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Abstract

English

The life expectancy of the population is continuously increasing. This increasing life
expectancy is related to the increasing quality of life and goes hand in hand with
technical progress. Increasing life expectancy also gives rise to new problems that
need to be overcome. One of the biggest problems is diseases of old age, which often
result in pathological disorders in gait, such as Parkinson’s disease. The diagnosis of
Parkinson’s disease is made using the Unified Parkinson’s Disease Rating Scale (UPDRS).
Nevertheless, medical decisions are subjective, as each physician evaluates a patient’s gait
differently. For this reason, it is essential to objectify this decision. Measuring the gait of
a human by using sensors solves this problem. For this reason, this work deals with the
development of a wearable system for mobile gait analysis. It is shown how such a system
was implemented prototypically. The system consists of two wristbands, two insoles, and
a smartphone. The wearables use Inertial Measurement Units (IMU) and Force Sensing
Resistors (FSR). Furthermore, a method to synchronize these devices is presented. This
ensures higher data quality and allows new approaches to analysis. To ensure that
the devices work energy-efficiently, activity recognition based on Convolutional Neural
Networks (CNN) was developed. The activity detection model can detect the activity Gait
to all other activities with a probability of 94.7%. If the smartphone detects the activity
Gait, a connection to the wearable sensors is automatically established, and the gait is
recorded. When analyzing the gait, the first important step is to detect individual strides
while walking. For this purpose, a CNN model was developed, which can detect strides
with an accuracy of 95.8%. Based on these individual strides, it is possible to make a
detailed analysis of the gait cycle. From the gait cycle, the parameters stride length, stride
height, stride duration, stance phase duration, swing phase duration, Symmetry Ratio
Index, Symmetry Index, Gait Asymmetry, Symmetry Angle and Normalized Dynamic
Time Warping (DTW)Symmetry were calculated. Normalized (DTW) Symmetry is a
proprietary method that compensates for the weaknesses of the Symmetry Ratio Index,
Symmetry Index, GaitAsymmetry, and Symmetry Angle methods. The arm swing was
classified using the Wavelet Transformation. Here, motor disorders in the arm could be
detected with an accuracy of 90.3%. The stage of Parkinson’s disease could be determined
by means of the IMU sensors in the insole. Hierarchical clustering was carried out, and
the DTWwas used as a metric. The Parkinson’s stage could be detected with a specificity
of 92%.
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Spain

La esperanza de vida de la población aumenta constantemente. Esto está relacionado
con el aumento de la calidad de vida y va de la mano con el progreso técnico. Sin
embargo, el aumento de la esperanza de vida también da lugar a nuevos problemas
que deben ser superados. Unos de los mayores problemas son las enfermedades de
la vejez, que a menudo se relacionan con trastornos patológicos en la marcha, como
la enfermedad de Parkinson. El diagnóstico de la enfermedad de Parkinson se hace
usando la Escala Unificada de Calificación de la Enfermedad de Parkinson (UPDRS). No
obstante, las decisiones médicas son subjetivas, ya que cada médico evalúa la marcha de
un paciente de manera diferente. Por esta razón, es importante objetivar esta decisión.
Medir la marcha de un humano por medio de sensores resuelve este problema. Por esta
razón, esta tesis trata sobre el desarrollo de un sistema portátil para el análisis de la
marcha. Con un sistema móvil, los diagnósticos también pueden hacerse por medio
de la telemedicina en la vida diaria. En esta tesis se muestra cómo tal sistema fue
implementado protot́ıpicamente. El sistema consiste en dos muñequeras, dos plantillas y
un teléfono inteligente. Los wearables usan Inertial Measurement Unit (IMU) y Force
Sensing Resistor (FSR). Además, en la tesis se presenta un método para sincronizar estos
dispositivos. Esto asegura una mayor calidad de los datos y permite nuevos enfoques
de análisis. Para garantizar que los dispositivos funcionen con eficiencia energética, se
implementó la detección de actividad basada en las Redes Neuronales Convolucionales
(CNN). El modelo de detección de actividad es capaz de detectar la actividad Gait a
todas las demás actividades de una probabilidad del 94.7%. Si el smartphone detecta la
actividad Gait, se establece automáticamente una conexión con los sensores portátiles
y se graba la marcha. Al analizar la marcha, el primer paso importante es detectar las
zancadas individuales mientras se camina. Para ello se desarrolló una CNN, que es capaz
de detectar zancadas con una precisión del 95,8%. Basándose en estos pasos individuales
es posible hacer un análisis detallado del ciclo de marcha. A partir del ciclo de marcha
se calcularon los parámetros longitud de la zancada, altura de la zancada, duración de
la zancada, duración de la fase de apoyo, duración de la fase de balanceo, ı́ndice de
relación de simetŕıa, ı́ndice de simetŕıa, asimetŕıa de la marcha, ángulo de simetŕıa y
Normalized Dynamic Time Warping (DTW). Normalized Symmetry es un método propio
que compensa las debilidades de los métodos del ı́ndice de relación de simetŕıa, ı́ndice de
simetŕıa, asimetŕıa de marcha y ángulo de simetŕıa. El balanceo del brazo fue clasificado
usando una transformación Wavelet. Aqúı, los des órdenes motores en el brazo pudieron
ser detectados con una precisión del 90.3%. El estado de la enfermedad de Parkinson
podŕıa determinarse por medio de los sensores IMU de la plantilla. Se llevó a cabo un
hierarchical clustering y se utilizó el DTW como métrica. El estado de Parkinson podŕıa
ser detectada con una especificidad del 92%.
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German

Die Lebenserwartung der Bevölkerung nimmt stetig zu. Dies hängt mit der steigenden
Lebensqualität zusammen und geht einher mit dem technischen Fortschritt. Aus der
immer höher werden Lebenserwartung ergeben sich aber auch neue Probleme. Eins der
größten Probleme sind Alterskrankheiten, welche oft im Zusammenhang mit pathol-
ogischen Störungen im Gang stehen, wie zum Beispiel der Parkinsonkrankheit. Das
Stadium der Parkinsonkrankheit wird mithilfe der Unified Parkinson’s Disease Rating
Scale (UPDRS) klssifiziert. Die ärztlichen Entscheidungen sind dennoch subjektiv, da
jeder Arzt den Gang eines Patienten unterschiedlich bewertet. Daher ist es wichtig, diese
Entscheidung zu objektivieren. Den Gang des Menschen mittels Sensoren zu messen,
löst dieses Problem. Aus diesem Grund beschäftigt sich die Arbeit mit der Entwick-
lung eines tragbaren Systems zur mobilen Ganganalyse. Durch ein mobiles System
können Diagnosen per Telemedizin im täglichen Leben erfolgen. In dieser Arbeit wird
gezeigt, wie dieses System prototypisch umgesetzt wurde. Das System besteht aus zwei
Armbändern, zwei Einlegesohlen und einem Smartphone. Die Wearables nutzen Inertial
Measurement Units (IMU) und Force Sensing Resistors (FSR). Weiterhin wird in der
Arbeit eine Methode präsentiert, um diese Geräte zu synchronisieren. Dies gewährleistet
eine höhere Datenqualität und erlaubt neue Ansätze bei der Analyse. Damit die Geräte
energieeffizient arbeiten, wurde eine Aktivitätserkennung basierend auf Convolutional
Neural Networks (CNN) umgesetzt. Das Modell zur Aktivitätserkennung ist in der Lage,
die Aktivität Gait von allen anderen Aktivitäten mit einer Wahrscheinlichkeit von 94,7%
zu unterscheiden. Erkennt das Smartphone die Aktivität Gait, wird automatisch eine
Verbindung zu den tragbaren Sensoren aufgebaut und der Gang aufgezeichnet. Bei der
Analyse des Gangs ist der erste wichtige Schritt die Erkennung der einzelnen Schritte
beim Gehen. Hierfür wurde ein CNN entwickelt, welches in der Lage ist, Schritte mit
einer Genauigkeit von 95,8% zu erkennen. Anhand dieser einzelnen Schritte ist es möglich,
eine detaillierte Analyse des Gangzyklus vorzunehmen. Aus dem Gangzyklus wurden
die Parameter Schrittlänge, -höhe, -dauer, Standphasendauer, Schwungphasendauer,
Symmetrie Ratio Index, Symmetrie Index, Gait Asymmetry, Summetry Angle und Nor-
malized Dynamic Time Warping (DTW) Symmetry berechnet. Die Normalized (DTW)
Symmetry ist ein eigenes Verfahren, welches die Schwächen der Methoden Symmetrie
Ratio Index, Symmetrie Index, Gait Asymmetry und Summetry Angle ausgleicht. Der
Armschwung wurde mithilfe der Wavelet Transformation klassifiziert. Hier konnten
motorische Störungen im Arm mit einer Genauigkeit von 90,3% festgestellt werden. Das
Parkinsonstadium konnte anhand der IMU-Sensoren in den Einlegesohlen festgestellt
werden. Hier wurde eine hierarchische Clusterung durchgeführt und als Metrik die
DTW verwendet. Das Parkinsonstadium konnte mit einer Spezifität von 92% festgestellt
werden.
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1
Introduction

1.1. Background

“When Plato gave the tongue-in-cheek definition of man as ‘featherless
bipeds,’ Diogenes plucked a chicken and brought it into Plato’s Academy,
saying, ‘Behold! I’ve brought you a man,’ and so the Academy added ‘with
broad flat nails’ to the definition”

- Diogenes Laërtius [Laertius1925]

As the quote from Diogenes Laërtius [Laertius1925] shows, the human being is defined
as unique. However, as unique as the human being is himself, so is his gait. The
bipedal gait has always fascinated researchers. Anthropologists have since then developed
numerous theories to explain why humans walk on two legs. One theory is that baby
monkeys clung to their mothers during growing up. For this reason, the mothers were
limited to collecting food. Therefore, they learned to stand on two legs. This enabled
mothers to use their hands more effectively when searching for food [Lovejoy1981]. A
second theory is that due to the reduction of the forests more than seven million years
ago, primates could no longer swing from tree to tree. Thus, the food was also limited
and the monkeys had to cover a distance on the ground. By standing on two legs, the
primates could effectively move around. In addition, movement on two legs was more
energy-efficient [Leakey1981].

The bipedal gait is a very complex process. Even though the gait is basically used to
walk from one place to another. However, the requirements are different for each person
and task. If the hands are free during walking, they can provide additional support
for the gait. However, it is difficult for the body to keep its balance if it has to carry
heavy objects. When carrying a hot coffee, the body must move as calmly as possible.
The gait pattern depends on age, sex, height, physique, weight, mass distribution, living
conditions, which profession is or was performed, environment (new or familiar place),
mental condition [Gotz2006].

The complexity of gait requires the interaction of the nervous system, muscles, and the
cardiorespiratory system. For this reason, diseases also manifest themselves in the human
gait pattern [Pirker2017]. Injuries, diseases, or imbalance restricts human mobility. Which
results in loss of general health [Lord2013], quality of life [Hirvensalo2000], cognitive
disorders [Verghese2007], and the risk of falling [Beauchet2009]. From a clinical point
of view, the analysis of human gait is of particular importance because gait disorders
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in neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis,
or Parkinson’s disease (PD), occur in a high percentage of the older world population
[Muro2014]. James Parkinson’s first published the description of Parkinson’s disease
in his work in 1817. Symptoms such as tremor, temporary impaired posture, small
strides, slowed gait, and the risk of falling were presented at six different patients
[Parkinson1817]. Today, the United Parkinson’s Disease Rating Scale (UPDRS) Part III
[Goetz2008] assess motor ability as a result of Parkinson’s disease, and the Hoehn and
Yahr scale [Hoehn1998] is used to assess the stage of Parkinson’s disease. Nevertheless,
opinion is often subjective when assessing patients. Therefore, the results show low
inter-rate reliability [Martinez1994, Richards1994].

Thus, a sensor-based method of measuring motor symptoms is essential for the objective
evaluation of human gait. According to Maetzler [Maetzler2016], a technological system
used in medical practices must have the following characteristics:

• provide valid and accurate results that are clinically relevant,

• contribute to an ecologically effective therapeutic decision (e.g., by influencing the
patients health-related quality of life),

• offer a target range (i.e., a range to provide adequate information about a treatment
response or disease course), and

• allow easy and repetitive use for medical staff and Parkinson’s disease patients
[Maetzler2016].

For this reason, this work is to develop a wearable system that measures the legs and
arms motor function with quantitative methods. Based on these measured values, it
should be possible to objectify the deciding process for the human gait in order to be
able to conclude more accurately on motor dysfunctions.

1.2. Motivation

As covered in section 1.1, motor dysfunctions are usually assessed by the visual ex-
amination of physicians or gait specialists. The assessments are based on experience.
Therefore, the assessment is subjective. For this reason, the focus of this thesis will be
on the development of a sensor-based gait analysis system for objective gait analysis.
In the context of the cooperation with the Niederlausitz Clinic Senftenberg, a system
shall be developed, which can objectify the diagnosis of Parkinson’s patients. As a
requirement, the system should be wearable and suitable for everyday use because the
clinic and other hospitals cannot set up an extra room for gait analysis. Furthermore,
it should be inexpensive and easy to use, so that it is economical. Gait deviations
such as asymmetry are one of the characteristic symptoms of patients with Parkinson’s
disease that contribute to the risk of falls [Zhang2018]. The gait analysis should be able
to evaluate the patients’ symmetry while moving, calculate several gait features, and
evaluate if a patient has motor dysfunctions.
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1.3. Hypotheses

In this thesis, the following hypothesis is tested: It is possible to evaluate the success of
therapy, motor disorders, and Parkinson’s stage by using wearables devices in daily life.
The following terms are investigated and referenced in this thesis:

• It is possible to create wearables devices for the measurement of motion in every
day.

• Wearables devices for motion measurement can be synchronized.

• The activity Gait can be extracted from all other activities

• The individual strides can be automatically extracted from the time series of the
measured values.

• The time series can be used to determine the gait symmetry values of the gait
symmetry more precisely than the features of the individual strides.

• The time series of the gait can be used to determine the stage of Parkinson’s
disease.

1.4. Objectives

In order to ensure a linear sequence of work to achieve each goal in a coherent manner,
the following objectives have been defined:

Sensor selection: First of all, it has to be clarified, which sensors are used for gait
analysis. For this reason, basic knowledge about sensors and systems for gait analysis
must be collected. Based on this knowledge, a selection of sensors has to be made to
solve the problem.

Create wearable hardware: The second task is to select the type of the devices and
the positions for mounting them. For the solution to this problem, the biomechanical
functionality of the body will have to be studied. A complete hardware solution will
be developed due to the extensive knowledge of sensor technology and biomechanical
functions. Once the hardware prototypes are developed, the firmware and an Android app
for controlling the wearables have to be implemented. When the software development
phase is completed, however, there is still the problem that the wearable devices do not
work synchronously in time. Therefore, an algorithm for solving this problem has to be
developed.
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Study design: The next step is to create data sets, that are used for gait analysis.
The following scenarios must be considered:

• A data set of everyday life that is to be created. Thereby, it should be achieved
that with Android App, only the human gait is recognized again all other activities.
This has the advantage that the wearables are only switched on when they are
needed. Thus, should promotes an energy-efficient use of the sensors.

• A medical data set should be created. Analyses are then to be carried out on
the basis of this data set. In order for the medical data set to be collected, the
medical gait test must be defined, and the approval of the ethics committee must
be obtained.

Data analysis: While the data is being collected step by step, the data analysis starts
already. Here, individual strides should first be identified. This is the basis for calculating
various gait parameters such as stride length, stride height, duration of gait phases, and
gait symmetry. Furthermore, machine learning models for the classification of the data
will be developed.

1.5. Structure of this work

In view of the broad scope of this work, it has been decided to write a separate state of
the art for each chapter to ensure that the core message is retained. This should improve
the reading flow and understanding.

To understand the biomechanics of the gait cycle, Chapter 2 - Medicine and biome-
chanics fundamentals of gait describes the phases and features of gait, symptoms of
Parkinson’s disease, and medical tests. In the following Chapter 3 - Preliminary works,
previous works are presented. These form a basis for this work. In this work, there was
research on gesture recognition and on measuring therapeutic success through gamifi-
cation. For the realization of the Hardware different prototypes were developed. The
first prototype consisted of the microcontrollers from Moticon. Afterward it was decided
to build an own microcontroller. Both variants are presented in Chapter 4 - Hardware.
Chapter 5 - Study and data sets present the used data sets. Two own data sets were
recorded for the data analysis, and one public data set was used to confirm the results.
To understand the complete algorithm, it is described in Chapter 6 - Methodology. To
ensure that the wearables are energy efficient, they are only turned on when they are
needed. For this purpose, an activity recognition with the smartphone was developed
in Chapter 7 - Activity recognition. An essential prerequisite for the later analysis is
that the wearables are synchronized. Chapter 8 - Synchronization provides the concept
for this. Stride detection is the basis for the later calculation of gait features. For this
reason, a special focus was placed on this chapter. For the stride detection in Chapter
9 - Stride detection, three algorithms were compared. Chapter 10 - Stride features give
an overview of the calculated gait features. A separation is made between parameters
in time and spatial. Although gait symmetry is gait features, it has been decided to
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separate the chapter 11 - Gait symmetry, since this thesis introduces a new concept for
the calculation. Chapter 12 - Classification of motor dysfunctions in arm swing describe
how motor disorders can be identified by using wavelet transformation. The Parkinson’s
stage can be detected with the help of Dynamic Time Warping (DTW). Which is explain
in Chapter 13 - Clustering of Parkinson’s stadium. The results of the previous chapters
are discussed in Chapter 14 - Discussion. Chapter 15 gives a conclusion of the work and
Chapter 16 interesting points for future work.

