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ABSTRACT 
Power line management becomes critical as power 
companies need to assure the reliability of their 
services. Many of them rely on LiDAR scanning of 
their assets to get information about the status of the 
power line corridor and possible dangers in the area. 
In this paper, a novel method to classify wire and 
pylon points from a LiDAR point cloud is introduced. 
The method generates images from different 
measurements of the data to select candidate areas 
and then applies a clustering algorithm to group and 
filter out false positives. A prior classification of 
ground points is not necessary for the method to 
work. Tests have been conducted on a set with 25 
point cloud files to show the effectiveness of the 
presented method. 
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1. INTRODUCTION 
The management of power lines is an issue of special 
importance for power companies due to the needs of 
ensuring a continuous service to a population whose 
dependence on energy is always increasing. Service 
could be interrupted due to damages caused by the 
fall of objects, generally trees, over the power line. 
Moreover, forest fires could start as a result of these 
events, producing another kind of inconveniences on 
the people. 

During the last years, the use of Light Detection and 
Ranging (LiDAR) becomes frequent in power line 
management. It refers to a kind of active sensor 
which determines the distance between its laser 
emisor and the ground or an object. [1]. LiDAR 
devices can be differenced in two categories: 
waveform sensors, which offer the whole laser 
return, and discrete sensors, which capture only a 
certain number of returns. This number varies 
depending on the device: most models provide 
between 3 and 5 returns. 

Generally, LiDAR data is presented as point clouds. 
Every point includes, at least, accurate X-Y-Z values, 
an intensity value and its associate return number. 
Some sensors also add extra information about each 
point, like RGB color values. A frequently used 
format to represent these point clouds is the Laser 
File Format (LAS), whose specifications can be 
found in [2]. 

In this work, a new method for the classification of 
power structures in discrete LiDAR point clouds is 
presented. The method classifies the points of interest 
into two categories: pylon and wire. The structure of 
the document is as follows:  

Firstly, an analysis of the data is conducted in 
Section 2. After that, the applied method to perform 
classification is explained in Section 3. Section 4 
introduces the experimentation which has been 
conducted to fit the parameters of the method and 
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validate its behaviour. Finally, the conclusions of this 
work are presented in Section 5. 

1.1. Related work 
A great amount of previous works deal with 
classification of LiDAR points applied to a wide 
variety of topics. As an example, it is used in [3] for 
the classification of different elements in a complex 
natural scene, like rives, cliffs, rocks, etc. 
Antonarakis et al. [4] introduced a method to 
efficiently classify ground and forest points. 
Dalponte et al. [5] combined LiDAR with 
hyperspectral data to classify complex forest scenes. 
The work of Omar et al. [6], in which different kinds 
of aerosols are classified, is also highlighted. 

However, the two areas in which there is a greater 
number of papers are the urban scene and the power 
line classification. Some examples on the use of 
point classification in urban scenes are the work of 
Niemeyer et al [7], where a Random Forest (RF) 
classifier is integrated on the CRF framework to 
detect buildings in a point cloud. Yao et al. [8] 
developed a segmentation method to extract vehicles 
in a urban scene. Moreover, Man et al. [9] explored 
the efficiency of pixel-based and object-based 
classifiers in a urban scene which includes LiDAR 
and hyperspectral data. 

For the case of power lines there also exists a wide 
range of studies. Liu et al. [10] applied the Hough 
transform on a subset of the point cloud after 
conducting an analysis on skewness and kurtosis of 
the data. Jwa et al. [11] introduced the Voxel-based 
Piecewise Line Detector method. Kim and Sohn used 
a RF classifier to identify 5 classes of points, 
including wire and pylon [12], and then integrated it 
into a Multiple Classifier System [13]. Zhu and 
Hyyppä [14] introduced an algorithm which uses 
height data to identify low-voltage lines in forested 
areas. Liang et al. [15] studied the orientation of the 
power line and then grouped candidate points in 
single lines. Finally, Ritter and Benger [16] used 
tensor fields and eigenvectors to reconstruct the line. 
Many other works can also be found in an extensive 
survey done by Matikainen et al. [17]. 

