

El objetivo de la presente Tesis puede ser dividido en objetivos parciales que
deben ser alcanzados para lograr el objetivo general. Seguidamente se exponen los

objetivos parciales:

1. Realizar una revision general de las técnicas de procesado de sefial usadas
para la extraccion de diferentes caracteristicas asi como de las técnicas
reconocimiento de patrones usadas en el diagnostico de fallos de maquinaria

usando sefiales de vibracion y de audio.

2. Realizar una basqueda de bases de datos de vibracion de cojinetes sin fallo y
con diferentes tipos de fallos para generar asi un repositorio de bases de

datos con las que trabajar.

3. Desarrollar métodos no lineales que ayuden al diagnéstico y a la

identificacion de fallos en cojinetes.
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4. Generar una base de datos de audio y vibracion de una bomba centrifuga en
diferentes estados de funcionamiento (sin fallo y con diferentes tipos de
fallos) para poder realizar una evaluacion de la capacidad de las sefiales de

audio en el diagnostico de fallos y compararlas con las sefiales de vibracion.

5. Aplicar caracteristicas del estado del arte usadas cominmente en sefiales de
vibracion de bombas centrifugas a las sefiales de audio captadas de una
bomba centrifuga y cuantificar la capacidad de las medidas en la
discriminacion entre varios estados de funcionamiento de la bomba

centrifuga (estado normal y estados de fallo).

6. Buscar nuevas medidas para diagnéstico de fallos en bombas centrifugas y
cuantificar su capacidad de discriminacién entre varios estados de

funcionamiento de la bomba centrifuga.

7. Comparar los resultados obtenidos con sefiales de vibracion y de audio.

8. Realizar un estudio de utilizacion conjunta de sefiales de audio y vibracién

en la monitorizacién de una bomba centrifuga
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4 Metodologia

En el presente apartado se expone la metodologia seguida en la presente Tesis para

cumplir los objetivos propuestos.

Estado del arte

En primer lugar se realiza un estudio exhaustivo del estado de la técnica o estado del
arte en el ambito de la monitorizacion de maquinaria con sefiales de audio y vibracion.
Nos centramos en el estudio de técnicas de procesado de la sefial para extraer
caracteristicas y en técnicas de reconocimiento de patrones usadas para discriminar
entre diferentes estados de funcionamiento de la maquina. En el capitulo 2 de la Tesis se

encuentra el estado del arte junto con un analisis critico del mismo.

Obtencion y generacion de bases de datos

Se realiza una busqueda de bases de datos que comprendan muestras de cojinetes en
estado de funcionamiento normal (sin fallo) y funcionando con diversos fallos. Las
bases de datos obtenidas son de vibracion y estan disponibles en internet [30]-[32]. Una
de las bases de datos [30] comprende sefiales de vibracion de cojinetes sin fallos y de
cojinetes con fallos puntuales en el anillo externo (outer-race fault), en el anillo interno
(inner-race fault) y con fallo en los elementos de rodamiento (ball fault). A modo de
ilustracion, en la figura 4 se muestran los diferentes elementos que componen un
cojinete. Las otras dos bases de datos [31], [32] son test-to-failure. Es decir, se graba la

sefial de vibracion hasta que el cojinete o cojinetes tienen un fallo.
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Anillo externo Anillo interno Caja Elemento de rodamiento

Figura 4: Componentes de un cojinete cuyo elemento de rodamiento
son bolas.

Por otra parte, dado que no hay bases de datos publicas con sefiales de audio
proveniente de maquinaria, se decide grabar una base de datos propia de sefiales de
audio y vibracion adquiridas de forma simultanea de una bomba de agua centrifuga de
circulacion (modelo ALP800) en un circuito cerrado formado por la bomba en si y un
tanque con 50 litros de agua. Antes de proseguir con la base de datos generada se

explicard brevemente los principales elementos de una bomba centrifuga.

Una bomba centrifuga consta de dos elementos fundamentales, el rodete y la
voluta. El rodete es el elemento rotatorio y la voluta el elemento estacionario. El rodete
convierte la energia suministrada por el motor en energia cinética. La rotacion del
rodete fuerza al liquido a circular a través de la bomba desde la direccién axial hasta la
direccién radial mientras se transfiere energia al liqguido bombeado. La voluta convierte
la energia cinética en energia de presion. En resumen, el rodete produce velocidad en el
liquido y la voluta convierte dicha velocidad en presion. A modo de ilustracién en la
figura 5 se muestran las diferentes partes de una bomba de agua. Se indica también la

direccién de fluido o liquido bombeado.
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Figura 5: Partes principales de una bomba centrifuga. Direccion del
fluido en la bomba (figura izquierda). Fuente: [32]. Fluid in: entrada
del fluido. Fluid out: salida del fluido. Velocidad y presion del fluido
en una bomba. Figura modificada de la fuente: [34].

En la figura 6 se muestra un rodete y se indican las diferentes partes que lo
conforman. EI rodete de una bomba centrifuga presente una serie de vanos delimitados
por palas curvadas. Dichas palas también se denominan alabes. Los alabes son los que
imparten fuerza centrifuga al fluido. Un rodete cerrado como el que se muestra en la
figura 6 tiene platos en ambos lados que encierran completamente el rodete desde el ojo
de succién (u ojo de rodete) a sus bordes. El ojo de rodete es la parte central del rodete.
La region del alabe més cercana al ojo del rodete se denomina leading edge y la region

en el borde del alabe se denomina trailing edge.
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Leading edge

Trailing edge Alabe

Figura 6: Partes de un rodete. Figura modificada de la fuente: [32].

En la figura 7 se muestra un plano de la sala donde se graba la base de datos de
la bomba centrifuga. En el plano se observa un esquema del montaje realizado con la
bomba (en verde), el tanque con 50 litros de agua (en celeste) y las tuberias que forman
un circuito cerrado (en naranja). También se indica en la figura 7 la direccion de flujo
del agua. La sala donde se graba la base de datos presenta 29dB de aislamiento acustico

respecto a ruido aéreo.