Afterward the annex follows: In A. - Ethics application, the ethics application is
attached. This was necessary to take recordings of people in the hospital with the
wearable system. A Spanish summary of the work is B. - Summary in Spanish/ Resumen
en Español shown. The confirmation of the residence abroad in Germany from the
Erasmus program is in C. - Erasmus included. All publications are given in a list and
full text in D. - Publications. The last annex E. - Certificates shows all certificates that
were earned during the time of the doctorate.
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2
Medicine and biomechanics

fundamentals of gait

2.1. Time gait features

The human gait is a repeated process during walking. The analysis of the gait always
focuses on a single leg. The gait can be divided into a stance phase and a swing phase, as
shown in Figure 2.1. The stance phase represents 60 %, and the swing phase 40 % of the
cycle. The division into stance and swing phase is very general. The gait cycle begins
with the placement of the heel, the heel strike. When the foot is on the floor, and both
legs are parallel, this is the mid-stance. The last ground contact before take-off is the
terminal stance. Pre-swing is the moment when the foot swings back to the maximum
point. If both legs are parallel during the swing phase, this is called mid-swing. Afterward
the cycle starts again with the heel strike. Finally, there is a categorization in which
the phase identification depends on the number of legs on the floor. If one leg is on the
ground, this is the single support; if both are on the ground, this is the double support.
Furthermore, the cadence is often given corresponds to the steps per minute.

2.2. Spatial gait features

Gait has not only time features. Various spatial parameters can also be measured, see
Figure 2.2. The step length measures the distance between both legs. In contrast, the
stride length is the distance of a single leg after a gait cycle. The step width measures
the distance between both legs. The step angle indicates the angle of the foot to the
walking direction.

2.3. Parkinson’s Disease

Parkinson’s disease progresses slowly and cannot be cured at present [Thumler2002]. In
addition, the course of the disease and the symptoms it causes are individual for each
patient, which means that a false diagnosis is made in many cases. Nevertheless, the
individual stages of the disease can be distinguished and classified. The classification of
the disease stages by Hoehn and Yahr scale [Hoehn1998] is still internationally recognized
today. The stages are numbered from one to five and sorted by severity and spread of

7



Figure 2.1.: Gait cycle of humans with gait phases.

Figure 2.2.: Spatial gait features.

symptoms [Thumler2002]. The main motor symptoms of Parkinson’s disease include
akinesia, tremor, rigor, and postural reflexes disruption. Akinesia describes a slowing
down of movement to immobility and must be present with at least one other motor
symptom according to the brain-bank criteria in order to be diagnosed as Parkinson’s
disease. Akinesia overlaps in its meaning with hypokinesia and bradykinesia. Hypokinesia
is defined as reduced movement amplitudes, or spontaneous movements. Bradykinesia
describes slowed movements. In the case of involuntary, regular, and rhythmic movements,
we speak of tremor. Depending on the form, the amplitude, frequency, and activation
condition of tremors can vary. The amplitudes of tremors are distinguished between
fine or coarse and the frequency between low frequency (< 4 Hz) to high frequency
(> 7 Hz). The activation condition determines the shape of the tremor. Parkinson’s
disease can result in rest, hold, action, and intention tremors. Rest tremors occur when
the muscles are completely relaxed. Holding tremors, on the other hand, occur when
holding certain positions against gravity. Action tremors become apparent during a
movement. In addition to the individual forms of tremor, they can be combined and in
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special forms. In addition to the motor symptoms, non-motor symptoms can also be
caused [Thumler2002]. A distinction is made between psychological, vegetative, sleep,
sensory, visual, and olfactory disorders. In the context of this work, however, only the
motor symptoms are in the foreground. Therefore, the non-motor symptoms will not be
discussed in detail. L-Dopa therapy is currently one of the best measures to counteract
the motor symptoms and to improve the movement of Parkinson’s patients. However,
the dosage of the drug can be tricky, as motor fluctuations can occur depending on the
intake but also independent of it. The consequences of not optimally dosed and regulated
medication are under- or over-mobility. For this reason, it is essential to monitor the
progress of the disease in a Parkinson’s patient and adjusts medication and therapies
individually.
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3
Preliminary works

The preliminary works are not directly related to the topic of the dissertation but
have contributed to a deeper understanding of this area. The first work was to create a
classifier for gesture recognition by using a Kinect camera [Steinmetzer2019c].Furthermore,
the second work is concerned with measuring the success of therapy in patients with
microangiopathy [Lohse2020].

3.1. Gamification

3.1.1. Introduction

The life expectancy of humans is increasing worldwide. Life expectancy predicted
to grow in several countries with a probability of at least 65 % for women and 85 %
for men [Kontis2018]. Chronic multimorbidity in industrialized countries is high, and
prevalence increases with age [Dennis2016]. In Germany 80 % of healthcare costs are
spent on chronic and long-term diseases. Current care is very inefficient, which means
that 40 % of the resources used are lost [Helms2017]. The reasons are deficiencies in
the theoretical approach, the training of nursing staff, medical logistics, and patient
acceptance [Urban2016].

In recent years, health communication has developed into a separate field of research
with a rather complex object of study. International research takes into account aspects
of interpersonal and organizational communication [Jagt2018, Dempsey2018, Reid2018].
Attention, emotions, and motivation developed in the patient through communication
with the therapist. The therapist uses conversation to generate interest, attitudes,
and behavioral conversion. In long-term care, continuous feedback provided as part
of the communication process. This can be achieved by modern media-supported
integrated rhetoric [Ntoumanis2018, vanVelsen2019]. In addition to communication
and the objective-argumentative exchange of information, an affective-emotional, multi-
layered transmission of messages are required that comprehensively adapts to the recipient
in real-time. More than 90 % of the factors influencing behavior have an unconscious
effect. Only with the help of the remaining 10 % is it possible to justify and reflect on
the action, although the recipients think that they are 100 % conscious and rational
[Schultz2018, Stangor2019]. Identification, curiosity, autonomy, control, ego participation,
fun, and joy relativize the experience of restrictions experienced by the patient through
the treatment process. Persuasion is the targeted addressing of behavioral patterns to
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achieve a desired behavior in the recipient [Wall2019]. Gamification transfers playful
elements into a context that is not related to the game (for example medical assistance
systems) to influence motivation, attitudes, and behavior [Grangeia2018]. It represents a
persuasive strategy, which contains through its creative freedom a combination of several
positively impacting behavior patterns. The following elements are essential for the
success of gamification [Floryan2019]:

• Decision option and rules,

• Awards or achievements,

• Visualization of progress and target goal,

• Real-time feedback, and

• Immersion software technology.

Technology-based approaches offer an attractive opportunity to optimize aspects of health
and quality of life, such as the use of the Internet- and Mobile-based Interventions (IMI).
So far, IMIs have been used primarily in psychotherapy [Paganini2018, Domhardt2019,
Ebert2018, Steubl2019].

To the best of our knowledge, there are no investigations to what extent IMIs can
also apply to the long-term care of neurological patients. We investigate the questions
whether a) playing elements in a positive treatment atmosphere can achieve in a context
that is not related to the game, and b) by experiencing the overall therapeutic process,
the patient’s activity, and thus his adherence can be increased. Within a four-arm
intervention study with 60 long-term neurological patients with symptomatic cerebral
microangiopathy (affirmative ethics vote of 28.08.2017, ethic code EK 356092017 by
institutional review board Ethics Committee Technical University Dresden) we used
a standardized computer-aided sensor-motoric training. The analysis is carried out in
detail:

• Whether therapy effects are triggered by training accompanying the main medical
process in sensor-motoric disturbed patients with cerebral microangiopathy (CMA),

• The therapy effect differs from ambulatory training at the clinic campus under the
supervision of a therapist and home training,

• Whether similar therapeutic effects achieved with and without the use of gamifica-
tion, and

• The improvement of subjective quality of life perceived by patients with and without
the use of gamification.

Besides, patients were questioned in a standardized guideline interview on patient
preferences, treatment process, training program, motivational elements, and role of the
therapist or avatar. This study will help us to analyze the degree of uncertainty of the
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experimentation, and therefore, to analyze the degree of entropy of the sampling design
[Chen2011].

It divided our proposal into the sections materials, methods, methodology, results,
and discussion. In section materials, it describe the data used in our study and its
distribution according to the asked questions [Lohse2020]. Then the medical methods
and tests are explained in the section methods. The related test applications presented
in the methodology section. In the last two sections the results of the pre- and post-tests
are shown and discussed.

3.1.2. Material

Dataset

60 patients with symptomatic cerebral microangiopathy were admitted to the Centre for
Neurology and Pain Therapy at the Niederlausitz Clinic GmbH for a one-week diagnostic
and therapy optimization. The patients with symptomatic cerebral microangiopathy
as a cerebral network disease with the preferably subcortical sensorimotor deficit were
selected due to the functional deterioration of their sensorimotor competence. They were
diagnosed and treated according to standardized guidelines. Patients were admitted to
the study by the inclusion and exclusion criteria.

Inlusion criteria

• Legal age,

• Full consent and legal capacity,

• Information, and consent form,

• Clinically reliable diagnosis of cerebral microangiopathy (CMA), and

• Microangiopathic brain lesions confirmed by MRI:

– Periventricular hypodensities of the medullary bed (leukoaraiosis), and

– Lacunary syndrome with and without residual minimal-neurological deficiency

Exclusion criteria

• body mass > 135 kg,

• unbridgeable communication problems,

• vestibular dysfunctions (video head pulse test),

• cardiac pacemaker,

• Non-compensable visual limitations,
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• orthopedic deficits of the lower extremities, and

• inability to stand independently without help

The subjects were divided into the following four groups, see Table 3.1: ambulant
without gamification , ambulant with gamification , home without gamification, and home
with gamification. The patients, whose home environment did not allow independent
training with gamification, were assigned to the group ambulant without gamification.
The recruitment for the remaining groups was random.

Table 3.1.: Test groups.

Ambulant Home Total
WithoutGamification 14 16 30
WithGamification 14 16 30
Total 28 32 60

For the question of whether the therapy environment influences the success of the
therapy, we divided the patient into two groups, Ambulant and Home. Furthermore, the
groups are divided into WithoutGamification and WithGamification to analyze the
therapeutic effect. In Table 3.2, different features of the groups with an average value
and standard deviation are given. N defines the number of subjects per group.

Table 3.2.: Anthropometric data of the groups.

Environment
Ambulant Home
(N = 28) (N = 32)

Age (Year) 72.43± 8.59 68.22± 10.89
Sex (m/f) 17/11 19/13
Size (cm) 170.18± 7.31 171.5± 6.23
Weight (kg) 85.89± 10.81 78.72± 12.54
BMI (m/kg) 29.72± 3.82 26.69± 3.5

Gamification
WithoutGamification WithGamification
(N = 30) (N = 30)

Age (Year) 72.6± 8.67 67.77± 10.83
Sex (m/f) 18/12 18/12
Size (cm) 171.63± 6.75 170.13± 6.74
Weight (kg) 83.9± 11.95 80.23± 12.4
BMI (m/kg) 28.49± 3.87 27.71± 4.01
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Devices

The training with gamification of the “Reha-Planet 2” program has performed with Kinect
V2 sensors, with 30 video frames per second. Dynamic posturography was measured
using a Posturomed © (Haider-Bioswing, Pullenreuth, Germany) [Melecky2019]. The
therapy based on two specially developed therapy systems: “Reha-Planet 1” without
persuasion (under the guidance of a therapist) and “Reha-Planet 2” with gamification,
see Figure 3.1).

Figure 3.1.: ”Reha-Planet 2” with Gamification

The program “Reha-Planet 2” was developed in [Lohse2019]. A therapist-avatar shows
the exercises, which are performed by the patient at about the same time. Parallel to
the therapist’s avatar (recorded by a Kinect 2 camera), a patient avatar is displayed in
real-time while the therapist also performs the exercises. On the patient avatar, the limbs
that are correctly performing the exercises are highlighted in green and the incorrect
postures are highlighted in red. If the exercises were performed incorrectly, arrows also
indicate the direction in which the limbs have to move. Thus, the patient gets feedback
to perform the exercise correctly.

3.1.3. Methods

Motor-driven and sensorimotor tests

During their stay in the hospital, patients received an introduction to a standardized,
sensorimotor-centered training therapy. This training therapy was carried out once a day
for six weeks as a four-armed intervention study on the hospital campus or at home. A
training session of 30 minutes contained six exercises in the areas of general coordination,
general or deficit-oriented muscle building, and sensorimotor training. For measurement
of motor-driven functions, the following tests are performed:
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• Single Leg Stance (SLS),

• 10-meter walk test ,

• Timed Up and Go test (TUG), and

• Functional Reach test (FRT).

One indicator of the ability to balance is the SLS. The time in seconds is measured
concerning the patient’s ability to stand on one leg. The patient performs the test on
the left (SLS-L) and right (SLS-R) leg. During the 10-meter walking test, the velocity
(Vwalking) is measured in m/s while walking a distance of 10 meters. For the TUG
test, subjects stand up from a chair, walk 3 meters, rotate 180 degrees, go back to the
chair and sit down again. The TUG test measured the needed time sTUG in seconds to
complete the test. Based on a leaning task, FRT is proposed to measure the stability limit
[Duncan1990]. This test measures the distance between the length of an extended arm
at a maximum forward reach from a standing position while maintaining a fixed support
base. The FRT is measured in centimeters. The following tests have been performed to
measure sensorimotor stability:

• Berg Balance Score (BBS) - static stability relevant for everyday life,

• Dynamic Gait Index (DGI) - balance while walking, and

• Dynamic posturography - dynamic stability.

The BBS is used to assess the balance objectively. For this purpose, the patient
has to perform several different tests. It is a list of 14 tests, each test consisting of a
five-level ordinal scale from 0 to 4, where 0 indicates the lowest and 4 the highest level of
function. The test takes about 20 minutes to complete [Berg1992]. For the Dynamic Gait
Index, eight functional gait tests are performed by the patient and marked according
to the lowest applicable category of three tests. The maximum total score that can
be achieved is 24 [Shumway1995]. The Dynamic posturography measured the dynamic
stability while the patient stands on an oscillating platform. A sudden acceleration of
the platform results in a dynamic posturography [Reichmann2018]. The patient has
to use their balance reactions to keep in the balance after the test is performed. For
measurement, the resulting distance of the Posturomed platform from deflection to a
standstill is measured in meters, see equation 3.1 [Boer2006]. A smaller distance during
the test indicates a great postural stability ability. The stability is given in %. The
highest stability is 100 %, see equation 3.2.

VPostu =

∑n
i=2

√
(xi − xi−1)2 − (yi − yi−1)2)

n

n...number of values

xi − xi−1...distance in x− direction
yi − yi−1...distance in y − direction

(3.1)
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Stability =
(4000−

∑n
i=2

√
(xi − xi−1)2 − (yi − yi−1)2)

n
)

40
(3.2)

Test of self-efficacy expectation

Qualitative, guideline-based social research interviews ensure that the participants have
the freedom to answer the questions. The Short Form (36) Health Survey (SF-36)
intended to ensure that the patient is not restricted in the reconstruction of experience
and knowledge. The patient characteristics for self-efficacy expectations were completed
by the patients using the standardized SF-36 questionnaire. The test consists of 36
questions and covers the areas of physical functioning, physical role, physical pain, general
health, vitality, social functioning, emotional role, and psychological well-being.

Guideline interview

At the end of the therapy, a guideline interview was conducted with the patients. This
interview aimed to get feedback on the therapy process. The essential parts of this
interview were to determine patient preferences, get information about the treatment
process, get an opinion about the IMI, determine motivations, and to be able to evaluate
the therapist’s role.

Statistical tests

For the analysis of therapy success, the groups Ambulant and Home are independent
samples. The same applies to the groups WithoutGamification and WithGamification,
see Table 3.2. Furthermore, the data is scaled, at least in an ordinal order. We were
testing the data for normal distribution using the Shapiro-Wilk normal distribution test
with a p-value of 0.05. The results showed that the data is not normally distributed. For
this reason, the Wilcoxon rank-sum test was used for analyzing. A p-value of 0.05 was
used for the Wilcoxon rank-sum test.

3.1.4. Methodology

The groups were selected equally according to the preference of the test persons. Un-
fortunately, it was not possible for two patients. They could not always come to the
hospital campus for therapy. For this reason, the group size of the group Home is stronger
than Ambulant. Before starting therapy, all patients were interviewed and pre-tested.
The pre-test includes motor-driven, sensorimotor, and self-efficacy expectancy tests.
Afterward, the patients completed 6 weeks of therapy with various motor exercises. At
the end of the therapy, the post-test was performed and consisted of the motor-driven,
sensorimotor, and self-efficacy expectancy test. Finally, the guideline interview was made.
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3.1.5. Results

Age homogeneity

For the comparison of the groups it is checked whether the groups Ambulant and Home
and the groups WithoutGamification and WithGamification are homogeneous, see Figure
3.2. The box plots show that the Home and WithGamification groups contain younger
patients. After running the Wilcoxon rank-sum test to see if there are significant age
differences between the groups, the conclusion is that the groups do not have significant
age differences. The Ambulant and Home groups have a p-value of 0.136. The p-value is
significantly higher than the threshold value of 0.05. The groups WithoutGamification
and WithGamification have a p-value of 0.06981. The p-value is also greater than the
threshold value of 0.05. Through the test, we were able to show that the group structure
is coherent and that the age of the patients does not play a role in further consideration.