Most of the cited works required a previous stage in 
which ground-related points are removed with other 
algorithms [10, 12, 13, 15]. Those which do not 
require it are focused only in classification of wire 
points [11 ,14, 16]. Our contribution is an alternative 
method which allows the classification of wire and 

pylon points without an initial classification of 
ground points. 

2. STUDIED DATASET 
For this study we have worked over 68 point cloud 
files, which contain between 1.5 and 2.5 million 
points per file and an average point density per 
square meter of 25.5. The files represent an 
helicopter-based scanning of power lines across 80 
km. of an electric power line. Data include power 
line points as well as points representing terrain, all 
kinds of vegetation, buildings, roads and water 
masses. The files have been divided into three 
different sets: 

Training set (20 files): Used to conduct previous 
analyses on the data.  

Validation set (23 files): Used as a sandbox to adjust 
the parameters. 

Test set (25 files): Used to conduct the 
experimentation and obtain the final results. 

2.1. Data Analysis 
Prior to the development of any method, it is 
important to analyze the available data to find what 
makes all the possible elements in the point cloud 
different from each other. The focus is put on the 
three variables that are included in the minimum 
version of LAS point clouds: height, intensity and 
return value. 

The height value can be used in terms of distance 
between the point and the underlying ground to 
determine where a power line could be found. Power 
lines are supported by pylons with diverse shapes and 
heights. Most pylons for high voltage lines have 
heights between 10 and 55 meters [18]. That also 
implies that wires can be found at heights of at least 
8 meters.  

 Terrain Vegetation Buildings Pylons Wires 

Min 35 37 44 35 0 

Max 5843 5843 4774 4819 4752 

Mean 3070 2995 2415 2050 1370 

Std 91.12 203.8 506.9 60.56 34.88 
Table 1 Resume of intensity data analysis 

To find conclusions from the intensity of the return, 
maximum, minimum and mean intensity values have 
been extracted from the twenty files of the training 
set. The results are presented here as a resume in 
Table 1. 
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From the analysis of the set can be extracted that all 
categories present similar minimum and maximum 
values, meaning that the category of a single point 
cannot be inferred from its intensity information. 
However, mean and standard deviation for the whole 
set of category points allow to make some 
differentiation. Particularly, groups for power line 
components have lower and less diverse returns than 
the rest of the categories. As an example, the ratio of 
intensities between the mean for wires and the global 
maximum is 0.23. For the case of pylons, the same 
ratio has a value of 0.34. This fact enables us to 
differentiate the two categories based on the mean 
intensity value of the cluster.  

The third variable, the return number, cannot be 
applied to single points either. However, it is 
expected that in regions with more than a possible 
return, the nearest point has a minor return value. 
Moreover, high human-made objects (like pylons or 
buildings) are expected to have a face full of 1st 
return points and other one with more points obtained 
from last returns, since the LiDAR device will be 
opposed only to a given side of the object. An 
analysis on the distribution of returns for the training 
set has been performed, and its resume can be read in 
Table 2: 

 Terrain Vegetation Buildings Pylons Wires 

1- M 82.66% 80.76% 75.07% 67.75% 90.63% 

1 - S 5.78 6.83 26.82 5.20 5.74 

2 - M 14.75% 16.42% 14.13% 26.80% 8.59% 

2 - S 4.11 5.08 6.35 2.42 4.46 

3 - M 2.22% 2.46% 2.65% 5.23% 0.69% 

3 - S 1.46 1.53 4.55 2.27 1.18 

4 - M 0.32% 0.31% 2.96% 0.70% 0.07% 

4 - S 0.26 0.25 8.88 0.80 0.17 

5 - M 0.04% 0.03% 2.90% 0.08% 0.01% 

5 - S 0.04 0.03 9.13 0.15 0.02 
Table 2 Return distributions per category. First column 

expresses the return number and a M (mean) or 
S (standard deviation). 