En el montaje se usan 4 metros de tuberias de 3.81 cm de didmetro. La bomba
usada es una bomba centrifuga circuladora de agua modelo ALP800 de 0.5 caballos de
potencia y con 2925 RPM (revoluciones por minuto), equivalente a 48.75 Hz. El rodete

de la bomba presenta 7 alabes.
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Figura 7: Esquematico de la sala donde se realiza la grabacion de la
base de datos junto con la posicion y esquema del montaje.

En las figuras 8 y 9 se observan fotos de la bomba centrifuga modelo ALP800
utilizada para generar la base de datos de la presente Tesis. En la figura 7 se muestra la
bomba de agua sin desmontar y en la figura 8 se muestra el rodete (foto de la izquierda)

y la voluta.

f" | o Bl - \
Figura 8: Fotos de la bomba de agua modelo ALP 800.
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Figura 9: Fotos de la bomba de agua modelo ALP 800. Rodete
montado en el rotor (izquierda). Voluta, entrada y salida de la bomba
(derecha).

Se graban diferentes estados de funcionamiento de la bomba: funcionando en
estado normal (sin fallos) y con 8 tipos de fallos originados de forma artificial, excepto
uno que se origind de forma espontanea. Los fallos generados responden a fallos tipicos
de bombas centrifugas: fallos en el rodete (también Illamado impulsor), fallo en la goma

de sellado y fallos del sistema.

Los fallos en el rodete generados incluyen fallos en el plato (o base) del rodete
del rodete (ver figura 6), en el borde de los alabes cercano al ojo del rodete (trailing
edge), en el borde superior de los alabes (leading edge) [35], [36]. Los fallos en el
sistema incluyen la adicion de diferentes elementos extrafios al agua. Puesto que la
bomba adquirida esta disefiada para circular agua y en sus especificaciones se expone
que debe ser usada con agua sin impurezas se afiade al agua del tanque los siguientes
elementos: arena, arena con papel y bolas de PVC de 6 mm de diametro y 12 gramos de
peso (una vez eliminada la arena y el papel). Cada vez que se dafia un rodete, se cambia
por uno nuevo para generar el siguiente fallo. En total se usan 4 rodetes. Ademas en los
fallos del plato, del leading edge y del trailing edge se crearon 3 grados diferentes de

severidad en cada caso.
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En la figura 10 se muestran las diferentes severidades generadas en el plato del

rodete consistentes en ir eliminando partes del plato.

Figura 10: Fotos del fallo en el plato del rodete. Rodete sin fallo
(superior izquierda), rodete con una parte del plato eliminada (superior
derecha), rodete con dos partes de plato eliminadas (inferior izquierda)
y rodete con tres partes de plato aliminadas (inferior derecha).

En la figura 11 y 12 se muestran ejemplos de los fallos LED y TED
respectivamente. En estos fallos se ha creado tres grados de severidad consistentes en el
recorte de la longitud de los bordes de todos los alabes del rodete: recorte del 10% de la
longitud total (5mm) , recorte del 20% de la longitud total (10mm) y recorte del 30%

de la longitud total (15mm).
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Figura 11: Foto del rodete con fallo en el leading edge. En la imagen
se observa un recorte del borde leading edge de 5mm (fallo leve).

Figura 12: Foto del rodete con fallo en el trailing edge. En la imagen
se observa un recorte del borde trailing edge de 5mm (fallo leve).

Para adquirir las sefiales se usan dos micr6fonos y dos acelerometros (sensores
de vibracion). En la figura 13 se observa la disposicion de los micréfonos y de los
acelerémetros usados. Ambos microfonos tienen un ancho de banda de [3.15Hz-20kHz]
y sensibilidad de 50mV/Pa. Estan colocados apuntando a la entrada de agua de la
bomba (microfono etiquetado como InletMicro) y a la salida de agua de la bomba

(micréfono etiquetado como OutletMicro) a unos 5 centimetros de la bomba.
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En el montaje se usan dos acelerometros, uno situado a la entrada de la bomba
de agua y que tiene un ancho de banda [0.7Hz-10kHz] y sensibilidad 100mV/g
(etiquetado como RadiallneltAccel) y otro situado encima de la voluta con ancho de

banda [0.35Hz-2.6kHz] y sensibilidad 1000mV/g (etiquetado como RadialAccel).

OutletMicro

)

RadiallnletAccel §

o

f_“

InletMicro

TN T

i \ =

<f

Figura 13: Posicion de los micréfonos y de los acelerometros.

En resumen, la base de datos adquirida consta de 370 muestras por cada sensor
de 59 segundos de duracion cada una. En la siguiente tabla (tabla 2) se muestra la
distribucion de las muestras en diferentes clases (o estados de la bomba) asi como el

rodete usado en cada caso:
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TABLA 2. CONDICIONES GRABADAS DE LA BOMBA CENTRIFUGA.

Rodete # | Condicion NUmero de muestras por
condicion

1 Normal 20

1 Plato (severidad leve) 20

1 Plato (severidad media) 20

1 Plato (severidad alta) 18

2 Normal 20

2 Sellado 9

2 Arena 23

2 Arena y papel 62

2 Bolas de PVC 18

3 Normal 20

3 LED 5 mm (severidad leve) 20

3 LED 10 mm (severidad media) 20

3 LED 15 mm (severidad alta) 20

4 Normal 20

4 TED 5 mm (severidad leve) 20

4 TED 10 mm (severidad media) 20

4 TED 15 mm (severidad alta) 20

En el capitulo 3 se encuentran explicadas las diferentes bases de datos de

cojinetes obtenidas y la generacidn de la base de datos de la bomba centrifuga.