Ambulant Home

50

60
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80
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e

WithoutGamification WithGamification

50

60

70

80
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e

Figure 3.2.: Boxplot of the groups in regard to age.

Therapeutic effect

In Table 3.3, the values of the pre-test, post-test, and the p-values are shown. It was
tested whether patients scored better on the tests after six weeks of therapy. A Wilcoxon
rank-sum test was performed with a threshold of 0.05. All tests showed significant
differences. The results showed that the training had a positive effect regardless of
whether Ambulant, Home, WithoutGamification, or WithGamification.

Therapy with and without gamification

The results of the Wilcoxon rank-sum test for the significance level of 0.05 are shown in
Table 3.4. It is tested if the therapy form WithGamification and WithoutGamification
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Table 3.3.: Therapy effect of pre-test and post-test. Median, IQR and p-value were given.

Pre-Test Post-Test
test median IQR median IQR p-value
BBS 54 4.75 56 1.75 0.0001992
DGI 22 2.75 24 1.5 2.475e-05
VWalk 1.08 0.17 1.17 0.19 0.000426
SLS-L 18 32.5 49.5 109.25 0.002942
SLS-R 16 34.5 52 103.75 6.017e-05
sTUG 7.25 1.5 5.5 1.33 2.755e-05
FRT 33.5 6 38 3 6.011e-06

Dynamic posturography
VPostu 0.016 0.009 0.013 0.004 9.984e-07
Stability 7.25 1.5 5.5 1.33 2.755e-05

have differences at effectiveness. For this purpose, the differences were formed by pre-test
and post-test. The table shows the median, Interquartile range (IQR), percentage change,
and p-value. There is no significant difference between the groups. The kind of therapy
has not influenced the success of the therapy.

Table 3.4.: Training effect WithGamification and WithoutGamification. Median, IQR
and p-value were given.

WithGamification WithoutGamification
test median IQR % median IQR % p-value
BBS 1.5 4.5 5.82 2 2.75 5.22 0.587
DGI 2 2 13.89 2 1 9.27 0.68
VWalk 0.106 0.178 11.55 0.113 0.165 11.87 0.847
SLS-L 8 38.25 276.44 8 22.5 223.39 0.994
SLS-R 28 49.5 215.7 5 19.375 396.71 0.08
sTUG −1.5 1.45 −20 −1.5 1.5 11.39 0.368
FRT 4.5 5.75 17.09 4.5 6.5 19.35 0.63

Dynamic posturography
VPostu −0.039 0.069 −23.84 −0.03 0.057 −21.88 0.797
Stability −1.5 1.45 −19.93 −1.5 1.5 −11.39 0.368

Home and ambulant training

For the analysis of whether the environment influences the training success, the difference
between pre-test and post-test for the groups Ambulant and Home are calculated. The
Wilcoxon rank-sum test is used with a significance level of 0.05. The results are shown
in Table 3.5. The median, IQR, percentage change, and p-value are shown for each
test. The DGI and FRT show significantly better results in the home environment. All
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other test results are comparable. In most test cases, no significantly better results are
achieved. Therefore we assume that the environment does not influence the success of
the therapy.

Table 3.5.: Ambulant and Home training effects. Median, IQR and p-value were given.

Ambulant Home
test median IQR % median IQR % p-value
BBS 2 2.25 4.21 2 4.5 6.66 0.269
DGI 1 2 8.87 2 1 13.95 0.00595
VWalk 0.099 0.167 8.75 0.12 0.137 14.31 0.165
SLS-L 8.5 27.25 160.4 8 39.125 328.24 0.523
SLS-R 8.5 40.625 194.44 10.5 36.25 404 0.946
sTUG −1.5 1.075 −8.31 −1.5 1.5 −22.08 0.101
FRT 3.5 4 11.77 6 6.25 23.86 0.00606

Dynamic posturography
VPostu −0.035 0.049 −2.15 −0.034 0.078 −24.05 0.831
Stability 1.613 2.19 2.39 1.525 3.812 8.23 0.9

Self-efficacy expectation

Table 3.6 shows the results of the SF-36 questionnaire before and after the therapy. It
was tested with the Wilcoxon rank-sum test at significance value 0.05. It can be seen
that a significantly increased score was obtained in most categories. Exceptions are the
columns General state of health and Emotional role. Thus it can be concluded that the
therapy improved the subjective quality of life.

Table 3.6.: Therapy effect of the SF-36 questionnaire. Median, IQR and p-value were
given.

Pre-Test Post-Test
median IQR median IQR p-value

Body function 55 45 75 30 0.001082
Vitality 40 31.25 50 26.25 0.01234
Psyche 64 36 76 32 0.00872
Body role function 25 75 75 100 0.005131
Pains 56.25 43.125 67.5 45 0.000219
General state of the health 45 26.25 55 25 0.1109
Social function 75 40.625 100 25 0.0001232
Emotional role 83.33 100 100 75 0.3878
Total 53.5 38.66 67.78 30.41 0.0001412

Next, we compared whether there were significant differences in the SF-36 question-
naire regarding the groups WithoutGamification and WithGamification. The differences
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between the post-test and pre-test were used. The result is shown in Table 3.7. It
can be seen that there are usually no significant differences in the individual categories.
Exceptions are the columns Pains and Social function. When looking at the total score,
significant differences are evident. This means that there are significant differences in the
subjective quality of life in the choice of therapy. It remains to be noted that gamification
has a positive effect.

Table 3.7.: Comparison of the therapy effect for the groups WithoutGamification and
WithGamification. Median, IQR and p-value were given.

WithGamification WithoutGamification
median IQR median IQR p-value

Body function 10 3.75 7.5 38.75 0.778
Vitality 5 23.75 5 20 0.5272
Psyche 2 22 6 30 0.5272
Body role function 0 50 0 25 0.1782
Pains 56.25 43.125 67.5 45 0.000219
General state of 45 26.25 55 25 0.1109
the health
Social function 75 40.625 100 25 0.0001232
Emotional role 83.33 100 100 75 0.3878
Total 53.5 38.66 67.78 30.41 0.0001412

Finally, it was checked whether there were differences in the environment concerning
the SF-36 questionnaire. Therefore the groups Ambulant and Home were compared. The
results are shown in Table 3.7. It was found that the environment has no significant
influence on the subjective quality of life, see Table 3.8.

Table 3.8.: Comparison of the therapy effect for the groups Ambulant and Home. Median,
IQR and p-value were given.

Ambulant Home
median IQR median IQR p-value

Body function 7.5 25 10 37.5 0.7662
Vitality 5 16.25 5 17.5 0.4788
Psyche 8 30 2 24 0.4788
Body role function 0 50 0 50 1.0
Pains 12.5 22.5 0 23.125 0.5202
General state of the health 0 25 0 16.25 0.7317
Social function 12.5 37.5 12.5 25 0.8913
Emotional role 0 41.67 0 8.33 0.6289
Total 9.28 19.5 9 26.22 0.8764
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Standardized guideline interview

The guideline interviews allow for the process of long-term medical care the following
conclusions:

• Patient preferences, adherence: The relationship of trust between the patient
and the therapist is first based on competence and second on sympathy.

• Treatment process: Waiting time for an appointment, waiting time in the
waiting room, time for direct physician-patient contact, and understanding feedback
mechanisms under the stakeholders with sustainable viability.

• Treatment process: Waiting time for an appointment, waiting time in the
waiting room, time for direct physician-patient contact, and understanding feedback
mechanisms under the stakeholders with sustainable viability.

• Training program: With and without persuasion/gamification throughout ef-
fective and accepted by patients, important high usability, high precision in the
mirroring also subtle training elements, and personal progress evaluation for the
Patients in real-time.

• Motivating elements, Persuasion, Gamification: Sense of being integrated
into a therapeutic fellowship, the freedom to vary with the feeling serious to be
taken and finally to be able to use the therapy in to have a say in its concrete form,
and patient’s activity.

• Role of the therapist/avatar: The training therapist is the central point of
contact for communication regarding training as part of the main process or as a
secondary process. An avatar works more precisely in real-time progress assessment.
It is preferred by the patient if the original therapist is also available on-demand
(telemetrically if necessary).

3.1.6. Discussion

The use of particular IMI in sensor motor impaired patients with cerebral microangiopathy
in the form of standardized sensor motor training over six weeks improved the medical
outcome. This was evident both in the overall group and in the subgroups. It affected
all motor-functional procedures used gait analysis, MPS, BBS, DGI, FRT, dynamic
posturography, and SF-36. The first analysis of motivation and self-efficacy did not
reveal any usable trends in the overall group. The subjective quality of life experienced
by the patients improved significantly on average in the persuasive groups compared
to the control groups. In the introduction we have shown that IMIs can improve the
aspects of health and quality of life. This has been confirmed by our study in the
case of cerebral microangiopathy [Paganini2018, Domhardt2019, Ebert2018, Steubl2019].
Furthermore, we can confirm the gamification contributes to the fact that the components
of gamification have a positive effect on patients [Floryan2019].
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The inclusion of gamification elements makes it easier for the patient to behave con-
sistently adherent (central path of persuasion) after argumentative decision-making by
including unconscious persuasion strategies: Patients trained more frequently and with a
better outcome in the motor-functional tests and the subjective quality of life. In the
process of long-term medical care, the patient expects plausible and comprehensible state-
ments from the physician regarding the treatment path and goal and any accompanying
effects/complications that may arise. From these results, it can conclude that personnel
costs could be reduced by using gamification in therapy since therapy with a virtual
trainer in the home environment is just as effective as the proposed ambulant training
under the guidance of a therapist or in some cases, even more effective. In our opinion, a
therapist should nevertheless supervise the initial training of the patient at the beginning
to provide support for individual errors and problems in operation and execution.

3.1.7. Conclusion

Our results show that the proposed training therapy shows a low entropy value after six
weeks. It is very interesting to analyze the results, from the point of view of the degree of
entropy uncertainty in relation to the sample used. On the one hand, the tests carried out
in Ambulant and WithoutGamification shows a more significant uncertainty to the totality
of the samples. On the other hand, the uncertainty in Home and WithGamification
is lower, which shows a low entropy behavior. It can be concluded that the proposed
training therapy of symptomatic cerebral microangiopathy with the settings Home and
WithGamification shows the most significant effect.

3.2. Gesture recognition

3.2.1. Motivation

Gestures are omnipresent in human non-verbal communication: We are confronted with
gestures in aviation, in road traffic, e.g. police officers directing traffic, in sign language
or when divers communicate under water. Therefore, in human-computer interaction
it is essential for machines to comprehend gestures, e.g. in order to control robots,
medical devices or entertainment systems. Technically, gesture recognition is based on 3D
sensors combined with machine learning methods for classification. Progress in computer
industry makes sensors cheaper and cheaper and therefore universally available. The
classification algorithms on the other hand are required to deliver robust and reliable
results.

3.2.2. Related Works

Gesture recognition has been accomplished by numerous methods which are well known
from artificial intelligence and data mining, for a survey see [Mead2017] and [Sun2017].
Hidden Markov Models (HMM) are a powerful tool for describing the transition of
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a system from one state into another. Since gestures like pointing from one object
to the next, can naturally be described as transitions from state to state, HMM
[Rabiner1989, Yamato1992] are commonly employed in gesture recognition, already
since 1992 [Yang1994]. Jie Yang and Yangsheng Xu accomplished a similar task as con-
sidered here: Numbers, drawn by hand in the air, can be recognized with high accuracy
using gesture recognition with HMM [Lee1999].

Cluster analysis has been performed in order to reduce the states for a gesture in
HMM [Schlomer2008, Chen2018]. Dynamic gestures vary greatly in speed, magnitude
and duration. The Dynamic Time Warping (DTW) algorithm in combination with
HMM can overcome this problem. DTW measures similarity between two time series
independently of duration and magnitude [Wang2018]. The authors of [Zhou2018]
modified this combination of DTW and HMM by firstly extracting ideal gestures based
on statistical methods and performing afterwards a classification with DTW and HMM.
In a further approach, Adaptive clusters are used to find centroids of gestures, thus
achieving better results in the classification of Chinese characters [Guo2018].

The use of HMM provides good results in the recognition of distinct gestures
[Appenrodt2009]. However, if the same gesture is performed in different ways (e.g.
clockwise or counterclockwise), clustering can be helpful [Prasad2009, Chen2018]. But
according to our experiments the combination of clustering with HMM might impair the
classification results.

Thus, in this paper we present Minimal Size Clustering in combination with HMM,
which recognizes both distinct gestures or variants of the same gestures well. Furthermore,
minimal size clustering enables us to remove wrong labeled data automatically.

We demonstrate the method on two data sets containing dynamic emblems, i.e.
autonomous gestures, e.g. letters or numbers, which are carried out by one hand. We
start with pre-processing of the data. In a next step we cluster the gestures to form
different models of the same gesture. Next, we apply minimal size clustering and use
then HMM for gesture classification.

3.2.3. Data sets

All recordings have been performed with ASUS Xtion Pro Live (data set 1) and Kinect
V2 (data set 2) depth sensors with 30 video frames per second. The distance between
person and camera was 200 to 300 cm. According to our experiments we defined the
threshold ε for 0-movements, see section 3.2.4, to 15 mm. The system has been tested
on two different datasets. We use 66% of the data sets for the training process and 34%
for testing. The first data set consists of 9 simple gestures: up, down, left, right, push,
pull, L, mirror L, and square. and contains 976 recordings gathered from 37 different
individuals. The challenge here is that it might be difficult to recognize the same gesture
when executed by a different individual.

The second data set consists of 300 recordings and 3 classes, namely the letters D, O
and P, performed by one individual. We have chosen these classes, because these gestures
are similar to each other. For every gesture the data set contains 100 recordings, 50
recordings clockwise and 50 anticlockwise.
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Table 3.9.: Overview of data sets 1 and 2

Name Recordings Individuals Classes description
data set 1 976 37 9 simple gestures
data set 2 300 1 3 Letters D, O and P

3.2.4. Methods

Normalization

We consider the joint of the right hand. Data are recorded as 3D coordinates (in cm)
with a frequency of 30 Hz:

~g(t) = (gxs(t), gys(t), gzs(t)) (3.3)

for every time stamp t. These data are transformed into a body coordinate system
whose origin is the midpoint of the two hip joints and the three body axes, transversal,
longitudinal and sagittal, are the coordinate axes:

~h(t) = (hxb(t), hyb(t), hzb(t)). (3.4)

Compression

We convert movements of the skeleton joint given in the coordinates ~h(t) of the body
coordinate system into 27 directions relatively to a given position, corresponding to a
3× 3× 3 cube, see Figure 3.3. For two video frames at times t1 and t2 we consider the
movement of a skeleton joint:

~a = ~h(t2)− ~h(t1) = (axb(t), ayb(t), azb(t)). (3.5)

The conversion of ~ai into the 27 above directions is done using cosine similarity, where
the symbol 0 is assigned to movements with |~a| < ε.

Working along the video frames we finally obtain a sequence O of directions coded by
symbols 0 to 26 for the right hand skeleton joint:

O = [s1, . . . sN ], (3.6)

where the number N depends on the duration of the gesture, see sequence in Table
3.10 [Lee1999].

Gesture Recognition

In order to detect the start and end of a gesture, we use static gestures: An open hand
serves as initial or final state for a gesture. The complete workflow for gesture recognition
can be seen in Figure 3.4.
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Figure 3.3.: The 27 directions can be shown in a 3× 3× 3 cube, where 0 represents no
movement. The symbol 1 stands for a movement to the right, 2 to the top,
3 backwards.

Table 3.10.: Clustering results for the gesture P.