From the resume can be extracted that, for the pylon 
category, standard deviations from the mean of 1st 
and 2nd returns are lower than in the rest of the 
groups. The percentage of first return points are quite 
low compared with the same percentage in other 
categories. These facts can be used to filter clusters 
of points that represent pylons. 

Other remarkable fact is a high percentage of first 
return points in the wire category. Combined with the 

information about height and intensity, this could 
help identify clusters of points as wires. 

3. METHODOLOGY 
In this work we propose a pipeline to classify 
accurately the power lines from the LiDAR data. It 
applies two stages: an initial stage which performs an 
image-based selection of candidate areas, and a final 
stage which filters these areas to remove possible 
false positives. Both stages are presented in detail in 
the following subsections. 

3.1. Image-based classification 
This stage proposes the generation of images in 
which every pixel represents a squared volume 
whose section side has α meters length. The 
generated image should cover the whole point cloud 
regardless of the number of points in each pixel. The 
goal of those images is to separately differentiate 
wire and pylon areas of the electric power line from 
the rest of elements in the point cloud. To do so, 
different measurement images should be created 
from the available data, in this case, intensity and 
height values, and then combined.  

One of these measurement images is the minimum 
height, H. There, every pixel Hij is assigned the 
minimum height from the points contained in the 
[Xmin + (i-1)*α + 1, Xmin + i*α ; Ymin + (j-1)*α + 1,Ymin 
+ j*α] XY region of the point cloud, from now on, its 
associate volume section. There, Xmin and Ymin stands 
for the minimum X and Y values for the point cloud. 

By using H, it is possible to compute an image of 
amplitude, A. Every pixel Aij of the image is assigned 
the result of the Expression 1: 

∑
=

−=
n

k
ijijkij HZA

1

)(  (1) 

Where Zijk stands for the height value of every point 
in the associated volume of the pixel (i,j). Therefore, 
A is an accumulator of height differences. In case no 
points are present in the volume, Hij and Aij are 
assigned the global minimum height and 0, 
respectively. Finally, A is normalized within the 
range [0,1]. 

Having A, we can define a binary image, T, which 
signals the presence of power line pylons. The 
assignation of Tij follows the rule: 

Tij = 1 if Aij >= γ 

Tij = 0 otherwise. 
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There, γ is an adjustable threshold which should be 
assigned in a way that allows the detection of the 
maximum number of pylon points with the minimum 
possible number of false positives. Experimentation 
was conducted and introduced in Section 4 to find a 
proper value for the parameter, which was finally 
assigned 0.25. Examples of T images can be seen on 
Figure 1. 

 

 
Figure 1 Inversed T images for two files of the validation 

set. 

Other measure images are based on intensity values. 
Let ε be the minimum possible height value for a 
wire point in relation with the ground height below it. 
Considering this, we define an intensity accumulate 
image, I’, whose pixel values are assigned using the 
Expression 2: 

∑
=

⋅=
n

k
kijkij QII

1
'  (2) 

Where Iijk is the intensity value of the points  in  the 
associate volume of the pixel, and Qk is a binary 

evaluation for each point whose value is given by the 
following rule: 

Qk = 1 if (Zijk - Hij) > ε 

Qk = 0 otherwise. 

Other image, N, is defined and their pixels assigned 
the number of points included in their associated 
volumes which fulfills Qk = 1. This way, we can 
define a mean intensity image, M, assigning their 
pixels as in Expression 3: 

ij

ij
ij N
I

M
'

=  (3) 

Figure 2 Inversed W images for two files of the 
validation set. 

M is then adjusted so its values range between 0 and 
1. Having M, the binary image W which signals the 
presence of wires surges from the rule: 

Wij = 1 if Mij < ω and Tij == 0 

Wij = 0 otherwise 
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The ω parameter is used to filter regions with low 
mean intensities. A low intensity in LiDAR data 
implies a low reflectivity, only seen in objects as 
power lines, pylons or dense vegetation areas. 
Considering the intensity ratios commented in 
Section 2.1, we decided to set this value to 0.3, which 
is an intermediate value between the wire average 
(0.23) and the pylon average (0,34), suppressing the 
latter. Figure 2 shows some examples of wire images. 