Desarrollo de métodos no lineales para el diagnostico e identificacién de fallos en

cojinetes con sefales de vibracion

Para desarrollar métodos para el diagnéstico e identificacion de fallos en cojinetes
usando sefiales de vibracion, se realiza un estudio de las diferentes técnicas de
procesado de la sefial usadas para diagndstico e identificacion de fallos en cojinetes.
Basandonos en ese estudio, se desarrollan dos métodos basados en técnicas no lineales,
uno para el diagnéstico de fallos y otro para la deteccion e identificacion del fallo
(severidad del fallo). El método para el diagndstico de fallos se basa en el operador no
lineal Teager-Kaiser seguido de la extraccion de caracteristicas estadisticas y de energia.

El método para la identificacion de fallos se basa en la aplicacion de la transformada
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wavelet packet seguida de la complejidad de Lempel-Ziv. Los métodos propuestos se
comparan con métodos presenten en la literatura del diagnéstico de fallos en cojinetes.
La habilidad de las caracteristicas propuestas para el diagnostico de fallos en cojinetes
se cuantifica utilizando dos clasificadores: un clasificador basado en redes neuronales y
un clasificador de maquinas de soporte vectorial de minimos cuadrados (LSSVM). En el
caso de la identificacion de fallo en cojinetes se propone un indice que determna la
severidad del fallo en pista externa y pista interna y que ademas sigue la degradacién de

cojinetes con fallos en la pista externa.

Seguidamente se hace un breve resumen de la metodologia aplicada a la hora de

desarrollar los métodos propuestos.

Metodologia para diagndstico de fallos en cojinetes

Se realiza un estudio de diferentes técnicas de procesado de la sefial con la finalidad de
diagnosticar fallos en el anillo externo, en el anillo interno y en los elementos de
rodamiento. Basandonos en este estudio se propone aplicar el operador no lineal
Teager-Kaiser [40] a la sefial de vibracion de cojinete seguido de la extraccion de
caracteristicas estadisticas y de energia con la finalidad de diagnosticar fallos en los
diferentes elementos de un cojinete. Mediante la aplicacion del operador Teager-Kaiser

a la sefial de vibracion se obtiene otra sefial que llamamaos sefial TK.

El objetivo es demostrar como las caracteristicas estadisticas y de energia
extraidas de la sefial TK mejoran el diagnostico de fallos en cojinetes con respecto a

cuando se extraen las mismas caracteristicas de la sefial de vibracion usando otros
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métodos del estado del arte. En la figura 14 se observan el método propuesto (método 1)
y los demés métodos del estado del arte que se evaltan: en el método 2 se extraen de la
sefial de vibracion en el dominio del tiempo (sefial T) las caracteristicas estadisticas y de
energia [8], en el método 3 se extraen de la sefial de vibracion demodulada en amplitud
(sefial AM) usando la técnica de andlisis de envolvente comUnmente utilizada en
cojinetes [39] y en el método 4 se extraen de la sefial demodulada en amplitud obtenida

a partir del operador Teager-Kaiser (sefial TK-AM) [41].

Diagnostico de fallos en cojinetes : anillo externo, anillo interno, rodamiento

Firma de la maquina: Vibracion
(Base de datos de Case Bearing)

Método 2: Método 3: Método 4:
sefal T Sefial AM sefial TK-AM
caracterizada caracterizada caracterizada

Método 1(Propuesta)
sefial TK caracterizada

Evaluacion de los métodos:
Red neuronal y LS-SVM

Figura 14: Esquema de la experimentacion en diagnostico de fallos de
cojinetes.

Una vez obtenidas las caracteristicas en cada uno de los métodos, se evalla la
habilidad de dichas caracteristicas para discriminar entre normalidad y diferentes tipos
de fallos de cojinetes. Para ello se realiza un estudio de relevancia de las caracteristicas
usando un método de seleccion de caracteristicas denominado sequential floating
forward selection (SFFS) [44]. El método de seleccién de caracteristicas usado
selecciona un subgrupo de caracteristicas que mejores resultados dan a la hora de

discriminar entre las diferentes clases del problema (en este caso entre normal, fallo en

Universidad de Las Palmas de Gran Canaria 305



Tesis Doctoral

cojinete externo, fallo en cojinete interno y fallo en rodamiento). La seleccion de
caracteristicas se aplica varias veces para obtener finalmente las caracteristicas en orden
de relevancia. Finalmente se usan dos clasificadores, uno de redes neuronales y otro de
maquinas de soporte vectorial de minimos cuadrados (LS-SVM) para evaluar las
medidas ordenas por relevancia. Los resultados obtenidos con el método propuesto

mejoran los obtenidos con los deméas métodos comparados [47].

Es importante recalcar que a la hora de evaluar las caracteristicas con los
clasificadores se divide la base de datos en un conjunto de entrenamiento formado por el
70% de las muestras de cada clase y en un conjunto de test formado por el 30% de las
muestras restantes. Con el conjunto de entrenamiento se ajustan los parametros de los
clasificadores usando la técnica de validacion cruzada k-fold con k = 3. En el caso de las
redes neuronales, donde el clasificador usado tiene la capa de entrada, la capa de salida
y una capa oculta, se ajusta el nimero de neuronas de la capa oculta. En el caso del
clasificador LS-SVM que ha sido programado para que utilice como kernel funciones de
base radial Gaussiana, se ajusta el parametro de regularizacion y el ancho de banda de la

funcion de base radial Gaussiana.

Una vez aplicada la técnica propuesta a la base de datos de cojinetes que
presenta fallos en diferentes partes de los mismos (base de datos Case Western) [30] se
aplica la misma técnica a la base de datos de degradacion del helicoptero [31] en la que
un cojinete situado en una parte bastante inaccesible de uno de los trenes principales de
transmision de un helicoptero Black-Hawk tiene un fallo en uno de sus elementos
rodantes al final de un test de resistencia. En la figura 15 se muestra el esquema de la

propuesta aplicado a la degradacion del cojinete. Los resultados usando el método
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propuesto mejoran resultados obtenidos con esa misma base de datos a la hora de

detectar el comienzo del fallo [49].