Index Cluster Sequence
1 0 0, 18, 2, 2, 2, 15, 0, 0, 19, 11, 21, 5, 26, 12, 9
3 0 0, 2, 18, 2, 2, 19, 11, 21, 5, 26, 24, 9
2 0 20, 18, 18, 2, 2, 2, 19, 19, 11, 21, 5, 26, 26, 12, 9
4 0 0, 18, 2, 2, 2, 0, 0, 11, 11, 21, 5, 12, 9, 9, 0
5 0 0, 18, 2, 2, 2, 0, 11, 11, 21, 10, 26, 12

6 1 0, 18, 2, 2, 2, 0, 19, 11, 21, 5, 12, 4, 0, 0, 0, 0, 5, 5, 5, 17
7 1 20, 2, 2, 2, 2, 11, 11, 21, 5, 12, 4, 0, 0, 0, 5
8 1 17, 0, 0, 0, 0, 18, 20, 2, 2, 2, 0, 19, 11, 21, 5, 12, 4
9 1 1, 11, 19, 2, 24, 12, 26, 0, 22, 5, 5, 5, 21, 0, 0
10 1 0, 11, 11, 19, 2, 24, 12, 12, 0, 5, 5, 5, 5, 17

11 2 11, 11, 19, 9, 24, 12, 12, 0, 5, 5, 5, 17
12 2 11, 11, 19, 9, 12, 12, 0, 5, 5, 5, 5
14 2 21, 11, 19, 2, 24, 12, 12, 0, 5, 5, 5, 17, 0
13 2 1, 19, 2, 24, 12, 12, 0, 5, 5, 5, 5

15 3 1, 11, 19, 2, 24, 12, 0, 0, 5, 5, 5, 17, 0
18 3 1, 11, 19, 2, 9, 24, 12, 26, 0, 5, 5, 5, 17
19 3 10, 1, 11, 19, 2, 9, 12, 26, 26, 0, 5, 5, 5, 5
16 3 1, 11, 15, 2, 24, 12, 26, 0, 5, 5, 5, 5
17 3 1, 11, 11, 15, 2, 24, 12, 26, 0, 5, 16, 5, 17, 21, 0

20 4 10, 21, 11, 15, 2, 24, 12, 4, 0, 0, 16, 5, 5, 17

Hierarchical clustering is used to distinguish variants of a gesture, like drawing a letter
P clockwise or anticlockwise, see Figure 3.5 [Johnson1967]. Clustering here is based on
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Figure 3.4.: Workflow of GestureRecognition.

the Jaccard metric, where we transform the gesture sequence into a set of subsequent
2-tupels of direction symbols:

O = (s1, s2, . . . , sN) 7→ T (O) (3.7)

= {(s1, s2), (s2, s3), . . . (sN−1, sN)} (3.8)

We use the standard Jaccard distance [Levandowsky1971] between two sequences
T (Ok) and T (Ol), see Table 3.10. The number of clusters is determined according to
[Mojena1977] with a threshold value 1.25 [Milligan1985]. Table 3.10 in the appendix
shows an example for detecting gesture variants by hierarchical clustering.

Figure 3.5.: Example for detecting different variants of a gesture by clustering: 2D
visualization of the clusters 0, 2, 3 and 4 for the letter P. Cluster 1 is not
shown. The sequences are shown in Table 3.10.

After performing clustering as described above, all clusters consisting of less elements
than shows the result from the cluster analysis using 67 recordings for the P gesture. The
minimal size (dashed line) at 8.375 is the mean over the cluster size. In this example we
use three gesture clusters P0, P1, P2 for HMM training. So we can form several models
for one gesture, see Figure 3.7.
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Figure 3.6.: Cluster size for letter P over 67 gestures with x̄ = 8.375.

For each variant of a gesture a Hidden Markov Model (HMM) λj is obtained by using
Baum-Welch algorithm based on forward topology. Additionally, the so-called Threshold
Model (TM) is trained by all data from the data set. The purpose of TM is to detect
unknown gestures, for example we expect an unknown gesture to be classified as TM
[Lee1999].

gestures:

classifiersequence: O

[...]

[...]

result:

[...]

 

g TM

clusters:

models: TM

Figure 3.7.: The classifier consists of different models λj for each gesture gi and variants
(cluster) gik.
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3.2.5. Results

Classification with and without Threshold Model

In order to demonstrate the effect of the TM, we trained a HMM with the classes P,O
and D of data set 2. After training we classified additionally 28 unlearned gestures of
class push and pull from data set 1. Figure 3.8 shows the results without threshold model.
Each gesture has been assigned to a class, and as expected the unlearned gestures push
and pull are all wrongly recognized. In contrast, the results with threshold model are
shown in Fig. 3.9. It can be seen that the push and pull gestures were mainly classified
as unknown and the results for trained gestures are slightly better than the classification
without threshold model.

Figure 3.8.: Results for trained letters D, O and P and untrained gestures push and pull
without threshold model.

Data set 1 - recognition of different gestures

For data set 1 the results show that the clustering process, which recognizes several
variants for one gesture, improves the classification results. The video frame distances
for the calculation of the directional vector ~a(tn) does not influence the F-measure
significantly. Figure 3.10 and 3.11 summarize the results. For the presentation of the
results we used different distances of the video frames. Here we chose video frame
distances from one to ten. The F-Measure is the multi-class F -score [Sokolova2009]. The
results with HMM and HMM with minimal size clustering are very similar. On the other
hand, HMM with clustering gives weaker results. Detailed results can be found in Table
3.11.
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Figure 3.9.: Results for trained letters D, O and P and untrained gestures push and pull
with threshold model.

Table 3.11.: Gesture recognition with and without clustering for data set 1.

Clustering Minimal size HMM
clustering

FD FM ER FM ER FM ER
1 0.767 23.145 0.856 14.316 0.855 14.531
2 0.781 22.110 0.865 13.459 0.875 12.501
3 0.761 24.273 0.860 14.081 0.878 12.196
4 0.751 25.271 0.851 14.839 0.862 13.904
5 0.762 23.925 0.844 15.547 0.852 14.831
6 0.753 24.511 0.846 15.168 0.848 15.192
7 0.777 22.290 0.862 13.636 0.885 11.719
8 0.771 23.109 0.862 13.887 0.872 13.061
9 0.730 26.671 0.818 17.443 0.853 14.890
10 0.757 24.763 0.805 19.518 0.853 15.100

Data Set 2 - recognition of similar gestures

In this section, we present the results for the letter recognition, see Figure 3.12. Best
results were obtained for small frame distances using clustering with an optimum value
of 0.910 for the F-Measure and mean threshold clustering with a value of 0.910 for the
F-Measure at two frames. The larger the frame distances, the lower is the F-Measure.
This is due to the fact that information is lost with increasing distance of the frames.
With very similar gestures we achieve the best results with HMM with minimal size
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Figure 3.10.: Results for the data set one; HMM, HMM + clustering and HMM + Minimal
size clustering for video frame distance one to ten.

Figure 3.11.: Best result of crossvalidation minimal size clustering for video frame distance
2 and F-Measure 0.892. 34 (3.5%) misrecognized gestures; 26 (2.7%) gestures
assigned to TM. Average number of cluster per gesture: 8.7 (1.8 with
minimal size clustering).

clustering and HMM with clustering. On the other hand, the simple HMM is weaker.
For detailed results see Table 3.12.
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Table 3.12.: Gesture recognition with and without clustering for data set two.

Clustering Minimal size HMM
clustering

FD FM ER FM ER FM ER
1 0.837 16.004 0.898 10.039 0.763 22.145
2 0.910 8.670 0.909 9.052 0.868 13.320
3 0.878 12.403 0.850 14.925 0.807 19.051
4 0.876 12.430 0.877 12.261 0.832 16.877
5 0.774 22.898 0.873 12.887 0.807 19.386
6 0.787 22.690 0.848 15.393 0.766 23.617
7 0.704 29.782 0.804 19.768 0.772 23.215
8 0.770 23.121 0.775 22.918 0.708 29.581
9 0.711 28.717 0.756 24.689 0.788 21.667
10 0.694 30.837 0.802 19.948 0.719 28.225

Figure 3.12.: Results for the data set two; HMM, HMM + clustering and HMM +
Minimal size clustering for video frame distance one to ten.

3.2.6. Discussion

Characteristics of the developed model are:

• 3D-data are effectively transformed into a denoised and compressed form which is
suitable for dynamic gesture recognition.

• Clustering with an adapted form of the Jaccard metric allows to distinguish variants
of gestures and improves classification.
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Figure 3.13.: Best result of crossvalidation for video frame distance two; F-Measure
0.97. Error(3%): 3 misrecognized gestures; three gestures assigned to
TM. Average number of cluster per gesture: 8.3 (3.7 with minimal size
clustering).

• Outliers are detected via clustering and removed in order to improve the recognition
results.

With this work we have demonstrated that the combination of our proposed minimal
size clustering and HMM is a very robust method for the recognition of different and
similar gestures.
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4
Hardware and signals

Our motivation to create the hardware was to develop a wearable system that is able to
analyze the human gait. It was important that the system can be used independently of
the location. Not every hospital is able to run an expensive camera-based gait analysis
laboratory. Due to demographic changes or the location as in rural areas. The tendency
is therefore to look for possibilities to make tele diagnoses or to perform the treatment via
tele-medicine. Furthermore, the system should be easy to use, so that even an unskilled
patient can perform a gait analysis himself. The system should measure important
biomechanical parameters of the gait. These were already introduced in Chapter 2.
The more of these features the system is able to calculate, the more accurate the later
evaluation will be.

4.1. Sensors

In order to analyze motor dysfunctions of gait, the first was to measure gait features.
Already in 1992, motion and symmetry of the lower extremities were recorded with
cameras and markers [Vagenas1992]. Technological advances and the cost-effective
development of depth cameras have opened up new possibilities for motion analysis by
Kinect from 2010. The depth camera extended the Red Green Blue color space (RGB)
camera. Thus, the gait could be analyzed with new methods [Ince2017]. For the analysis
of the human gait, the first step is to choose which sensors will be used for the analysis.
In principle, a distinction is made here between wearable and non-wearable systems.
In the following, the non-wearable systems are presented in the section 4.1.1 and the
wearable systems in the section 4.1.2 with an overview of advantages and disadvantages.

4.1.1. Stationary

The non-wearable systems are further subdivided into camera based systems and floor
sensors. The camera based systems offer different possibilities to analyze movements.
One variant is to analyze the motion from RGB images by using image processing.
A disadvantage is that the data is not three-dimensional (3D). Distances can only be
determined with high difficulty [Muro2014]. For this reason, RGB cameras are often
used as a supporting system. To analyze the gait, several cameras are used to create a
sterocopic vision. Thereby it is possible to calculate distances easier [Muro2014].

The best results are achieved with Time-of-Flight Systems, Structured Light, or Infrared
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Thermography. These systems are able to capture the environment in three dimensions
and measure distances. Probably the most popular representative of this technology
is the Kinect camera. The Kinect camera uses structured light to recognize people
[Muro2014]. With the Kinect camera, gait analysis is possible without any additional
hardware such as markers. However, the Kinect camera is rather inaccurate compared to
a Vicon system, which is the gold standard in motion analysis [Buckley2019]. For this
reason, 3D motion capture systems such as the Vison system are used for professional
gait analysis. Disadvantages of the Vicon systems are a high price and that an extra
room is needed for the measurements. Therefore, non-wearable sytems are not suitable
for long-term measurements of gait in daily life [Buckley2019].

Often, several cameras are used at the same time this has different advantages. By
using different cameras, the non-visible areas of a camera can be captured by additional
cameras and this increases the data quality enormously. Furthermore, by using several
cameras, errors in the analysis are compensated, which makes the data more robust
[Muro2014]..

The second part of the Non-Wearable Systems are the floor sensors which are embedded
in the floor as force plates. These are the gold standard when measure the ground reaction
[Buckley2019]. For this reason, the data are also very high resolution [Buckley2019]. A
disadvantage is that the purchase costs are very high [Buckley2019]. An alternative to
the system are force measuring mats [Muro2014]. These mats are not very large, which
means that gait analysis is only possible for individual strides.

4.1.2. Wearables

The second category of gait analysis sensors are wearables. These sensors are attached
to the body or integrated into clothing. Thereby it is possible to analyse the gait
independent of location.

An ultrasonic sensor measures the distance from sensor to another object. This makes
it possible to measure the distance between the feet and the step frequency [Wahab2011].
Electromyogram (EMG) uses electrodes to measure the muscle contraction of the joints.
They are used to measure angles between the limbs. However, electrodes must always be
connected to the body, which is not suitable for measurement in everyday life. Since the
electrodes have to be changed after a certain period of time and the application must be
carried out professionally [Muro2014].

The most common way to measure gait using wearable sensors are the Inertial Mea-
surement Unit (IMU) sensors. These usually consist of a combination of different
sensors: 3D accelerometer, 3D gyroscope, and 3D magnetometer. The data from the
individual sensors are usually merged using the Kalman Filter and this makes the data
more robust. The IMU sensor allows the measurement of angle and acceleration data
[Muro2014, Buckley2019, Sprager2015, Taborri2016]. This makes it possible to calculate
distances, durations of gait phases and orientation data in Euler angles or quaternions. In
a study the IMU sensors were validated against a camera based system. The result was,
that the step length correlates with the system but a deviation of 5% must be accepted
[Ferrari2013].
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Force Sensitive Resistors (FSR) sensors are used to measure the ground reaction of the
feet. These sensors change the value of the resistance when force is applied to them. This
makes it possible to measure the force at different points. With the help of these sensors,
conclusions can be drawn about the rolling motion of the foot and the distribution of
force in the body [Muro2014].

In this thesis, a wearable system consisting of IMU and FSR sensors was chosen. The
IMU sensors are inexpensive in contrast to a camera based system, space-saving, suitable
for everyday use and provide sufficiently accurate measurement data. They are the
counterpart of the camera-based systems. The FSR sensors enable the measurement
of the force effect in the foot. This enables statements to be made about the rolling
movement and balance of the test persons.

4.2. Related works of wearables

To analyze the gait with wearables there are a lot of different systems. But in general the fo-
cus is on the use of IMU and force sensors. Some researchers have attached IMU sensors to
shoes or ankles using clamps or straps [Li2009, Rampp2014, Sabatini2005, Klucken2013,
Tunca2017, Sijobert2015, Mariani2010, Ferrari2016, Ferster2015, Wang2015, Hsu2014,
Trojaniello2014]. This makes it possible to measure the motion of the legs. Others
concentrate more on the interpretation of the time gait features. The use of force sensors
is suitable for this purpose [Jiang2018, Loiret2019, Mazumder2018b]. Furthermore, there
are various wristbands that are equipped with IMU sensors to draw conclusions about
motor disorders [Steinmetzer2019b, Tsipouras2012, Huang2012, Patel2009].

Then, there are even more complex systems. These often use a combination of sensors
and sensor positions. The combination is often that in the foot both IMU and force
sensors are mounted [Bamberg2008, Li2014, Steinmetzer2019a, Chelius2011, Hanlon2009]
or that several IMUs are mounted on diffrent body parts [Steinmetzer2020, Takeda2014,
Salarian2004, Li2014] to make a more accurate analysis.

In our researched works, no system could be found, which measures the movement of
arms and legs using IMU and FSR sensors synchronously. For this reason, we decided to
develop our own system.

4.3. Smartphone

For activity detection, we used various smartphones and tablets with the Android
operating system to be independent of a specific device. However, the device must be
able to provide linear acceleration and rotation data. We recorded both sensor data
with a frequency of 50 Hz. To make the system energy efficient, we use smartphones
for activity detection. If the smartphone has detected the activity Gait, the wearable
devices record the data.
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4.4. Mbientlab system

In the first experiments, we used a microcontroller with an integrated IMU sensor
from Mbientlab the MetaMotionR microcontroller [Mbientlab2016]. These are equipped
with a Bosch BMI160 3d accelerometer and 3D gyroscope and a Bosch BMM150 3D
magnetometer. By using the Bosch Sensor Fusion Library which is available on board,
we were able to record 3D orientation signals and 3D linear acceleration data with a
frequency of 100Hz on the microcontroller [Bosch2015]. Furthermore, the microcontroller
provides the possibility to record four analog signals. These analog channels are used
to record the data of the FSR sensors. The analog signals, orientation data, and linear
acceleration could not be logged at the same time. Only two signal sources could be
recorded simultaneously. Another problem is that only three devices can be synchronized
with each other [Anwary2018b].

Nevertheless, we use the system to create the first data set, see section TUG 5.3. The
possibility to record movement data of Parkinson’s patients on both arms and legs, see
Figures 4.1 and 4.2. The case for the insole, we printed with a German RepRap x350
Pro 3D printer. This helped to develop the first analyses, which we were able to learn
from the signals and to develop ideas for better results.

Figure 4.1.: (a) Wristband with the MetaMotionR sensor; (b) Position of the sensor
during the measurement.

But since we want to realize a system consisting of four microcontrollers which are
synchronized with each other and are able to record orientation data, linear acceleration
and force data. Based on this idea a new system was realized.
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Figure 4.2.: Insole with MetaMotionR microcontroller and four FSR sensors.

4.5. Proprietary development

4.5.1. Insole

For the creation of our own wearable system, we have decided to produce an insole. The
insole has been designed to hold ten force sensors and a BNO055 motion sensor. The
microcontroller for data processing is placed outside the insole. The model for the insole
is shown in Figure 4.3. The insole is made with a RepRap x350 per 3D printer. The
Flexfill 98a was chosen as filament. This Ilament is based on Thermoplastic elastomer
based on urethane (TPU). The elasticity of the material makes it ideal for use in the
insole, because the rolling movement puts a lot of stress on the material. The four FSR
sensors at the heel and at the ball are arranged parallel to each other so that the postural
stability within the foot can be measured.

The circuit diagram for the insole is shown in Figure 4.4. Ten Interlink FSR 402 Short
force sensors were used to measure the force data [Interlink2016]. The FSR sensors were
designed as voltage dividers so that the resistance changes in the FSR sensors can be
measured via the analog inputs of the Teensy 3.6 microcontroller. A Bosch BNO055
sensor is integrated into the insole for motion analysis [Bosch2015]. This sensor is a
inertial sensor consisting of a gyroscope, accelerometer and a magnetometer. The sensor
is located in the middle of the insole. Furthermore, the BNO055 sensor communicates
via I2C interface with the Teensy 3.6 microcontroller. This sensor has a co-processor
for sensor fusion which calculates absolute orientations and lineare acceleration values
directly. The output is therefore angle velocity, acceleration, quaternions, euler angles and
lineare acceleration at a frequency of 100 Hz. The data transmission to the smartphone
and the entire communication works via Bluetooth LE. Here we use an Adafruit Bluefruit
LE SPI Friend. With this board we can communicate with the Teensy 3.6 via an SPI
interface. We also tested a UART interface but it is much slower and not suitable for
our purposes.