An initial classification of points is performed from T 
and W images, classifying as pylons all points whose 
associated pixel in T is selected, and as wires those 
points whose associated pixel in W is selected and 
have a height difference with the ground greater than 
ε. 

3.2. Filtering selected areas 
The initial classification provided by the first stage of 
the pipeline can include false positives, generally due 
to high vegetation with similar intensity values or 
placed immediately below the wire, as seen in Figure 
3. This filtering stage aims to remove those false 
selections by using the return number of the points 
and their intensity. 

The pylon case can be dispatched by checking the 
distribution of return values in the candidate area. As 
shown in the data analysis from Section 2.1, points 
grouped under the pylon category show a distribution 
of return values with low percentages in the first 
return and low deviations. It could happen that the 
candidate cluster contains some wire or terrain points 
near the pylon itself, so the conditions should be 
slightly less restrictive than the ones suggested by the 
analysis. We are considering a candidate area as a 
pylon if it fulfills all the following criteria: 

First return points: > 63% of the points. 

Second return points:  between 19% and 30% 

Third return points: between 2% and 6.5 % 

Mean intensity value: below 2200 

 

 

 
Figure 3 Initial classification for two files of the 

validation set. Subfigure on top presents a 
powerline over complex orography, while 
subfigure below presents trees near the 
powerline. Blue stands for pylon and magenta 
for wire areas. 

The wire case has a special issue to take into account: 
there could be false positive points in correctly 
classified areas due to high vegetation or objects just 
below the wire itself. For this reason, the filtering 
process starts with the use of an agglomerative 
clustering algorithm [19] over all the candidate areas.  

 
Figure 4: Agglomerative clustering applied to different wire candidate areas. Each cluster is represented with a different 
color. Subfigures in center and right include clusters with some small vegetation areas below the wires to be discarded. 
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The algorithm will join pairs of points or clusters 
step by step, choosing each time the closest pair 
based on a given distance, and stops when all 
possible distances between pairs are over a given 
cutoff. For this case, Euclidean distance between the 
positions of the points is used with a cutoff of 6. It is 
wide enough to differentiate wire clusters from 
possible vegetation areas near them, as it could be 
seen in the example of Figure 4. 

Each cluster extracted by using the algorithm is then 
evaluated, confirming them as a wire if their intensity 
mean values remain below 2000, and removing it 
otherwise. All intensity thresholds during this stage 
have been set according to the initial analysis of data. 

4. TEST CASES AND METHODOLOGY 
VALIDATION 

In this section, two experiments are introduced to 
find the best configuration possible for the generation 
of images and validate the behavior of the method on 
a set with several different point clouds. A manual 
classification of the files is used as ground truth to 
compare. 

All the experiments have been conducted in Matlab 
2015b over a MacOS environment. From the four 
parameters given in the method, we provide the same 
values in every experiment for the following three:   
α = 1, ε = 8, ω = 0.3 

4.1. Adjusting the γ parameter 
As it has been explained in the methodology section, 
the generation of the binary image T for the selection 
of pylon candidate areas relies on a parameter, γ. We 
are looking for a value of γ which allows the 
classification of the maximum number of pylon 
points without generating a huge number of false 
positives to be corrected in the second stage. γ ranges 
between 0 and 1, so different values in this range 
have been tested over the validation set to generate T 
images. The second stage has not been executed 
during this experiment. The results can be found on 
Table 3. 

From the results can be extracted that the use of low 
values of γ generates great amounts of false 
positives, although it also classifies the majority of 
pylon points. Increasing the value reduces drastically 
the number of false detections at expenses of a linear 
fall in the number of correctly classified points. γ = 
0.25 seems to be a good value for the validation set 
when the goal is to classify as much points as 

possible while controlling the referred errors in 
classification, and thus the execution time of the 
second stage. 