Deteccion temprana de fallo en cojinete

Firma de la maquina: Vibracion
(Base de datos de degradacion de
cojinete en Helicoptero UH-60)

Method 1 (Propuesta):
sefial TK caracterizada

Deteccion del fallo

Figura 15: Diagrama de la aplicacion del método propuesto a la
degradacion de un cojinete.

En la primera parte del capitulo 4 se encuentra el desarrollo del método

propuesto y de la experimentacion realizada junto con los resultados obtenidos.

Metodologia para deteccion e identificacion de fallo en cojinetes

Para desarrollar un indice que sirva para identificar la severidad del fallo en cojinete se
realiza primeramente un estudio del estado de la técnica en técnicas de identificacion de
fallos (es decir, técnicas que son capaces de determinar la severidad del fallo en
cuestion). Basandonos en ese estudio se propone la aplicacion de la transformada
wavelet packet a la sefial de vibracion seguida de la complejidad de Lempel-Ziv para la
identificacion de fallos en la cara externa y en la cara interna de cojinetes. EI método es
capaz de detectar fallo en los elementos de rodamiento, pero no de determinar la

severidad del mismo. Ademaés, el método propuesto es capaz de seguir de forma
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mondtona la evolucién de fallos en cara externa. Se compara el método propuesto con
otros tres métodos usados en la literatura: kurtosis, complejidad Lempel-Ziv aplicada a
la sefial de vibracidn sin preprocesar, kurtosis aplicado al nodo de mé&xima energia de la
wavelet packet [37], [43]. También se realiza un estudio de la robustez del método

propuesto frente a ruido blanco Gaussiano.

La figura 16 muestra un diagrama del método propuesto para la identificacion de

fallos en la cara externa e interna de cojinetes.

Entrada: Sefial de

vibracion

A 4
Descomposicion
“Wavelet packet”
(3er nivel, 8 nodos)

A

Reconstruccion de la
sefial del nodo Kmax

A\ 4 v

Calculo de la energia Calculo de la
relativa por nodo complejidad Lempel-
e, (k=0,.7) Ziv

|

Seleccion del nodo con
mayor energia

kmux = mf‘x(ek )

'

Salida: caracteristica
extraida de la sefial de
entrada

Figura 16: Método propuesto para la identificacion de fallos en
cojinetes.

Primero la sefial de vibracion se descompone usando la transformada wavelet
packet con nivel de descomposicion 3 (donde hay 8 nodos). La wavelet madre usada

para la descomposicion es la Daubechies 6 (db6) (ver figura 17) porque tiene una forma
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de onda impulsiva, igual que la forma de onda de las sefiales de vibracidn de cojinetes
con fallos puntuales. Una vez descompuesta la sefial de vibracion se reconstruye cada
una de las sefiales de los nodos. Se calcula luego la energia de esas 8 sefiales con
respecto a la energia de la sefial de vibracion original. Finalmente se selecciona el nodo
con mayor energia relativa. Puesto que se ha usado una wavelet madre con forma
impulsiva, el nodo con mayor energia sera aquel donde se encuentre el fallo si lo
hubiese. Asi la transformada wavelet elimina partes de la sefial indeseada y se centra en
el fallo. Una vez obtenido el nodo con mayor energia se calcula la complejidad de
Lempel-Ziv sobre la sefial reconstruida del nodo de mayor energia. Con la complejidad
de Lempel-Ziv se evalla, como su propio nombre indica, la complejidad de la sefial

obtenida.

Figura 17: Forma de onda de la wavelet madre Daubechies 6.

El método propuesto se aplica a la base de datos Case Western [30] puesto que
esta base de datos presenta sefiales de vibracion de cojinete con fallos de diferente
severidad (severidad leve, media y alta) en cara externa, cara interna y rodamiento.
Asimismo también se aplican los otros tres métodos de la literatura mencionados
anterioremente [42]. Los resultados obtenidos demuestran que el método propuesto da
mejores resultados [52] sobre todo cuando se afiade ruido blanco Gaussiano a las

sefiales para comprobar lo robusto del algoritmo propuesto frente al ruido.
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El método propuesto también se aplica a las otras dos bases de datos de
cojinetes, las base de datos de degradacion de cojinetes del IMS [32] y del helicoptero
UH-60 (Black Hawk) [31]. En la base de datos del IMS el cojinete presenta un fallo de
cara externa a lo largo del test run-to-failure. EI método propuesto obtiene mejores
resultados que los otros tres métodos con los que se ha comparado. En el caso de la base
de datos del helicdptero, donde el fallo se produce en el elemento rodante del cojinete,
los resultados no son tan satisfactorios y el método propuesto se comporta de forma
similar el método de extraer la complejidad de Lempel-Ziv de la sefial de vibracién sin

pre-procesar.

En la segunda parte del capitulo 4 se encuentra el desarrollo del método

propuesto para la identificacion de fallos en la cara interna y la cara externa de cojinetes

asi como la experimentacion realizada junto con los resultados obtenidos.

Metodologia usada para el diagnéstico de fallos en bomba de agua usando sefiales

de audio vy vibracion

Una vez generada la base de datos de audio y vibracion de la bomba centrifuga, nos
centramos en el diagnostico de los fallos generados en la bomba. El objetivo principal
en este caso es determinar si con el audio como fuente de informacion se es capaz de
distinguir entre los diferentes fallos de la bomba centrifuga. De igual forma se pretende

comparar los resultados con los obtenidos usando sefiales de vibracion.

La metodologia usada para el diagnéstico de fallos en bomba de agua usando

sefiales de audio y vibracion se explica con la ayuda de la siguiente figura (figura 18).
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Extraccionde | || Seleccion de Clasificacion _»Diagnéstico de
caracteristicas caracteristicas clasificacion

Figura 18: Esquema de la metodologia llevada a cabo para cuantificar
la habilidad de las caracteristicas extraidas de la sefial de audio y
vibracién en diagnostico de fallos en bombas centrifugas.