The mounted insole is shown in Figure 4.5. The insoles are manufactured in three

39



Figure 4.3.: 3D model of the insole.

different shoe sizes 37.5, 40, and 42.5 EU which was based on the common shoe sizes of
the population.

4.5.2. Wristband

The circuit diagram of the wristband is the same as that of the insole. The difference
between the two is that the wristband does not have force sensors. Figure 4.6 shows the
circuit diagram. The advantage of the same pin layout is that only one firmware needs
to be developed.

The mounted wristband is shown in Figure 4.7. Compared to the Mbientlab device,
this one is larger. But for us to have full control over the device during development of
the firmware, the advantages outweigh the disadvantages.

4.6. Sensor Signal

4.6.1. Insole

In the previous section we have shown how the hardware was developed. In this section
we will discuss which signals the devices provide and what information is gained from
them.

In Figure 4.8 shows the signals of the insole during the TUG test. All signals were
recorded at a frequency of 100 Hz. In the Figure 4.8 (a-d) the following signals are shown:
a) the 3D Euler angles, b) the 3D linear acceleration, c) the average force of heel (four
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Figure 4.4.: Circuit diagram of the insole.

Figure 4.5.: Mounted insole with force sensors and IMU.
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Figure 4.6.: Circuit diagram of the wristband.

sensors), metatarsus (two sensors) and bunion (four sensors), and d) the average of all
ten force sensors.

4.6.2. Wristband

Figure 4.9 shows the signals of the wristband during the subjects performed the TUG test,
3D Euler angles and 3D linear acceleration of the arms were captured. The signals for
the Euler angles and the linear acceleration were the result of the sensor fusion algorithm
from Bosch. Both signals were recorded at a frequency of 100 Hz. The algorithm for
the sensor fusion used the data from the accelerometer, gyroscope, and magnetometer.
Figure 4.9 a) shows at the top the 3D Euler angles and at the bottom b) the 3D linear
acceleration signals. The complete signal of one wristband during the TUG test is shown
in Figure 4.9. Furthermore, Part (A) contains all recorded data and Part (B) the data
between the black dotted lines, the active walking parts.
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Figure 4.7.: Mounted wristband.
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5
Study and data sets

In the previous Chapter 4 - Hardware and signals, the used hardware was shown. This
chapter introduces the used data sets. In total, we create three data sets for gait analysis
and use one public data.

5.1. Activity recognition

The first data set was created to record the motion of activities with the smartphone. In
this data set, we use recordings of 20 healthy subjects. We recorded linear acceleration
and rotation data of the Android operating system with a frequency of 50 Hz. In total,
the following activities were recorded gait, cycling, go stairs, lying, sitting, standing,
smartphone lying around (table or desk), smartphone in use (writing a message or play
a game), and use transport (drive by car or train). We have reduced the problem to
a binary problem and use in the following only the classes gait and other. The class
other contains the activities cycling, go stairs, lying, sitting, smartphone lying around,
smartphone in use, standing, and use transport.

For data collecting, we developed an Android App. The subjects specified the start,
end, and type of activity via the App before each recording. Users had to select one
activity from a list before starting the activity, see Figure 5.1 a). After the activity ends,
the user had to confirm this by pressing a button, see Figure 5.1 b).

5.2. Daily life

For the daily life data set, we have a total of seven recordings of seven different healthy
persons. The persons’ age was between 25 and 54 years, and each person passed the
test one time. During the experiment, the candidates had to pass the following test, see
Figure 5.2. At the beginning of the test, the person sits on a chair for one minute. Then,
the person gets up from the chair and stands for one minute. After that, the person
walks back and forth for one minute. Then, the person goes upstairs three floors and
then down the stairs. Next, the person walks for another minute again and ends up in
front of a chair. The person spends one minute standing. In the second last step, the
person repeatedly changes for one minute from a standing to a sitting position. Finally,
the person sits for one minute on the chair.
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Figure 5.1.: Screenshots of the smartphone App to recording activities. a) select an
activity to recording, b) stop recording after finish the activity.

5.3. Timed Up and Go

The physicians of the Niederlausitz Clinic used the Timed Up and Go (TUG) test to
evaluate the subjects’ motor dysfunctions as a part of the UPDRS. For the test, only a
chair with a backrest and armrests was needed. At first, the test person was sitting on
a chair. Upon a command from the test leader, the test person stood up and walked
straight ahead for ten meters at an appropriate speed to a mark. At the mark, the test
person turned around and walked ten meters straight ahead, back to the chair. The test
person sat down in the chair. Then, the test and recording were finished. We divided
the TUG into two different parts for later analysis of the data. Part (A) contained the
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Figure 5.2.: Process of Daily Life Activities Test.

complete TUG, including standing up and sitting down in the chair. Part (B) included
going straight to the mark, turning around, and going straight back to the chair. Parts
(A) and (B) are shown in Figure 5.3. This splitting aimed to extract the gait data from
the complete recording.

5.3.1. Recruiting

To create the data set for later analysis, we worked together with the Niederlausitz
Clinic in the study “Development of a digital Parkinson Disease Assessment”. The ethics
application granted in December 2018 by Ethics Committee Brandenburg (Germany),
see appendix A - Ethic application. The physicians evaluated all persons. A total of 39
different subjects with 250 recordings were available for the data set. Of these are 15
subjects with 80 recordings have motor dysfunctions, and 24 subjects with 170 recordings
were used as a control group, see Table 5.1.

Table 5.1.: Amount of persons and records from the Parkinson’s and control groups.

Label Persons Records
Motor dysfunction 15 80

Control 24 170

For the study, the gait of Parkinson’s patients with different stages of the disease will
be measured. In the different stages of Parkinson’s disease, different symptoms are in the
foreground. The subjects recruiting will be done by the Centre for Neurology and Pain
Treatment of the Niederlausitz Hospital. The measurements for the study are performed
under the supervision of medical personal and a physician. As a control group, subjects
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Figure 5.3.: Process of the TUG test.

of the same age are selected. These should not show any motor disorders. Patients were
recruited to the study by the inclusion and exclusion criteria.

5.3.2. Inclusion criteria

• The subject gave the agreement for the study after being informed orally and in
writing form about the aims and contents of the study.

• The subject has a clinically specific diagnosis of an idiopathic Parkinson’s syndrome.

• There is no advanced normal pressure hydrocephalus and cerebral microangiopathy,
which leads to another Movement disorder.

• The subject can walk.

5.3.3. Exclusion criteria

• Severe neurogenic contractures in the extremities that do not allow movements,

• Severe cognitive impairment with a mini-mental status < 20,
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• Insurmountable communication difficulties, which make the instruction of the
Preventing test persons from entering the test procedure,

• Acute injuries that affect the functionality of the limb restrict (for example fracture
of the wrist),

• Illnesses within the last seven days (for example flu-like infection),

• Endoprostheses of the extremity,

• Drug consumption, or

• Pacemaker.

5.4. Public data set

To confirm the functionality of our algorithms for stride symmetry, we use a public data
set. This data set consists of 93 patients with idiopathic Parkinson’s disease and 73
subjects of the control group. The database includes the vertical ground reaction force
records of subjects as they walked at their usual, self-selected pace for approximately
two minutes on level ground, see Table 5.2. Underneath each foot were eight sensors
(Ultraflex Computer Dyno Graphy, Infotronic Inc.) that measure force (in Newtons) as a
function of time, see Figure 5.4. The output of each of these 16 sensors has been digitized
and recorded at 100 samples per second, and the records also include two signals that
reflect the sum of the eight sensor outputs for each foot. For details about the data
format, see [Goldberger2003]. The results were divided into the studies Galit, Hausdorff,
and Silvi. Within these studies, the study subjects were separated according to the
control group and Parkinson’s disease.

Table 5.2.: Demographics of the data set.

Study Group Count Male/ Female Age (mean± std)
Galit PD 29 20/9 71.10± 8.06

Control 18 10/8 71.56± 6.66

Hausdorff PD 29 16/13 67.21± 9.15
Control 26 12/14 64.58± 6.83

Silvi PD 35 22/13 61.57± 8.86
Control 29 18/11 57.93± 6.97

Total PD 93 58/35 66.30± 9.50
Control 73 40/33 63.66± 8.64
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Figure 5.4.: Used hardware to create the data set [Jelen2008].

52



6
Methodology

The process for analysing gait data is based on the communication between our Android
App and four wearable devices (two wristbands and two insoles), see Figure 6.1. We
have separated the functional tasks of the smartphone, wearables, and data analysis with
dotted lines.

At the beginning of the workflow, we make an activity recognition. Thus, we want to
distinguish the activity gait again, the activity other. The activity other consists of the
activities cycling, go stairs, lying, sitting, standing, smartphone lying around (table or
desk), smartphone in use (writing a message or play a game), and use transport (drive
by car, bus, or train). The activity detection is designed to keep the wearable sensors
in standby mode until the activity gait is detected. This activity detection extends the
usage time of the wearable devices. For recognition of activity gait, we have performed a
five-fold cross-validation. For the results we have specified precision, recall, F1-Score and
Accuracy.

However, the wearables work only as slaves, so the smartphone must always send a
signal for starting a function. For this reason, the tasks Start Recording, Stop Recording,
Synchronization, and Data Transmission are involved by both devices.

If a person is walking and the smartphone detects the activity Gait, the wearables
are turned on, synchronized, and recording starts. When the activity Other is detected
and the recording is running, then recording stops and the data is transferred to the
smartphone for a later data analysis. After the transfer, the wearables are switched off.

From the recorded signals, strides have to be extracted. For this purpose we have
evaluated different stride detection algorithms. To create our training data, we label
manually our daily life activities and TUG test datasets into strides and no strides. Data
are split into training and test data. In order to avoid biasing the results, we make sure
that data assigned to an individual are either only in test data or only in training data.
70 % of the data were used for training and 30 % for testing. This type of separation
makes the training data totally different from the test data. This means there are no
redundant data to improve the results. Since there is a small dataset for the classification,
we decided to use a k-fold cross-validation with mixing. We select seven folders for the
daily life activity Test. We use five folders for training and two for the test.

For the gait phases, features, and symmetry calculation, we need a more accurate
detection of the strides than with the activity recognition. For this reason, we perform a
stride detection by using CNN to detect individual strides of the foot. After that, the
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gait phases, features, and symmetry of the strides can be calculated. For classification
of motor dysfunctions in arm swing we use the complete TUG-test. We decided to use
3-fold cross-validation for the classification to make the results of our applied methods
reasonable. We used 66.6% of the data for training and 33.3% for testing. The Parkinson
stadium clustering with insoles, a separate process is necessary. For this reason, the
issues were listed separately.

For each measurement, we calculated the sensitivity, specificity (precision), recall,
F1-score, and accuracy. For this, we used the confusion matrix in Table 6.1.

Table 6.1.: Binary confusion matrix.

Labeled classes
Positive Negative

predicted TP FP
positive true positive false positive

predicted FN TN
negative false negative true negative

Sensitivity Sensitivity (recall) is a widespread measurement in medicine. It indicates
the ratio of predicted strides to all strides inside our test data:

recall = sensitivity =
TP

TP + FN
. (6.1)

Specificity The specificity describes how well our system can distinguish steps from all
other activities (no steps). It is the ratio of undetected strides in all test data where no
steps were present:

specificity =
TN

FP + TN
. (6.2)

Precision The precision is the proportion of correctly predicted steps to all predicted
steps:

precision =
TP

TP + FP
. (6.3)

Accuracy Accuracy is the ratio of all correctly recognized strides and all correctly
recognized other activities (no stride) to all test data:

accuracy =
TP + TN

TP + FP + FN + TN
. (6.4)
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F1-score The F1-Score is the harmonious average between precision and recall. In this
way, both measures are combined into one value:

F1 = 2 · precision · recall
precision+ recall

. (6.5)
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Figure 6.1.: Process of synchronize, record, and evaluate data.
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7
Activity recognition

In the last chapter, the methodology of the work was presented. The wearable sensors
are not energy efficient. This depends on the sensors that continuously send data to the
microcontroller. Bluetooth Low Energy (BLE) has even high energy consumption. In
order to ensure that, the microcontroller still works energy-efficiently, we only switch
the wearable on when it is needed. Otherwise, the wearables remain in standby mode.
Therefore, we developed an activity recognition for the smartphone [Steinmetzer2020].
The activity recognition will switch on the wearables only if the smartphone detects the
activity Gait. This chapter explains the activity recognition.

7.1. Related works

Many smartphones have a gyroscope, accelerometer, and magnetometer. In many
studies, this has been used to try to identify the activities of people [Gadaleta2018,
Hassan2018, Cao2018]. One possibility to implement this is to choose a fixed window
width of a signal and collect all statistical values for this window, which serve as a
characteristic for the classification. The use of a neural network has proven to be useful
here [Hassan2018, Cao2018]. Another possibility is the use of CNNs [Gadaleta2018].
Activity detection is usually used to reflect the time a person has been moving throughout
the day. This is sufficient for an activity estimation of a person in general. The quality
of smartphone sensors is adequate to estimate the activity of a person.

We take advantage of the activity recognition so that the wearables are not always
switched on. As a result, the wearables are energy-efficient and are only used when the
data is relevant for analysis.

7.2. Methods

In order to enable an energy-efficient use of the wearable devices, they are only powered
when they are in use. The energy-efficient use means that the wearable devices only
have to be switched on during recording. For this reason, we decided to use a binary
activity classifier in the smartphone device. This classifier enables us to distinguish the
activity gait from other like cycling, go stairs, lying, sitting, smartphone lying around,
smartphone in use, standing, and use transport.

For the activity detection, we use the linear acceleration and rotation data of the
Android operating system at a frequency of 50 Hz. As features, we use a fixed window

57



width of 10s and an overlap of 50%. The input is the complete window width and all axis
of the sensor data for a 1D CNN classifier. Figure 7.1 shows the design of Convolutional
Neural Network (CNN). We chose CNN because other researchers have also achieved
excellent results with CNN [Gadaleta2018, Hassan2018].

...

...

...

...

...

Signals Conv 1 Conv 2

Matrix
500 x 6

... ...

...

Pooling Flatten

...

...

...

...

Dense Layers Output

...

Pooling

filter: 300
kernel size: 9

pool size: 5
drop-out: 0.2

filter: 100
kernel size: 7

pool size: 5
drop-out: 0.25

Figure 7.1.: Model of the CNN layers for activity recognition.

For the construction of the model, we use the activation function Rectified linear unit
(ReLU) function except for the output layer. The first layer is a convolutional layer
with 300 filters and a kernel size of nine. Next is a max-pooling with a size of five
and a drop-out with 0.2. Then follows another convolution layer with 100 filters and a
kernel size of seven. Then again, a max pooling with a size of 5 and a drop-out with
a probability of 0.25. Next comes a flatting layer. In the following, there are different
dense layers with 30, then 10, and finally 50 neurons. The last layer is the output layer,
which uses a sigmoid function as the activation function.

For training, we have separated the data by persons. This ensures that the same
person is not included in the training and test data set. We split the data that 66 % is
used for training, and 34 % for testing. During training, we use different epochs and
batch sizes. In our case, the setting of 100 epochs and 100 batch sizes has proven good
results.

7.3. Results

For recognition of activity gait, we have performed a five-fold cross-validation. The results
are shown in Table 7.1. For the results, we have specified precision, recall, F1-Score, and
Accuracy. Each column show the average value and standard deviation.

Table 7.1.: Results for recognition of activity gait.

Precision Recall F1-Score Accuracy
CNN 0.958± 0.031 0.683± 0.023 0.884± 0.011 0.947± 0.005

[Hassan2018] - - - 0.9585
[Cao2018] - - - 0.9416
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8
Synchronisation

The last chapter demonstrated how the wearables are used in an energy-efficient way by
only switching them on when needed. The aim is to use the time series of the wearables
to obtain conclusions about the subjects gait symmetry. Therefore, we want to use the
complete time series of gait cycles to calculate the symmetry. However, for this, the
wearables’ signals have to be synchronous, which is not the case by default. For this
reason, an algorithm is developed, which synchronizes the wearables with each other.

8.1. Related works

The video-based systems have a synchronized recording of all extremity movements. The
disadvantage is that the measurements cannot be carried out in daily life. Only camera
systems for laboratory measurements were found in the literature [Viteckova2016]. In
contrast, wearable systems could be an alternative for making symmetry measurements
of gait in daily life, but they are not time-synchronized.
In order to closing this gap, the microcontrollers must be synchronized with each other.
Several approaches have already been pursued. A possible solution is to build up a sensor
network in which the sensors are connected by wires [Viteckova2016]. Another work
presents a system where a docking station serves as a charging station and synchronizes
[Mancini2011]. The docking station can synchronize four wearable sensors, but it has a
time drift after a longer runtime. Others use the system of MbientLab [Anwary2018b].
In order to determine whether the gait is symmetrical, we need four synchronized sensors,
one for each limb. In earlier works, we had tested the system of Mbientlab, but it can
only record three synchronized sensors [Anwary2018b].

In the following the advantages and disadvantages of the current systems are presented:

• Camera-based systems can measure the synchronized time series of each limb.
However, they are stationary and, therefore, not suitable for measurements in daily
life.

• A smartphone is useful for detecting gait activities. Nevertheless, it is too imprecise
for clinical measurement.