 
γ Detected Non-detected Falsely 

detected 

0.15 255.2 11.6 205.1 

0.20 252.1 14.8 100.3 

0.25 249.4 17.5 66.9 

0.30 245.1 21.7 52.5 

0.35 241.8 25.0 45.5 
Table 3 Results for pylon classification, using stage 1 

over the validation set with different γ values. 
Numbers expressed in thousands of points. 

 
 Validation set Test set 

Point clouds size 45502 44046 

Pylon: Ground 
Truth points 

266.8 262.6 

Pylon: well 
detected points 

249.4  
(93.45% accuracy) 

241.9 
(92.14% accuracy) 

Pylon: non-detected 
points 

17.4 (6,55 %) 20.6 (7,86%) 

Pylon: false 
positives 

49.7 
(0.11% of the set) 

60.1 
(0.14% of the set) 

Wire: Ground Truth 
points 

1695 1652 

Wire: well detected 
points 

1651  
(97.37% accuracy) 

1610 
(97.44 % accuracy) 

Wire: non-detected 
points 

16.6 (2.63%) 42.3 (2.56%) 

Wire: false 
positives 

11.4 
(0.03% of the set) 

16.6 
(0.04% of the set) 

Power line totals: 
Ground Truth 

1962 1915 

Power line totals: 
well detected 

1950 
(99.37% accuracy) 

1902 
(99.33 % accuracy) 

Power line totals: 
non-detected 

12.4 (0.63%) 12.8 (0.67%) 

Power line totals: 
false positives 

11.5 
(0.03% of the set) 

26.5 
(0.06% of the set) 

Table 4 Results of the execution of the method over the 
validation and test sets. Numbers expressed in 
thousands of points. 

 

4.2. Accuracy of the method 
Our method was executed on the test set from 
Section 2, which includes 25 different point clouds 
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containing power lines and other elements. A run 
over the validation set was also conducted.  

The results, which can be read in Table 4, show that 
the method generates promising results, with a 97,44 
% of accuracy while classifying wires and a 92,14% 
of accuracy for pylon classification. According with 
these results, the method seems to be competitive 
compared with the reported results of other works: 
97% and 92% respectively in the work of Kim and 
Sohn [12], 96,5% for wires from the work of Liang et 
al. [15] or 98,3% for wires from the work of Jwa et 
al. [11]. However, it is impossible to ensure it 
without a direct comparison of all the methods over 
the same point clouds. A final result for a given point 
cloud of the test result can be shown in Figure 5.  

 
Figure 5 Final result of the classification process for a 

file of the test set. 

On the other hand, there is still an appreciable 
number of false positives on pylon classification, of 
around 0,14% of the total size of the set. However, if 
both power line categories are considered as a single 
unit, the number of false positives is reduced to a 
0,06%, which means much of the wrongly classified 
points in both wire and pylon groups belong to the 
other group. A future improvement to reclassify such 
points can increase the accuracy of the method and 
deal with the false positive issues at the same time. 

5. CONCLUSIONS 
In this paper, a method which classifies pylons and 
wires of power lines on discrete LiDAR point clouds 
is introduced. Our method avoids using a stage of 
preprocessing of ground points, which decreases the 
computational cost. Instead of that, binary images 
from all the available data to select the interesting 
points are generated. A second step groups the 
selected points with an agglomerative clustering 
algorithm and analyses the distribution of return 
values and the mean intensity of each cluster to 
discard false positives. 

The results given by the method on a test set with 25 
different point clouds are promising, with an 
accuracy of 97.44% for wire classification and 
92.14% for pylon classification. Those results are 
similar to the ones reported in several reference 
studies. 

The future lines of work will be focused on the 
refinement of the method, a more insightful study of 
performance and behavior, comparing with reference 
methods over the same scenarios, the extraction and 
3D-modeling of single wires and pylons from the 
selected points and the detection of objects that could 
affect the power line. 
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