Extraccion de caracteristicas

En el blogue de Extraccion de caracteristicas se extrae un conjunto de caracteristicas
tanto de la sefial de vibracion como de la sefial de audio. En realidad, esto se hacer por
sensor. Puesto que hay 4 sensores (2 de audio y 2 de vibracion) se extraen

caracteristicas de las sefiales provenientes de los 4 sensores.

Las caracteristicas que se extraen son caracteristicas usadas en la literatura del
diagnostico de fallos en bombas centrifugas usando sefiales de vibracién y de audio.
Para identificar las caracteristicas primero se debe realizar un estudio de las técnicas de
procesado de la sefial usadas en bombas centrifugas para el diagnostico de fallos. Es
necesario mencionar que puesto que la mayoria del diagnostico de fallo en bombas
centrifugas se realiza con sefiales de vibracion asi como con sefiales de presion, se
encuentran escasas caracteristicas que se hayan extraido usando el audio. Por ello las
mismas caracteristicas que se extraen de la sefial de vibracion se extraen también de la

sefial de audio.

Basandose en la inspeccion visual de las sefiales obtenidas en la base de datos
generada, se proponen una serie de nuevas medidas no utilizadas anteriormente en el

diagndstico de fallos de bombas centrifugas.
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Una vez identificadas las caracteristicas del estado del arte y propuestas nuevas

medidas, éstas se deben implementar.

Para extraer las caracteristicas cada observacion (o muestra) de la base de datos
generada se divide en segmentos, también llamados tramas, de 8192 muestras cada uno,
equivalentes a 371.5 ms. Las tramas se toman una cada tres por lo que si cada
observacion dura 59 segundos, tenemos 53 tramas por observacion. Por cada una de las
tramas se extrae el conjunto de caracteristicas implementado. Antes de extraer las
caracteristicas a cada una de las observaciones se le quita la media y se normaliza entre

-ly 1.

Una vez extraidas las caracteristicas por observacion, se calcula el promedio de

cada una de las caracteristicas por observacion.

Seleccidn de caracteristicas

Una vez que se extraen las caracteristicas por observacion de la base de datos, el
objetivo es identificar aquellas méas apropiadas por sensor que mejor discriminen entre
los diferentes estados de la bomba centrifuga. EI proceso de seleccionar caracteristicas
de un conjunto de caracteristicas se denomina seleccion de caracteristicas. Este proceso
es importante puesto que la seleccion de caracteristicas que aporten informacion
relacionada con el fallo y el descarte de caracteristicas que no aporten informacion
mejora la tasa de éxito en el diagnostico. Asi pues, en el segundo bloque de la figura 18
se realiza la seleccion de caracteristicas y un analisis de relevancia, el cual se explico
anteriormente cuando se explicé la metodologia para el diagndstico de fallos en

cojinetes. Simplemente recordar que la tecnica utilizada para la seleccion de
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caracteristicas se denomina sequential floating forward selection (SFFS) [44]. La razon
por la que se ha elegido esta técnica de seleccion de caracteristicas es porque es un
método determinista y por lo tanto se obtendran los mismos resultados cuando se repita.

De igual forma el coste computacional de la técnica es bajo.

Después de aplicar la seleccion de caracteristicas y de realizar el analisis de

relevancia se obtendra un conjunto de caracteristicas por sensor.

Evaluacion de las caracteristicas: Clasificacién

El bloque de clasificacion de la figura 18 se utiliza para evaluar la capacidad de las
caracteristicas a la hora de discriminar entre los diferentes estados de la bomba
centrifuga. Asi que el clasificador nos dard una tasa de éxito en la clasificacion de los

diferentes estados de funcionamiento de la maquina.

El clasificador clasifica las observaciones en diferentes unidades de clasificacion
también Ilamadas clases con la informacién que obtiene las caracteristicas. Las unidades
de clasificacion corresponden con los diferentes estados o condiciones de la maquina
que se quieran clasificar. En la presente Tesis, se ha decidido implementar dos
configuraciones diferentes, asi que las unidades de clasificacion consideradas son las

siguientes (entre paréntesis esta el acronimo de la clase):

e 8 unidades de clasificacion: estado normal (NOR), fallo en el plato del rodete

(PLA), fallo en el leading edge (LED), fallo en el trailing edge (TED), fallo en
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la goma del sellado (SEA), arena afadida al agua (SAN), arena y papel afiadidos

conjuntamente al agua (SAP) y bolas de PVC afiadidas al agua (PVC).

e 17 unidades de clasificacion. En este caso se tienen en cuenta las severidades en
los casos de rotura del plato, del fallo leading edge y del fallo trailing edge. Las
17 unidades de clasificacion son: estado normal (NOR), fallo en el plato del
rodete con una porcion de plato eliminada (PLAL), con dos porciones de plato
eliminadas (PLA2) y con tres porciones de plato eliminadas (PLA3), fallo en el
leading edge (LED1) de 5 mm de tamafio, de 10 mm de tamafio (LED2) y de 15
mm de tamafio (LED3), fallo en el trailing edge de 5 mm de tamarfio (TED1), de
10 mm de tamafio (TED2) y de 15 mm de tamafio (TED3), fallo en la goma del
sellado (SEA), arena afiadida al agua (SAN), arena y papel afiadidos

conjuntamente al agua (SAP) y bolas de PVC afiadidas al agua (PVC).

Al igual que en el caso del diagnostico de fallos en cojinete se usan dos
clasificadores: un clasificador de red neuronal y otro de maquinas de soporte vectorial
de minimos cuadrados (LS-SVM). EIl clasificador de red neuronal tiene estructura
feedforward y un algoritmo de resilient backpropagation. El clasificador LS-SVM usa
funciones Gaussianas de base radial. Al igual que en el caso de diagnostico de fallos en
cojinetes, la metodologia para evaluar los diferentes casos (8 unidades de clasificacion y
17 unidades de clasificacion) consiste en dividir la base de datos en un conjunto de
entrenamiento formado por el 70% de las observaciones de cada una de las clases de la
base de datos y en un conjunto de test formado por el 30%. El conjunto de
entrenamiento a su vez se usa para ajustar los parametros de los clasificadores. El

procedimiento se repite 20 veces y se promedian los resultados.
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Finalmente se obtiene una tasa de éxito tanto en la clasificacion de 8 unidades de
clasificacion como en la clasificacién de 17 unidades de clasificacion. También se

realiza un analisis de los resultados obtenidos con las caracteristicas seleccionadas.