• IMU systems are an alternative to camera-based systems. However, they have to
be synchronized.
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From the points mentioned above, it can be concluded that wearables are suitable for
gait analysis but that a single device is inaccurate. For this reason, several wearables
are used at different extremities. Therefore, wearables have to be synchronized. Ideally,
only immediately before using the wearables, so that time drift is counteracted. For this
reason, it is worth considering wireless synchronization via Bluetooth low energy.

8.2. Methods

8.2.1. Process

The synchronization takes place according to the following scheme, see Figure 8.1. The
master device is the smartphone, and the slaves are the four wearable devices.

1. The master sends an empty Bluetooth packet to the first slave (reference slave)
and the second slave.

2. Each slave replies with its device time (milliseconds since power-on) as soon as it
receives the master is the packet.

3. The master receives the responses and measures the time difference between them.

4. To avoid random response times (for example, caused by physical influences), the
process is repeated multiple times.

5. The median is the time difference between the reception of the packets by the
reference slave and the second slave.

6. The master calculates the offset of the second device and sends it to the second
device, see equation 8.2.

7. Now, the second slave knows its offset compared to the reference slave.

8. Steps one to seven are repeated with the first slave and the third slave.

9. Steps one to seven are repeated with the first slave and the fourth slave.

As a result, we get the offsets between the reference device and the other three
measuring devices. The four measuring devices record data synchronously. Unfortunately,
a drift can occur between the devices. In order to prevent this, the synchronization is
repeated before each recording.

8.2.2. Verification test setup

To be able to measure the Bluetooth latency correctly, we have wired the microcontrollers
to each other. Two microcontrollers are connected by wire using their serial output and
input. The output pin of one device is connected with the input pin of the other device
and vice versa. In the beginning, the outputs are set to “low”. One of the two devices
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Figure 8.1.: Process of synchronization.

now initiates a “high” output and starts a timer. The other device registers this event by
reading a ”high” input and answers to the first device by setting its output pin to “high”,
too. The first device stops the timer as soon as it registers a “high” input. According
to repeated measurements, the serial latency is lower than 1 ms. Because, this latency
measurement does not influence the synchronization latency, it is ignored in the following
section.

In the next step, we measure the latency and offset of the Android OS to send a
Bluetooth packet to the microcontrollers. Furthermore, we also measure the time at
which packets are received if the microcontrollers have sent them. For the measurement
of the offset between the microcontrollers, we use the test setup from Section 8.2.2. For
the test setup, the microcontrollers (M1) and (M2) were placed at the same distance
to the Android smartphone (A). Therefore, M1 and M2 have the same signal strength.
Otherwise, this can corrupt the result. The results of the measurement can be seen in
Table 8.1. The first and second columns A send M1 and A send M2 are the timestamps
of the Android OS in milliseconds (ms) when the commands were executed. Diff 1 is
the difference in ms between column (AsendM2)− (AsendM1). The RL column is the
wired offset between the two microcontrollers measured using the method in the Section
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8.2.2. This offset is the real offset. R1 and R2 are the timestamps in milliseconds of
the received Bluetooth packets of the microcontrollers. The last column l reflects the
difference of the columns R2−R1 in milliseconds. This offset, the Android OS uses to
calculate the device offsets. Perfect synchronization is achieved when RL = l.

The measurement was repeated three times. Therefore each measurement is separated
in the table by a double line. The columns RL and l show a correlation to each other.
For this reason, it was written in bold. Table 8.1 shows that the packets are sent with
different priorities by the Android OS. Thus, the column Diff 1 does not correlate with
RL. The values of the three measurements of A send M1 and A send M2 by Pearson
correlation to give the following results 0.034, -0.272, -0.617. This means that there is
no correlation. On the other hand, the columns l and RL correlate strongly by Pearson
correlation with the following values 0.743, 0.580, 0.982.

This can be explained by the fact that the microcontrollers M1 and M2 process the
commands sequentially, and thus all commands are equally authorized. Furthermore, it
is possible to receive signals at the app in real-time because there are several threads
available.

Out of this knowledge, we can say the receive time of the smartphone is the offset
in which the microcontrollers sent the signal. We use this fact for synchronization. In
summary, we can note that when sending packages of two microcontrollers at the same
time, these also arrive simultaneously.

8.2.3. Synchronization algorithm

Based on the data from section 8.2.2, we can now propose a solution to synchronize
two microcontrollers via bluetooth. The following steps describe the procedure of the
algorithm:

1. The Android device A sends a packet to microcontrollers M1 and M2.

2. M1 sends a packet to A. The packet holds a timestamp of the system time t1
directly before sending it.

3. M2 sends a packet to A. The packet holds a timestamp of the system time t2
directly before sending it.

4. A receives a packet from M1 at a real-time R1.

5. A receives a packet from M2 at a real-time R2.

With this information, we can calculate our receive latency l:

l = R2−R1 + c, (8.1)

where c represents a possible error. The offset o from M1 and M2 can be calculated as
follows: 8.2.
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Table 8.1.: The Android OS is measured latency of two microcontrollers between the
send and receives timestamps for three different executions. A send M1 and
A send M2 are the timestamps when the Android OS executes the commands.
Diff 1 is the difference of (A send M2) − (A send M1). RL is the wired
latency between both microcontrollers when receiving the packets. R1 and
R2 are the times when the Android OS has received the packets from the
microcontrollers. Latency l is the difference of R2−R1. The Bold columns
show the correlation between wired l and calculated l.

A send M1 A send M2 DIFF 1 RL R1 R2 l
1552473386320 1552473386332 12 23 1552473386373 1552473386396 23
1552473402974 1552473402985 11 27 1552473403025 1552473403054 29
1552473411800 1552473411804 4 23 1552473411851 1552473411872 21
1552473415820 1552473415829 9 30 1552473415863 1552473415897 24
1552473418088 1552473418100 12 28 1552473418131 1552473418160 29
1552473420520 1552473420527 7 28 1552473420564 1552473420593 29
1552473422598 1552473422604 6 31 1552473422638 1552473422672 34
1552473424513 1552473424523 10 29 1552473424557 1552473424585 28
1552473426282 1552473426295 17 28 1552473426327 1552473426355 28
1552473428201 1552473428209 8 28 1552473428239 1552473428267 28

1552475001845 1552475001849 4 43 1552475001888 1552475001929 41
1552475013106 1552475013111 5 19 1552475013159 1552475013179 20
1552475014617 1552475014624 7 33 1552475014658 1552475014730 72
1552475015951 1552475015964 13 32 1552475015996 1552475016029 33
1552475017448 1552475017460 12 23 1552475017495 1552475017517 22
1552475018910 1552475018920 10 24 1552475018958 1552475018979 21
1552475020302 1552475020309 7 31 1552475020346 1552475020380 34
1552475021704 1552475021713 9 31 1552475021751 1552475021780 29
1552475022982 1552475022995 13 29 1552475023021 1552475023049 28
1552475024662 1552475024670 8 28 1552475024709 1552475024737 28

1552477976517 1552477976523 6 42 1552477976564 1552477976605 41
1552477978212 1552477978222 10 29 1552477978258 1552477978287 29
1552477979992 1552477980003 11 16 1552477980046 1552477980067 21
1552477981607 1552477981616 9 31 1552477981651 1552477981685 34
1552477983153 1552477983165 12 31 1552477983193 1552477983227 34
1552477984567 1552477984581 14 31 1552477984611 1552477984645 34
1552477986029 1552477986036 7 43 1552477986078 1552477986120 42
1552477987445 1552477987455 10 28 1552477987486 1552477987515 29
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Table 8.2.: Latency l between microcontroller M1 and M2.

Index M1 M2 l Wired l c
1 1552919014830 1552919014946 116 81 35
2 1552919014999 1552919015047 48 8 40
3 1552919015776 1552919015154 -622 -665 43
4 1552919015838 1552919015897 59 55 4
5 1552919015950 1552919015972 22 20 2
6 1552919016005 1552919016014 9 6 3
7 1552919016055 1552919016064 9 7 2
8 1552919016098 1552919016106 8 5 3
9 1552919016147 1552919016156 9 8 1

10 1552919016191 1552919016199 8 4 4
11 1552919016240 1552919016262 22 21 1

o = (t2− t1) + l. (8.2)

Of course, in the proposed algorithm, errors can occur, resulting from disturbances in
the magnetic field or other physical effects. Therefore, we perform the algorithm eleven
times and use the median of the latency to determine the best synchronization between
the devices M1 and M2.

8.3. Results

In Tables 8.2, 8.3, and 8.4 the measured values of synchronization are shown. In the
tables, the first column is a numbered index. It is followed by the receiving time of the
reference microcontroller and the third column of the to be synchronized microcontroller.
Column four is the calculated latency of both microcontrollers, and column five is the
wired measured latency over the wires. The last column shows the error from calculated
to measured latency. For the most accurate timestamp, we calculate the median of the
latencies l.

In Table 8.5 the latencies are shown sorted, and the median is printed bold. All three
tables provide a positive error of 1 ms to the reference device. Thus, the total latency is
1 ms. In other measurements, we have a total error of 3 ms. Since we record the sensor
data with 100 Hz, this error is tolerable for symmetry calculation.
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Table 8.3.: Latency l between microcontroller M1 and M3.

Index M1 M3 l Wired l c
1 1552919585669 1552919585703 34 34 0
2 1552919585731 1552919585728 -3 -5 2
3 1552919585770 1552919585781 11 8 3
4 1552919585824 1552919585827 3 4 1
5 1552919585862 1552919585877 15 16 1
6 1552919585924 1552919585914 -10 -8 2
7 1552919585961 1552919585978 17 17 0
8 1552919586024 1552919586014 -10 -8 2
9 1552919586061 1552919586078 17 17 0

10 1552919586124 1552919586114 -10 -9 1
11 1552919586161 1552919586171 10 9 1

Table 8.4.: Latency l between microcontroller M1 and M4.

Index M1 M4 l Wired l c
1 1552988793978 1552988794019 41 41 0
2 1552988794060 1552988794056 -4 5 9
3 1552988794110 1552988794119 9 8 1
4 1552988794154 1552988794145 -9 -4 5
5 1552988794203 1552988794199 -4 -5 1
6 1552988794227 1552988794236 9 9 0
7 1552988794258 1552988794262 4 3 1
8 1552988794295 1552988794313 18 17 1
9 1552988794359 1552988794348 -11 -10 1

10 1552988794395 1552988794404 9 11 2
11 1552988794451 1552988794442 -9 -8 1
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Table 8.5.: Latencies l between the microcontrollers (M1 and M2), (M1 and M3), and
(M1 and M4).

M1 and M2 M1 and M3 M1 and M4
Index l c Index l c Index l c

3 -622 43 6 -10 2 9 -11 1
8 8 3 8 -10 2 4 -9 5

10 8 4 10 -10 1 11 -9 1
6 9 3 2 -3 2 2 -4 9
7 9 2 4 3 1 5 -4 1
9 9 1 11 10 1 7 4 1
5 22 2 3 11 3 3 9 1

11 22 1 5 15 1 6 9 0
2 48 40 7 17 0 10 9 2
4 59 4 9 17 0 8 18 1
1 116 35 1 34 0 1 41 0
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9
Stride detection

The last chapter was about the synchronization of the wearables and this chapter is focused
on the stride detection. Both chapters are important basics for the later gait futures
calculation in the Chapters 10, and 11. Gait recognition methods are divided into model-
free and model-based approaches [Kovac2019, Kovac2014, Kovac2013, Seckiner2019]:

• Model-free approaches use gait representations such as silhouette, texture, and color
to extract static gait features, and dynamic gait features such as joint trajectories
[Seckiner2019, Tong2011]. Model-free approaches usually focus on changes in the
appearance of individuals rather than on gait dynamics.

• Model-based approaches such as [Rastegari2019, Prakash2019, Gupta2019] create
movement models to extract features [Kovac2019, Kovac2014, Kovac2013], for ex-
ample stride length, height, and frequency. For diagnostic support and measurement
of therapy success, we recommend model-based approaches because they are more
resistant to changes in view and scale.

The goal of many kinds of research is gait analysis. Others are concerned about activity
recognition. Stride detection recognizes as precisely as possible single strides in a time
series. In contrast, activity recognition detects different kinds of movement, such as
walking, standing, and jogging. A standardized test for the diagnosis of Parkinson’s disease
is the TUG test. This test is also used, for example, by [Mazumder2018b] to differentiate
between healthy and Parkinson’s patients. We also used this test by [Steinmetzer2018]
under ideal hospital conditions for an approximate estimation of Parkinson’s stadium.

We want to propose a system that recognizes the walking strides of Parkinson’s patients
in daily life [Steinmetzer2019a]. To the best of our knowledge, there is no other study
detects strides:

• automatically,

• without a manual set threshold,

• independent of motor dysfunction,

• independent of the Parkinson’s stage of the patient, and

• exclusively from walking activity (not from for example descending, ascending
stairs, sitting activities).
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9.1. Related works

Movement disorders that influence the patient’s gait are measured with sensors such
as gyroscopes, accelerometers, magnetometers, pressure sensors, and image sensors.
Accelerometers and gyroscopes are often used in combination with a magnetometer
[Barth2015, Bobic2018, Tao2018, Koroglu2018, Hannink2018, Watanabe2018]. The sen-
sors can be integrated into smartphones [Tao2018, Kim2018] or attached to the ankle
[Barth2015, Jiang2018, Hannink2018] or body [Koroglu2018]. In addition to the 2D
image, a depth sensor is sometimes used for video recordings for gait analysis [Ince2017].
Force sensors are installed in insoles [Agostini2014, Mazumder2018b, Steinmetzer2018]
and substrates [Muheidat2017].

A low-pass digital filter to eliminate the high-frequency noise components of raw
accelerometer measurements is used in [Tao2018]. Furthermore, the authors ensure that
only one peak is detected for every zero crossings of normal gravity.

By [Agostini2014], they define stride candidates by determining the beginning of the
gait phase and calculate the stride duration. Strides with two phases and short duration
are first merged with preceding strides and afterward with successive strides.

A stride recognition rate of 97 % is achieved in [Barth2015] with the multi-dimensional
subsequence DTW with free walking. For this method, a fixed threshold value is used.
Thus, worsens the results for abnormal movements or climbing stairs [Barth2015].

Mild Cognitive Impairment in gait is classified in [Gwak2018]. Photoplethysmography
and gait (accelerometer and gyroscope) sensor data were recorded. The Butterworth
filter was used to remove noise from the measured gait signals. To detect strides, a peak
detection algorithm with minimum peak height and minimum peak distance was used.

For normal walking conditions, the stride frequencies have been assumed to range from
1Hz to 3Hz. By [Kim2018], gravitational acceleration is filtered by using a bandpass filter
with a center frequency of 2 Hz and a bandwidth of 2 Hz. Strides are detected using the
Stride Feature of Spectrogram methods and an Artificial Neural Network architecture. A
gait mat delivers gait parameters analyzed in [Muheidat2017] such as speed, stride time,
and stride length of the GAITRite® instrumented walkway system. In [Koroglu2018]
foot and body-mounted IMUs are used for strides detection. Strides were labeled using
a threshold. A residual neural network performed stride detection. For the training
process, the cross-entropy function was used as the loss function.

In a preprocessing step by [Hannink2018], the signals from accelerometer and gyroscope
are normalized and scaled to a fixed length of 256 samples per stride to ensure equally
scaled and fixed-size input to the network. Mid-stance and heel-strike are detected. A
two-layer Convolutional Neuronal Networks (CNN) followed by one fully connected layer
and a readout-layer is chosen for stride detection. The advantage of Neural Networks,
HMM, and regression-based systems is that they do not require a threshold.

In this proposal, we want to compare the most frequently used methods for stride
detection, namely Min-Max Patterns (MMP), DTW, and CNN in order to be able to
use the best variant of stride detection in daily life, independent of motor disorders.
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9.2. Methods

In this section, we present three comparable methods Min-Max-Pattern (MMP), Dynamic
Time Warping (DTW), and our method Convolutional Neural Networks (CNN). An
overview of the different stride detection processes is shown Figure 9.1. This includes
preprocessing, algorithms for stride detection, and the validation process.

MMP DTW CNN

Figure 9.1.: Stride detection processes.

9.2.1. Preprocessing

Normalization

In order to enable the classifiers to work with uniform values, we normalize the data.
For the normalization of the data, we use the Min-Max normalization. Thus our result
vector has a value range from 0 to 1. The normalization is shown in equation 9.1, we
calculate the normalization for every xi ∀ i ∈ {0, ..., N − 1} of the feature X. Where N
is the length of feature X. Using the functions min(X) and max(X), which returns the
absolute minimum and maximum of the feature X. The result is a normalized value
xnormi ∈ Xnorm [Frochte2019]:

xnormi =
xi −min(X)

max(X)−min(X)
. (9.1)
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Table 9.1.: Example of a distance matrix for selecting the ideal stride. The best choice is
stride 1 with the minimum costs to all other strides.

Stride 1 Stride 2 Stride 3
∑

Stride 1 0 2 3 5
Stride 2 2 0 5 7
Stride 3 3 5 0 8

Resampling

After normalization, the individual signals are transformed to a uniform length of 100
values. This step is necessary because classifiers such as CNN always require the same
tensors as input. For resampling, we use the Python library SciPy [Virtanen2019]. This
method is based on Fast Fourier Transformation (FFT).