En el capitulo 5 de la memoria de Tesis se expone la metodologia seguida para

el diagnostico de fallos en bomba de agua, se explica cada una de las medidas extraidas,

y se exponen y analizan los resultados obtenidos por sensor individual.

Metodologia usada para la fusion de sefiales de audio y vibracion en el diagnoéstico

de fallos en bomba de agua

Una vez obtenidos los resultados individuales en la clasificacion entre los diferentes
estados de la bomba centrifuga se procede a realizar un estudio de la combinacion de las
sefiales de audio y vibracion para determinar si su unién aumenta la tasa de acierto

obtenida por sensor.

La informacién obtenida de las sefiales de vibracién y de audio se fusiona a
diferentes niveles [45]: a nivel de caracteristicas (feature level), a nivel de puntuacién

(score level) y a nivel abstracto o de decision (abstract level).

La fusion a nivel de caracteristicas consiste en la concatenacion de las
caracteristicas extraidas por sensor. Es necesario recalcar que la fusion de la
informacién se realiza s6lo con las caracteristicas seleccionadas por sensor que se
obtuvieron en la etapa anterior (ver capitulo 5 de la Tesis). Las caracteristicas

concatenadas se evaltan usando dos clasificadores: uno basado en redes neuronales y
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otro una maquina de soporte vectorial de minimos cuadrados (LS-SVM). Puesto que hay
dos sensores de vibracion y dos sensores de audio, se realizan todas las combinaciones

posibles combinando 2 sensores, 3 sensores y 4 sensores.

La fusidon a nivel de puntuacién o de score se realiza con las puntuaciones
obtenidas a la salida de los clasificadores antes de tomar la decision de asignar la salida
a una clase en concreto. Las puntuaciones de los clasificadores se fusionan usando las
siguientes reglas que son ampliamente usadas a la hora de realizar fusion a nivel de
score y que ademas son una simplificacion de la ley de Bayes [45]: regla del promedio
(también llamada regla de la suma), regla del producto, regla del minimo y regla del
maximo [45]. La fusion a nivel de puntuacion se realiza usando los dos clasificadores

anteriormente mencionados y se realiza combinaciones de 2, 3 y 4 sensores.

Finalmente la fusion a nivel de decisién se realiza aplicando la regla del méas
votado (majority vote rule). lustremos esta regla con un ejemplo: tenemos las
caracteristicas de una muestra de la base de datos de 3 sensores (uno de vibracion y dos
de audio, por ejemplo). Las caracteristicas del sensor 1 se evaltan en el clasificador de
red neuronal 1 y da como resultado que la muestra pertenece a fallo LED. Las
caracteristicas del sensor 2 se evaltan en el clasificador de red neuronal 2 y da como
resultado que la muestra pertenece al fallo LED. Igualmente las caracteristicas del
sensor 3 se evaluan en el clasificador de red neuronal 3 y da como resultado que la
muestra es normal. Tenemos dos votos para el fallo LED y un voto para normalidad, asi
que gana el fallo LED puesto que es el mas votado. En el caso de que todos los sensores
den resultados diferentes entre si, se escoge aquel que tenga el score més cercano a la

clase.
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En cada una de las técnicas de fusion, la evaluacion con los clasificadores se
repite 20 veces usando cada vez diferente conjuntos de entrenamiento y test
aleatoriamente escogidos. Finalmente se obtiene el promedio de las 20 repeticiones. Se
obtienen resultados por cada uno de los casos de estudio: 8 unidades de clasificacion
(normalidad y 7 tipos de fallo considerados) y 17 unidades de clasificacion (normalidad

y 10 tipos de fallo considerados puesto que se incluye la severidad de todos los fallos).

Una vez aplicadas las técnicas de fusion comentadas, se realiza un andlisis de los

resultados obtenidos.

En el capitulo 6 de la Tesis se describe la metodologia usada para la fusién de
las sefiales de audio y vibracion y se muestran los resultados obtenidos asi como el

analisis de los resultados realizado.
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5 Aportaciones originales

El objetivo de la presente Tesis es la mejora de los sistemas de monitorizacion del
estado de la maquinaria en diagnostico de fallo e identificacion de fallo usando sefiales
de vibracion y de audio en dos aplicaciones (cojinetes y bombas de agua) con especial
énfasis en la etapa de extraccion de caracteristicas y en el utilizacion de la sefial de
audio como fuente de informacion. En la consecusion del objetivo se han realizado
diversas aportaciones originales. En este apartado se exponen las aportaciones

originales de la presente Tesis.

Aportacion original 1: Estado del arte

Uno de los objetivos de la Tesis es realizar una revision de las técnicas de procesado de
la sefial y de las técnicas de reconocimiento de patrones en el contexto de
monitorizacién de maquinaria. Basandonos en esta revision se decidié trabajar en
cojinetes y en bombas de agua y centrarse en algunos de los huecos encontrados en el
estado del arte. Fruto de esta revision se ha generado un articulo sobre el estado del arte,
que es una contribucion original de esta Tesis. Parte de la redaccién del capitulo 2 de la

Tesis estd basado en el articulo generado [46].

Aportacion original 2: Generacion de base de datos de audio v vibracion de bomba

centrifuga

Puesto que la Tesis se centra en dos areas de aplicacion, cojinetes y bombas de agua, se
necesitan obtener sefiales provenientes de estos dos elementos. Para el caso de los
cojinetes se han usado bases de datos de vibracion disponibles en internet. Estas bases

de datos forman un corpus que puede ser utilizado en la divisidn de investigacion en

318 Universidad de Las Palmas de Gran Canaria



Avances en monitorizacién preventiva de maquinaria a través de sefiales de audio y vibracion

futuros estudios. Por otra parte, puesto que no hay disponibles de forma publica bases
de datos de audio provenientes de maquinaria en esta Tesis se ha realizado la
adquisicién simultanea de sefiales de audio y vibracién de una bomba centrifuga de
agua de circulacion. Este es otro aporte original de la presente Tesis. En el capitulo 3 se

detalla el proceso de adquisicion de la base de datos.

Aportacion original 3: método para el diagnéstico de fallos en cojinetes

Centrandonos en la aplicacion de las sefiales de vibracion de cojinetes hemos
contribuido en esta Tesis con dos métodos para el diagnostico e identificacion de fallos
en cojinetes. Ambos métodos estan basados en técnicas no lineales. El primero de ellos
se basa en el operador no lineal Teager-Kaiser junto con la extraccion de caracteristicas
estadisticas. Se realiza un estudio del método propuesto y se compara con otras técnicas
en el dominio temporal. En este dominio, este método presenta mejores resultados que
los del estado del arte. La metodologia utilizada y los experimentos realizados con el
método propuesto se describen en la primera parte del Capitulo 4 de la presente Tesis.
Esta aportacion de la Tesis ha sido publicada en un articulo de revista [47] y en varias

conferencias [48], [49].

Aportacion original 4: método para la identificacion de fallos en cojinetes

El segundo método propuesto consiste en la aplicacion de la transformada wavelet
packet y la complejidad Lempel-Ziv para establecer el grado de severidad de cojinetes
con fallo en la cara externa (outer-race fault) y con fallo en la cara interna (inner-race
fault). En el caso de fallo en la cara externa el indice encontrado permite seguir de

forma mondtona la degradacion de normal a fallo. Se ha realizado una comparacion del
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método propuesto con diversos métodos de la literatura. También se ha estudiado la
robustez del método propuesto frente a ruido gaussiano. La metodologia utilizada y los
experimentos realizados con el método propuesto se describen en la segunda parte del
Capitulo 4 de la presente Tesis. Esta contribucién ha sido parcialmente publicada en una

conferencia [50].

Aportacion original 5: aplicacidén de caracteristicas usadas en vibracion en sefales

de audio para el diagndstico de fallos en bomba centrifuga

Centrandonos en la segunda aplicacion en bomba centrifuga de agua, el objetivo
principal ha sido determinar si con el audio como fuente de informaciédn se es capaz de
distinguir entre los diferentes fallos de la bomba centrifuga. Puesto que la sefial de audio
se usa poco en el diagndstico de fallos en bombas centrifugas, la mayoria de
caracteristicas se extraen de la sefial de vibracion. Una aportacion de la presente Tesis
es la aplicacion de caracteristicas usadas para sefiales de vibracion en la sefial de audio.
En el capitulo 5 de la presente Tesis se explican las caracteristicas extraidas. Parte de

esta aportacion esta publicada en una conferencia [52].

Aportacion original 6: propuesta de 31 medidas nuevas para el diagnostico de

fallos en bomba centrifuga (sefales de audio y vibracion)

También en la aplicacion de la bomba centrifuga se ha contribuido con nuevas
caracteristicas extraidas tanto de la sefial de vibracion como de la sefial de audio. Estas
caracteristicas son las siguientes: energias de la transformada wavelet packet (7
caracteristicas), energias cepstrales (12 caracteristicas), relacion de armonico ruido

cepstral (1 caracteristica), energia de ruido cepstral (1 caracteristica), relacion armonico
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ruido frecuencial (2 caracteristicas), energia de ruido frecuencial (1 caracteristica),
medidas no lineales (7 caracteristicas). Parte de estas contribuciones han sido publicadas

en conferencias [51], [52]. En el capitulo 5 se detallan las medidas aportadas.

Aportacion original 7: evaluacion de las medidas en sefales de audio para el

diagndstico de fallos en bomba centrifuga

La capacidad para discriminar entre diferentes estados de la maquinaria (sin fallo y con
diferentes tipos de fallos) de las caracteristicas extraidas se ha evaluado usando dos
clasificadores, uno basado en redes neuronales y otro basado en maquinas de soporte
vectorial de minimos cuadrados (LS-SVM). Los resultados de la evaluacion de las
caracteristicas usando la sefial de audio son muy satisfactorios, llegandose a tasas de
acierto del 96.53% en la discriminacién entre 8 estados (estado normal de
funcionamiento y 7 estados de fallo) usando sélo 7 caracteristicas seleccionadas y de
88.29% en la discriminacion entre 17 estados (estado normal y 10 estados de fallo en

los que se separan fallos por severidades) usando 16 caracteristicas seleccionadas.

También en el capitulo 5 se describe la evaluacion de las medidas y los

resultados obtenidos en dicha evaluacion tanto para las sefiales de audio como para las

sefiales de vibracion por sensor individual.

Aportacion original 8: estudio de la fusién de sefales de audio y vibracién en el

diagnostico de fallos en bomba centrifuga

Finalmente se ha realizado un estudio de la fusion de las sefiales de audio y vibracion

para determinar si su union mejora el diagnéstico de fallos en la aplicacion e bomba
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centrifuga. Los resultados obtenidos son satisfactorios llegdndose a aumentar la tasa de
acierto en el diagnodstico del fallo hasta un 100%. En el capitulo 6 se explican las

técnicas de fusion usadas y se muestran los resultados obtenidos.

Por ultimo, y como ya se comento en la introduccion, durante el transcurso de la
presente Tesis la doctoranda sigui6 con la investigacion en sefiales de voz. En esta area

se realizan las siguientes aportaciones:

Aportacion original 9 (voz): propuesta de caracteristicas basadas en dinamica no

lineal para la deteccion de patologias laringeas del sistema fonador

Se proponen una serie de caracteristicas basadas en dinamica no lineal (teoria del caos)
para la deteccion de patologias del sistema fonador usando la sefial de voz. Fruto de este

estudio se genera un articulo en revista de indica de impacto [53].