Ideal stride template

For the stride detection with the DTW, we need an ideal stride as a template. To
estimate the ideal stride, we also use the DTW in combination with the labeled training
data. Furthermore, we create a distance matrix D

(M,N)
stride , based on the costs for all strides

to each other, where M is the number of rows and N the number of columns. The
cost D

(i,j)
stride is the distance between two strides by DTW. Then, we sum the costs of all

columns for each row in vector Costi, as follows:

Costi =
N−1∑

j=0

D
(i,j)
stride, ∀ i ∈ {0, ...,M − 1}, j ∈ {0, ..., N − 1}. (9.2)

After that we choose the minimum of the vector Cost:

Cideal stride = min(Costi)∀ i ∈ {0, 1, ...,M − 1}. (9.3)

This stride will be used as an ideal model for a stride. An example of our approach
can be seen in table 9.1. In order to choose the ideal stride [Barth2015], we resampled
the signals to a uniform length and averaged each index over all the strides.

9.2.2. Min-Max-Pattern

The simplest way to detect strides is to trace the MMP. This pattern is typical in human
gait. However, this pattern also occurs in other motion sequences, for example climbing
stairs. For this reason, this pattern is not an ideal choice [Barth2015]. Nevertheless, we
have included the procedure for the sake of completeness.

The idea is that with a fixed window width, the time series is traversed over the
y-axis of the orientation data. The index of the minimum and maximum within the
window is for each window stored. We have set the window size to 90 values because this
corresponds to 0.9 s, which is more than half duration of an average human stride. The
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Figure 9.2.: Characteristics and results of the Min-Max-Pattern Recognition.

average duration is about 1.1 s with 110 values [Hausdorff1998]. Inside this window, all
maxima and minima of a stride are expected to be included, without overlapping with a
second stride.

The indices of all minima and maxima can then be displayed in a separate frequency
table. All indices where the absolute frequency is higher than the average are potential
strides. After that, a logical check is made, because each minimum must be followed by
a maximum. Thus, ensures that minima and maxima are always present in pairs, see
Figure 9.2 a). Next, the distance from each minimum to the corresponding maximum is
determined. If this distance is outside the 90 % confidence interval of all strides used for
training, it is assumed that it is not a stride. The 90 % confidence interval was chosen to
remove extremely short or long steps. This confidence interval has proven to be useful in
our tests.

We want to determine the corresponding stand phase for each MMP. In the standing
phase, the angle change is almost zero. We form the derivation of the y-axis of the
orientation data y′ and calculate the standard deviation sy′ of the y′ sequence. Now,
the ranges are selected between y′i > −sy′ · 0.25 and y′i < +sy′ · 0.25, see Figure 9.2
b). We have chosen the coefficient of 0.25 because we only look for areas close to zero.
The person is standing phase is located in this area. Thus, we receive the areas of the
standing phases. Finally, we select the mean index of the region within the standing
phase between the MMP. This index indicates the start or end of a stride. We estimate
the beginning of the first stride or the end of the last stride of a sequence of strides by
the average length of the strides.
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Figure 9.3.: DTW Algorithm between Ideal Stride and a test signal. a) raw y orientation
signal; b) distance matrix between raw signal and template; c) accumulated
distance matrix; d) Summed costs of the accumulated distance matrix.

9.2.3. Dynamic time warping

DTW is used to measure the similarity or distance of two signals based on the best path.
The particular feature of the method is that the signals do not have to be the same
length. In contrast, the Euclidean Distance always determines the distance between two
points directly. For stride detection, we use the force, orientation, derivative orientation,
and linear acceleration data. The DTW searches for the ideal path between two signals.
The signals are first normalized before the algorithm for stride detection begins. Our
algorithm is strongly based on the algorithm presented by Barth [Barth2015].

By using the ideal stride, see Section 9.2.1, we calculate the distance matrix D(M,N)
between the ideal stride and the test signal we want to analyze, see Figure 9.3, where M
is the length of the ideal stride and N the length of the test signal.

Then, we calculate the Accumulated Cost Matrix C(M,N). For this, we add the
minimum costs from the distance matrix D. The lowest row of the matrix C results from
the bottom row of the matrix D [Barth2015]:

C(0, n) = D(0, n) ∀ n ∈ {0, ..., N − 1}. (9.4)

The first column of the cost matrix C results from the sum of the previous element of
matrix C and the current element of the matrix D as follows:

C(m, 0) = C(m− 1, 0) +D(m, 0) ∀ m ∈ {0, ...,M − 1}. (9.5)

All other elements of the cost matrix C are calculated from the minima of the
neighborhood summed with the distance of the current element:
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Figure 9.4.: Path between stride start and end.

C(m,n) = min(C(m− 1, n), C(m− 1, n− 1), C(m,n− 1)) +D(m,n)

∀ m ∈ 0, ...,M − 1, n ∈ {0, ..., N − 1}. (9.6)

The result of the cost matrix C is shown in Figure 9.3 c).
As a result of the cost matrix, the summed costs are displayed in the last row, d). The

first line of the cost matrix is in the last line of Figure 9.3. It can be seen in the last
line of the figure. In the next step, a threshold value is selected to mark the end of a
stride, see Figure 9.4 a). In our case, we chose the threshold of 17. A threshold value of
20, as recommended by Barth, was not useful in our case, as strides at the turn were
often detected during the TUG test [Barth2015]. Finally, we follow the minimal path
beginning at the end of the stride. Thus, we get the beginning of a stride, see Figure 9.4
a).

9.2.4. Convolutional neural network

CNNs are becoming more and more popular because they achieve significantly better
results than traditional neural networks. Therefore, CNNs are used primarily for image
recognition, but they are just as powerful at detecting signals. The difference between
neural networks and CNNs is that CNNs learn local patterns. In contrast, traditional
neural networks always use the entire input. The multilayer convolutional architecture
allows us to increase the complexity of detection. Thus, it is possible to recognize in
the first layer only patterns, and with the second or n-layer more and more complex
objects [Abadi2016, Sze2017]. For our work with the CNNs we use the open-source
python library Keras with TensorFlow [Chollet2015].

Preprocessing for CNN includes normalization and resampling, see Figure 9.5. Via
resampling, all training data is resampled to a length of 100 values. For the classification
with CNNs, we use a sequential network. As an activation function, we use the ReLU
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Figure 9.5.: Schema of the CNN layers.

function with except at the output layer, see equation 9.7, where x is the input. We
use the sigmoid function at the output layer, see equation 9.8, because a ReLU function
is not suitable. For the output layer, it is recommended to use a Sigmoid or Softmax
function. The first one-dimensional convolutional layer creates 100 filters with a kernel
size of three.

f(x) = max(0, x) (9.7)

f(x) =
1

1 + e−x
(9.8)

To reduce the filters, we apply a max-pooling with a pool size of three and a drop-out
with probability 0.2. After the second convolutional layer consists of 100 filters and a
kernel size of five. This is followed by max-pooling again with a pool size of three. A
drop-out follows this with probability 0.2, where single connections are randomly deleted
[Srivastava2014]. After that, we have a flattening layer to adjust the dimensions for the
neural network. Next, we have two dense layers. The first has 20 neurons and the second
30 neurons.

9.2.5. Automatic framing

In contrast to the MMP or DTW method, the CNN signals must have a uniform length.
This uniform length is essential that the classifier always has the same inputs. In this
case, we develop an algorithm, automatic framing (AF), that systematically cuts out
small windows from our entire signal that the classifier can detect strides. The algorithm
uses dynamic window sizes that even strides with different durations can be detected.
The average duration of a stride is 1.1 s± 0.2 s [Hausdorff1998], which corresponds to
110 ± 20 values. Therefore, we use an average window size of 110 ± 30 values, so we
capture all possible ranges. The window w can have the following sizes

w = {80, 90, 100, 110, 120, 130, 140}. (9.9)

To increase performance, the algorithm always skips seven values when scanning the
signal. Therefore, not every single increment is classified seven times. If the classifier
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within a window detects a stride with a probability more than 70%, the stride is stored in
a list with start index, end index and probability of the stride. A recognition probability
of 70 % is very low. In a later step, we select the stride with the highest probability.
This deletes unnecessary strides. Based on the first detected stride, overlaps up to a
maximum of

overlapping = detected stride+ (average stride · 0.8) (9.10)

is saved. The factor of 0.8 was selected so that a broad range is available for stride
detection. Thus, a tolerance is given if a classification error has been made based on the
average step duration [Hausdorff1998].

Because many strides represent the same stride by overlapping, we need to select the
best fitting stride. For this reason, we choose the area from the first detected stride
to the end of the overlap. Then, we select from this range this stride with the highest
probability of being a stride. This stride is then defined as a valid stride. An example of
the result is shown in Figure 9.6. To check the results of the algorithm, we use two test
procedures. With the first method, we use the labeled data and for the second method,
we use the original signals. Here we always mark the absolute minimum within one step
±10 ms. If the predicted stride lies within this range, it is marked as a correct detected
stride [Barth2015].

9.3. Results

In this section, we would like to present our results, which were achieved by using the
data sets daily life and TUG test by using the presented methods.

9.3.1. Measured using IMU sensors

We do not use any force sensors to train the daily life data sets because the TUG test
data set was made with an older version of the insole, see Chapter 4.4. Therefore, the
data is comparable. Table 9.2 shows the results of the daily life data set. The MMP,
DTW algorithm, and AF+CNN classification were compared. For the test, the complete
time series were used. The sensitivity shows that the MMP and Automatic Framing
and Convolutional Neuronal Networks (AF+CNN) algorithms perform best. The DTW
algorithm performs comparatively well. Therefore, it can be assumed that the DTW
algorithm does not always detect strides correctly. In contrast, the MMP and AF+CNN
algorithms detect strides very well. The DTW algorithm has the highest specificity,
followed by the AF+CNN algorithm. The MMP algorithm performs worse than all
others. From this, it can be assumed that the DTW and AF+CNN algorithms detect
other activities for example standing or going stairs well as no strides. However, the
MMP algorithm has big problems with this. This result is identical to Barth’s results
[Barth2015]. With F1-Score and accuracy, the AF+CNN algorithm performs best, closely
followed by the DTW algorithm. For this reason, we would recommend the AF+CNN
algorithm for stride detection.
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Figure 9.6.: Stride detection by CNN.

Table 9.2.: Daily life activities 1 with IMU sensors.

Sensitivity Specificity Precision F1-Score Accuracy
MMP 0.990 0.771 0.658 0.791 0.838
DTW 0.896 0.986 0.969 0.931 0.956

AF+CNN 0.992 0.940 0.901 0.944 0.958

76



Table 9.3.: Daily life activities 2 with labeled data.

Sensitivity Secificity Precision F1-Score Accuracy
AF+CNN 0.978 0.994 0.978 0.974 0.988

(IMU)
AF+CNN 1.0 1.0 1.0 1.0 1.0

(IMU+FSR)

Table 9.4.: Results of the data set TUG test with IMU sensors.

Data set Group Sensitivity Specificity Precision F1-Score Accuracy
MMP PD 0.838 0.895 0.925 0.879 0.86

no PD 0.844 0.778 0.871 0.857 0.820
DTW PD 0.615 0.852 0.875 0.723 0.703

no PD 0.663 0.844 0.887 0.759 0.727
AF+CNN PD 0.983 0.812 0.899 0.939 0.920

no PD 0.968 0.818 0.91 0.938 0.916

9.3.2. Measured using IMU and force sensores

These results show the improvement in the classification achieved when additional force
sensors are used. The force sensors have been reduced to three different measuring points.
For this purpose, we have calculated the average value of heel, metatarsus, and ball of the
foot, as already described in Section 4.6. Table 9.3 shows a comparison of the AF+CNN
method with and without force sensors. It is clear to see that the classification result
for our test data was utterly correct. With the addition of force sensors, the gain in
information increased significantly. This result can be related to the small data set of
individuals tested, and all did not have motor dysfunctions.

9.3.3. Timed Up and Go test

The classifiers were not trained again during the test of the TUG test data set. We
used the models from Section 9.3.1, in oder to show how independent they are of motor
dysfunction or other appearance. Besides, the test took place in a completely different
environment. The results were grouped by the classifier and whether a subject has
Parkinson’s disease or not, see Table 9.4.

The AF+CNN algorithm shows the best results for Parkinson disease (PD) and no
Parkinson disease (no PD) at F1-Score and accuracy. From this, it can be concluded
that the algorithm reacts well to changed data and is therefore very robust. However, it
has a relatively weak specificity value because the AF+CNN algorithm wrongly counted
other activities as a stride. The DTW algorithm scored worst in this test. This can be
explained by the fact that the threshold was not optimized for the data. The algorithm
can, therefore, react poorly to new data. This demonstrates the weakness of a fixed
threshold in the algorithm. The same also applies to the MMP algorithm.
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10
Calculation of stride features

The stride detection, which was presented in the last chapter, is the fundamental basis for
estimate gait features of the gait cycle in this chapter. The calculation of different gait
features has already been demonstrated in other works because this is an essential part
of the gait analysis. The features allow the training of classifiers and help the physician
during diagnosis. A fundamental requirement for this is that the data are valid. With
the right choice of a classifier, such as a decision tree, the classification result is also easy
to understand. This is a significant prerequisite for accepting a classifier for diagnostic
support.

10.1. Related works

The features of the human gait can be divided into a time and space domain. Temporal
gait parameters are the duration of different gait phases, such as the duration of gait
cycle, stance phase, or swing phase. Spatial related gait parameters are stride length or
stride height. There are different approaches to determine these features.

In order to calculate the duration of the swing phase and stance phase, the time
of heel strike and toe off have to estimated. There are numerous approaches for this.
Force sensors can be used with a fixed threshold value [Bamberg2008]. An other method
is to calculate the velocity of the foot. If this velocity drops below a threshold value,
the foot is in the stand phase, otherwise in the swing phase [Bamberg2008, Tunca2017].
Furthermore, the heel strike and toe off can be estimated from the minima and maxima of
the acceleration and gyroscope data [Rampp2014, Salarian2004, Ferster2015, Wang2015,
Hsu2014]. For the estimation of the stride length, the gyroscope and acceleration data
are used to calculate the horizontal movement in the sensor’s space by double inte-
gration [Bamberg2008, Rampp2014, Tunca2017, Sijobert2015, Mariani2010, Ferrari2015,
Salarian2004, Ferster2015, Wang2015, Hsu2014]. The same procedure is used to calculate
the stride height in the vertical [Mariani2010].
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Figure 10.1.: Gait cycle with gait phases (HS, MST, TO, MSW), and signals of orientation
data, angular velocity and force data.

10.2. Methods

10.2.1. Gait time features

For the calculation of the gait times, the times of Heel strike (HS), Toe off/ Terminal
stance (TO), Mid-swing (MSW), and Midstance (MST) were estimated. A combination
of orientation, angular velocity, and force data was used because each signal provides
relevant information for particular gait features, see Figure 10.1.

Heel strike The HS is detected by the force sensors on the heel crossing a threshold
value, Figure 10.1 c). The local minimum in the sagittal plane of the angular velocity
between swing and stance phases is used to estimate the HS.
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Toe off/ Terminal stance The TO also detects the force sensors. If the force sensors
on the toe cross a threshold, this is the TO, Figure 10.1 c). The angular velocity is
also used to estimate the TO. The local minimum between stance and swing phase also
indicates the TO. Furthermore, it is also possible to use the angular velocity data. In
this case, the maximum corresponds to the TO, Figure 10.1 b).

Midstance For the identification of the MST, the sum of all force sensors can be used.
Within the stand phase, there is a local minimum between the two maxima, Figure 10.1
c). This characterizes the MST.

Mid-swing The MSW can be estimated by calculating the average of HS and TO.
Another possibility is to select a threshold value for zero Euler angle, or angluar velocity,
Figure 10.1 a) and b).

Stance phase The stance phase is calculated by calculating the difference between TOi

and HSi.

Stand phase The swing phase is calculated from the difference between HSi+1 and
TOi.

10.2.2. Spatial gait features

Basically, the calculation of the stride length follows the same principles as other works
have shown before. But in contrast to the other works, the Bosch BNO055 provides
orientation data and linear acceleration. For this reason, it is not necessary to subtract
the gravity to get the linear acceleration. The orientation data are the result of the
integration of the angular velocities. In addition, the orientation data is optimized by
sensor fusion. The calculation for the stride length is based on the equations by Sijobert
[Sijobert2015], but we use different signals, so we have adapted them.

The time of the MST is used as the starting point for calculating the stride length and
height. Because of sensor drift and sensor inaccuracy, these are calculated at the beginning
of the calculation minus the start value for the orientation data Θ and acceleration a,
see equations 10.1 and 10.2. In order to calculate the step length and step height, we
project the 3D signals onto a 2D space of the sagittal plane. For this reason, we use the
y-axis of the orientation data as Θ and the x-axis and z-axis of the linear acceleration for
the calculation.