Aportacion original 10 (voz): propuesta de caracteristicas basadas en dindmica no

lineal y de medidas de complejidad para la deteccion de emociones a través de la

sefal de voz

Se proponen una serie de caracteristicas basadas en dinamica no lineal, asi como
medidas de complejidad para la discriminacion de diferentes estados de emocion usando
la sefial de voz. Se genera de este trabajo dos articulos en revistas con indice de impacto

[54], [55].

En el anexo de la Tesis se hace un resumen de ambos trabajos en voz,
explicando la metodologia usada, las caracteristicas extraidas y los resultados obtenidos.
Se debe mencionar que parte de las medidas propuestas en voz también han sido

propuestas en esta Tesis para el diagndstico de fallos en bombas centrifugas.
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6 Conclusiones

El objetivo de la presente Tesis es mejorar la tasa de acierto en los sistemas de
monitorizacion del estado de la maquina en diagnostico e identificacion (severidad del
fallo) de fallos usando sefiales de audio y vibracion y centrandonos en dos aplicaciones
(cojinetes y bombas centrifugas) con especial énfasis en la etapa de extraccion de
caracteristicas y en el uso de sefiales de audio como fuente de informacion. Basandonos
en la investigacion realizada en las dos areas de aplicacion de la Tesis, cojinetes y
bombas centrifugas, y en los resultados obtenidos podemos concluir que tanto el uso de
audio como fuente de informacion como el uso de técnicas no lineales a la hora de
extraer caracteristicas mejora la tasa de éxito en las dos aplicaciones en las que se ha

centrado la Tesis: cojinetes y bombas centrifugas.

En la aplicacion de cojinetes se han usado sefiales de vibracion como fuente de
informacidn puesto que se han usado bases de datos publicas disponibles en Internet con
muestras de cojinetes funcionando en estado normal y con fallos puntuales en las
diferentes partes de los cojinetes. Se han propuesto dos métodos basados en técnicas no
lineales para el diagndstico de fallos en la cara externa, en la cara interna y en los
elementos rodante de cojinetes y para la identificacion de fallos en la cara externa y en
la interna. Con el segundo método propuesto se ha generado un indice que sigue de
forma monétona la degradacion de un cojinete con fallo normal a fallo en la cara
externa. Los métodos propuestos se han comparado con métodos de la literatura y los
resultados obtenidos han sido satisfactorios, mejorando los resultados. Ademas, en el
segundo método propuesto se ha realizado un estudio de la robustez del algoritmo frente

a ruido Gaussiana. El estudio demuestra que el algoritmo propuesto presenta mas
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robustez al ruido blanco Gaussiano que los métodos de la literatura con los que se ha
comparado. Por lo tanto se puede concluir que el uso de técnicas no lineales para el
diagnostico e identificacion de fallos en cojinetes es una linea de investigacion

prometedora.

La aplicacion de la bomba centrifuga se ha usado para explorar el uso de la sefial
de audio en el diagnéstico de fallos de bombas centrifugas. La monitorizacion de
maquinaria en general, y en particular la referida a bombas de agua y a cojinetes, utiliza
en la mayoria de los casos la sefial de vibracion como fuente de informacion. El uso de
audio (rango de frecuencias [0-20kHz]) ha sido menos explorado, por esto en la
presente Tesis nos hemos centrado en su estudio. Para ello se necesita obtener una base
de datos de audio obtenida de una bomba centrifuga. Puesto que no hay ninguna
disponible, se ha generado una base de datos propia en la que se adquieren sefiales de
audio y vibracion de forma simultanea de una bomba centrifuga funcionando con
normalidad y a la que se generan diferentes tipos de fallos. Un conjunto de
caracteristicas del estado del arte de diagnostico de fallos en bombas centrifuga se
extraen de las sefiales de vibracion obtenidas y se aplican también a las sefiales de
audio. También se proponen un conjunto de 31 nuevas medidas extraidas en el dominio
de la frecuencia, en el dominio de los cepstrum y en el dominio no lineal. Se realiza una
seleccion de caracteristicas y luego se evalGan por sensor con dos clasificadores. Los
resultados muestran tasas de acierto altas y bastante similares en sensores de audio y de
vibracion. Se obtienen tasas de éxito del 99.82% y del 99.59% para los sensores de
audio y del 99.91% y 99.59% para los sensores de vibracion en el caso de discriminar
entre 8 estados de la bomba centrifuga. En el caso de discriminar entre 17 estados se

obtienen tasas de éxito del 87.48% y 94.23% para los sensores de audio y del 86.71% y
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87.30% para los sensores de vibracion. De los resultados obtenidos, se puede concluir
que el audio puede ser usado como fuente de informacion en el diagndstico de fallos de
la bomba centrifuga utilizada. De todas formas, es necesario realizar mas investigacion

al respecto con diferentes bombas centrifugas.

En la Tesis también se ha realizado un estudio de la combinacion de las sefiales
de audio y vibracién obtenidas en la bomba centrifuga para determinar si la fusion de la
informacion de ambas sefiales mejora la tasa de acierto. Las tasas de éxito se
incrementaron significativamente a la hora de fusionar un sensor de audio y otro de
vibracién en el caso de discriminar entre 17 estados de la bomba centrifuga. En este
caso se logré una tasa de acierto del 99.55%, bastante superior a los 94.93% obtenidos
por uno de los sensores de audio. En el caso de discriminar entre 8 condiciones de la
bomba centrifuga, se llegaron a obtener tasas del 100% a la hora de fusionar un sensor
de audio y otro de vibracion. De los resultados del estudio de la fusion se puede concluir
que si bien los resultados individuales por sensor son buenos, la fusion aumenta la tasa
de acierto. Este aumento es especialmente evidente en el caso del diagndstico de 17

condiciones de la bomba centrifuga.
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