Θi = ΘiΘ0 (10.1)

ai = aia0 (10.2)
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Figure 10.2.: Sensor axes for calculation of horizontal ahor and vertical aver acceleration.
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Stride length The horizontal acceleration is calculated by

ahor = cos(Θi) · ayi − sin(Θi) · azi . (10.3)

Next, the horizontal acceleration is integrated to obtain the horizontal velocity

vhor =

∫
ahori di. (10.4)

To obtain the horizontal distance, the horizontal velocity has to be integrated

shor =

∫
vhori di. (10.5)

Stride height The vertical velocity is calculated by

aver = cos(Θi) · azi − sin(Θi) · ayi . (10.6)

Next, the vertical acceleration has to be integrated to obtain the vertical velocity

vver =

∫
averi di. (10.7)

To obtain the vertical distance, the vertical velocity has to be integrated

sver =

∫
vveri di. (10.8)

10.3. Results

The calculated gait features were first tested for variance homogeneity and normal
distribution. In both cases, the p-value was less than 0.05. For this reason, the data are
not variance homogeneous and normal distributed. A possible reason for the data not
being normally distributed could be related to the small sample size. For this reason, the
Wilcoxon signed-rank test was applied with a p-value of 0.05. In the statistical analysis,
the left and right leg were separated. The results are shown in Tables 10.1 and 10.2. In
these tables, the stride duration, stance phase duration, swing phase duration, stride
length, and stride height were presented and separated into the groups control Group
(CG) and Parkinson’s disease (PD) with average and standard deviation. In the last
column, the p-value is shown. It is noticeable that there are significant differences between
CG and PD in stride duration, stance phase duration, and stride length. No significant
differences were found for swing phase duration and stride height [Ngokingha2018].
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Table 10.1.: Average and standard deviation of gait features of the right foot. It is split
into control group (CG) and Parkinson’s disease (PD) groups. The last
column shows the p-value of the Wilcoxon signed-rank test.

Gait feature CG PD p-value
Stride duration (s) 1.028± 0.087 1.087± 0.087 0.017

Stance phase duration (s) 0.581± 0.065 0.647± 0.066 2.0e− 04
Swing phase duration (s) 0.447± 0.043 0.440± 0.038 0.976

Stride length (m) 1.149± 0.248 0.880± 0.221 5.5e− 06
Stride height (m) 0.231± 0.120 0.250± 0.148 0.445

Table 10.2.: Average and standard deviation of gait features of the left foot. It is split
into control group (CG) and Parkinson’s disease (PD) groups. The last
column shows the p-value of the Wilcoxon signed-rank test.

Gait feature CG PD p-value
Stride duration (s) 1.046± 0.089 1.106± 0.085 0.013

Stance phase duration (s) 0.587± 0.064 0.648± 0.109 4.0e− 4
Swing phase duration (s) 0.458± 0.044 0.459± 0.042 0.354

Stride length (m) 1.311± 0.226 0.981± 0.261 4.2e− 07
Stride height (m) 0.149± 0.096 0.170± 0.078 0.229
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11
Gait symmetry

The previously Chapters 8 - Synchronisation, 9 - Stride detection, and 10 - Calculation
of stride features are the fundamental for this Chapter 11 - Gait symmetry. All these
gained information are now used to calculate the symmetry of the legs. This allows us
to compare symmetry based on discrete features with our own developed method to
estimate the symmetry.

A symmetrical gait represents a high quality of life because all parts of the body must
be in balance during gait. If regions of the body show motor dysfunctions, this leads to
an asymmetrical gait pattern. The gait pattern reflects the general health [Lord2013],
quality of life [Hirvensalo2000], cognitive disorders [Verghese2007], and the risk of falling
[Beauchet2009]. The problem is currently used methods is that all these methods are
based on the ratio of discrete gait features. We want to introduce a new way to calculate
symmetry for wearable devices. Our method’s outstanding feature is that the complete
time series of the gait cycle is used for the symmetry analysis. This calculates the
symmetry more accurately than using discrete based methods for symmetry calculation.
An essential part of the method is the Dynamic time warping (DTW) [Keogh2005].

11.1. Related works

The situation is different when wearables assess diseases related to movement dis-
orders. In this case, IMU sensors are attached to specific joints or integrated into
clothing. To measure and store the time series of gait wearable containing microcon-
trollers in combination with IMU sensors are often used [Barth2015, Bobic2018, Tao2018,
Koroglu2018, Hannink2018, Watanabe2018, Clemens2019, Crenshaw2006, Mancini2011,
Anwary2018b, Anwary2018a, Anwary2018c, Steinmetzer2018]. In most cases, the mo-
tion of the lower extremities is measured [Barth2015, Bobic2018, Tao2018, Koroglu2018,
Hannink2018, Watanabe2018, Steinmetzer2018]. Thereby conclusions can be made about
the stride length, cadence, stride duration, gait phases, and symmetry [Barth2015,
Hannink2018, Watanabe2018, Jiang2018].

The symmetry of arms and legs, as well as the symmetry of the upper and lower limbs
with each other, investigate only a few papers [Lin2018b, Miller2018, Viteckova2016].
Changes of interlimb coordination in individuals with Parkinson’s disease and healthy
older adults while systematically manipulating walking speed are compared to determine
the impact of Parkinson’s disease symptoms on interlimb coordination [Lin2018b]. Mark-
ers were placed on the foot, heel, ankle, knee, hip, thigh, wrist, elbow, shoulder, and head.
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A point estimate of the relative phase between body segments was calculated by using the
moment at which the positive maxima were reached for the angle of each body segment.
To assess change in asymmetry over time is the objective in [Miller2018]. The changes
in movements are assessed by a single neurologist specializing in movement disorders.
A robust ordinal logistic regression model that includes a control for clustering due to
repeated observations within-person for evaluating the relative change in asymmetry is
used.

Another system focuses on the study of the impact of PD on synkinesias (for example
the symmetry of movement) during walking, and the effect of medication on the gait
symmetry [Viteckova2016]. Every patient was tested and measured using IMU sensors in
his on and off state. The trend symmetry value is calculated as a ratio of the variabilities
of two eigenvectors, which are calculated from the kinematic motion data of the left
and right limb. An up-to-date overview of symmetry analysis systems for movements is
shown in [Viteckova2018]. For this reason, the use of synchronous signals to determine
symmetry is very essential.

There are different methods for the calculation of symmetry. One approach is that
different calculated features like step length, step duration, standing time, or swing
time of the legs are put into relation [Loiret2019, Anwary2018b, Clemens2019]. The
disadvantage of this method is that only average values of the calculated characteristics
for the gait can be assessed, but not the entire time series. This is different for stationary
systems, which are camera-based. With these systems, the complete body can be recorded
synchronously [Crenshaw2006]. Both types of symmetry evaluation are useful. However,
in our opinion, a direct comparison of the time series is most useful, because differences
in the related arms and strides can be measured directly.

11.2. Methods

Discrete symmetry calculation by using various parameters is used for analysis gait with
wearable devices. For comparison with our method, we introduce the methods Ratio
index (RI), Symmetry index (SI), Gait asymmetry (GA), and Symmetry angle (SA), see
equations 11.1 to 11.4. For the calculation of discrete symmetry, we use several features
of the right and left foot. The smaller feature is xmin, and the bigger one xmax. In this
way, we get a value between zero and one. Xmin

i and Xmax
i are, features consisting of

swing phase duration, stand phase duration, and stride duration. Xmin
i is the smaller

value of feature i from the left and right stride. Xmax
i is the larger value of feature i in

the left and right stride. The advantage of the Symmetry angle over the other discrete
symmetry calculations is that it does not matter which value is in the numerator and
denominator.

Ratio Index To determine the RI, the smaller values of the feature i is divided by the
higher one
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RI =
Xmin

i

Xmax
i

. (11.1)

Symmetry Index The SI gives the difference between kinematic and kinetic parameters
of the limbs. We have adjusted the value so that one represents a symmetrical gait and
zero asymmetry

SI = 1− |Xmin
i −Xmax

i |
0.5 · (Xmin

i +Xmax
i )

. (11.2)

Gait Asymmetry The GA is similar to the Ratio Index. However, the logarithm was
still calculated from the result

GA = 1− ln
(
Xmax

i

Xmin
i

)
. (11.3)

Symmery Angle The SA measures the relationship between two different limbs. Two
exactly symmetrical parameters form an angle of 45 ◦. We have corrected the value, a
symmetric value is again one and an asymmetric zero

SA = 1−
45◦ − arctanXmin

i

Xmax
i

90◦
. (11.4)

11.2.1. Normalized Dynamic Time Warping symmetry ratio

The focus of this chapter is not on stride detection. For this reason, a simple method is
used because we have only force data. As soon as the sum of all force sensors is greater
or equal to 100 N, this is considered the beginning of the stance phase. Conversely, swing
phases are detected as soon as the sum of all force sensors is less than 100 N, see Figure
11.1.

The significant gaps in Figure 11.2 corresponds to the turning of the person at the end
of the corridor. By using the interquartile range (IQR), the gaps are cut out. Usually,
there are four to five such gaps per recording.

11.2.2. Preprocessing

Typically the DTW is used as a distance measurement. As higher the result is, as higher
is the distance between the two signals. The more asymmetrical is the gait cycle. To
better interpret the results of the symmetry, we normalize them. A value close to one
shows a symmetrical motion and a value close to zero an asymmetrical motion. In order
to be able to calculate the symmetry of the strides, the values would first have to be
standardized and normalized. For standardization, we use the z-transformation, see
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Figure 11.1.: Force signal of gait with start and end of the stance and swing phases.

Figure 11.2.: Force signal of gait with gaps at the turning point.

equation 11.5. Through this standardization, the expected value of the data is x̄ = 0 and
the standard deviation s = 1.

xstdi =
xi − x̄
s

. (11.5)

The time series of all records of all subjects are concatenated to form a uniform model
for standardization and normalization. A min-max normalization is performed to ensure
the value range between zero and one:

xnormi =
xstdi −min(Xstd)

max(Xstd)−min(Xstd)
. (11.6)

11.2.3. Normalized Dynamic Time Warping

To measure the symmetry distance between the time series (strides) of the right and left
foot, we use the DTW. DTW has become very well established in the analysis of time
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series. In contrast to Euclidean distance, this method can compensate for time warping.
This flexibility is a popular method for the analysis of time series in medicine, science,
and industry. The idea with DTW is that not the distance of two indices is calculated,
but the distance to the most fitting one. Thus allows comparing time series with each
other if they recorded with different duration or frequency.

In the first step, the algorithm calculates distances between the time series (xi)1≤i≤n
(force of the right foot) of length n and (yj)1≤j≤m (force of the left foot) of length m,
resulting in a n times m matrix D = Dij containing distances Dij between yj and xi.
The distances within the matrix are calculated by the sum of the current distance and
the minimum distance of a previous neighboring element [Keogh2005]:

Dnorm
ij = dist(xi, yi) +min{Di−1,j, Di−1,j−1, Di,j−1}. (11.7)

A distance Dij of zero means 100 % symmetry of the measured values. The higher the
value Dij, the lower is the symmetry of the limbs:

dist(xi, yi) =

√
(xi − yj)2

max({length(X), length(Y )}) . (11.8)

In order to get a result of one for symmetry and zero for asymmetry, the one minus
result has to be calculated:

DTWratio = 1−DTW norm
n,m . (11.9)

11.3. Results

11.3.1. Data set

In Table 11.1 the results of the data set from Chapter 5.4 are shown. The results were
divided into the studies Galit, Hausdorff, Silvi, and total. Within these studies, the
study subjects were separated according to the control group (CO) and Parkinson’s
disease (PD). It is noticeable that the results of the discrete symmetry calculation are
similar to the DTW. Parkinson’s disease groups in the studies show a higher asymmetry
[Yogev2005, Hausdorff2007, Frenkel2005]. We have calculated the average value x̄ and
the standard deviation s.

11.3.2. Theoretical cases

In this section, we compare the results of the discrete methods and the DTW for the two
feet of the theoretical signals. Figure 11.3 the path of the DTW from the signals are
shown:

(a) Regular stride,

(b) Identical strides,
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Table 11.1.: Results of the data set Galit (Ga), Hausdorff (Ju), Silvi (Si), and total for
features Ratio index (RI), Symmetry index (SI), Gait asymmetry (GA),
Symmetry angle (SA), and Normalized dynamic time warping symmetry
(NDTWS).

Study RI SI GA SA NDTWS
x̄± s x̄± s x̄± s x̄± s x̄± s

Gal CO 0.947± 0.028 0.938± 0.044 0.929± 0.068 0.981± 0.012 0.952± 0.020
Gal PD 0.942± 0.026 0.934± 0.033 0.931± 0.036 0.979± 0.010 0.960± 0.017

Hau CO 0.963± 0.008 0.960± 0.009 0.959± 0.010 0.987± 0.003 0.957± 0.017
Hau PD 0.953± 0.016 0.948± 0.019 0.947± 0.022 0.984± 0.006 0.955± 0.017

Sil CO 0.968± 0.025 0.964± 0.040 0.959± 0.062 0.989± 0.011 0.959± 0.018
Sil PD 0.941± 0.039 0.929± 0.062 0.919± 0.096 0.978± 0.017 0.954± 0.019

All CO 0.955± 0.016 0.949± 0.021 0.947± 0.025 0.984± 0.006 0.960± 0.018
Total PD 0.949± 0.027 0.942± 0.039 0.938± 0.055 0.982± 0.011 0.960± 0.016

(c) Amplitude shifted strides,

(d) Uniform amplitude shifted,

(e) Heel strike and toe off with same force on left foot, right foot fewer force, and

(f) Left foot has heel strike more force then toe off, right foot has toe off more force
then heel strike.

The results for these signals are shown in Table 11.2. It can be seen that the discrete
methods cannot correctly calculate the signals (c), (d), (e), and (f).

Table 11.2.: Results of the theoretical cases.

Signal RI SI GA SA NDTWS
a 0.978 0.978 0.993 0.978 0.99
b 1.0 1.0 1.0 1.0 1.0
c 0.978 0.978 0.993 0.978 0.78
d − − − − 0.01
e 1.0 1.0 1.0 1.0 0.92
f 1.0 1.0 1.0 1.0 0.98
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Figure 11.3.: Results of the DTW symmetry. (a) regular stride time series; (b) identical
stride of right and left foot; (c) amplified, shifted strides; (d) uniform
amplitude shifted; (e) heel strike and toe off with same force on left foot,
right foot fewer force; (f) left foot has heel strike more force then toe off,
right foot has toe off more force then heel strike.
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12
Classification of motor dysfunctions in

arm swing

Most of the research on gait analysis deals with the analysis of leg motion [Mazumder2018a,
Jasni2019, Stoelben2019, Balzer2018, Prakash2019, Steinmetzer2018, Steinmetzer2019a].
However, the analysis of the arm movement is also important for the assessment of a gait
disorder. Stationary systems that use cameras or ultrasound [Ospina2018, Spasojevic2015]
[Baron2018, Lewek2010, Tsipouras2012, Castano2018, Dranca2018, Castano2019]
[Roggendorf2012] but only a few mobile systems with inertial sensors [Huang2012,
Bertomeu2015, Viteckova2016] are used to measure the arm swing. Therefore, this
chapter explains how to classify motor dysfunctions in arm swing.

12.1. Reletaed works

By [Ospina2018], the arm swings of Parkinson’s patients and healthy persons with the
help of a Kinect camera were compared. Significant differences in amplitude and speed
were observed. The arm movements of Parkinson’s patients also often showed asymmetry.
The Parkinson’s disease group showed significant reductions in arm swing magnitude
(left, p = 0.002; right, p = 0.006) and arm swing speed (left, p = 0.002; right, p = 0.004)
and significantly greater arm swing asymmetry (p < 0.001). An accuracy of more than
90 % in distinguishing healthy people from persons with Parkinson’s disease was also
achieved using a Kinect camera by [Spasojevic2015]. Classification between healthy and
non-healthy subjects is performed based on the five most relevant features and the two
newly obtained features from linear discriminant analysis, using four different classifiers,
support vector machine, multilayer perceptron, the radial basis neural network, and k
nearest neighbor. Using the motion capture system Motek CAREN by [Baron2018], it was
detected that Parkinson’s patients have a different jerk and arm swing length compared
to healthy people. The fact that Parkinson’s patients in the early stages have a larger arm
swing asymmetry could be confirmed by [Lewek2010] with the Vicon and the Baton Rouge
motion lab system. The p-value for distinguishing healthy individuals from individuals
with Parkinson’s disease was 0.003. A Kinect system was used by [Castano2018] to detect
the differences in speed, amplitude, and symmetry in arm movement between healthy
people and people in the early stages of Parkinson’s disease. By [Dranca2018], it was
investigated which model method provided the best results when using a Kinect to detect
Parkinson’s disease stages.
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The best results with an accuracy of 93.4 % were obtained with a special Bayesian
network classifier using 10-fold cross-validation. The relevant features were related to left
shin angles, left humerus angles, frontal and lateral bends, left forearm angles, and the
number of steps during a spin. For the recordings by [Castano2019], a Kinect system was
used in combination with an e-Motion capture program. The proposed system classifies
PD into three different stages related to the freezing of gait. An accuracy of 93.4 % was
reached using the features of the movement and position of the left arm, the trunk position
for slightly displaced walking sequences, and the left shin angle for straight walking
sequences. However, they obtained a better accuracy of 96.23 % for a classifier that only
used features extracted from slightly displaced walking steps and spin walking steps.

By [Tsipouras2012], an automatic method for the treatment of levodopa-induced
dyskinesia was developed. Gyroscopes were used on the abdomen and chest and the
abdomen, chest, wrists, and ankles. In general, an average detection rate of 90 % for
Parkinson’s patients was achieved, and the average detection rate and the precision of
the individual classes were 80 % and 77 %, respectively. Several classification techniques
have been used for levodopa-induceddyskinesia assessment, including the naive Bayes
classifier, k nearest neighbor, fuzzy lattice reasoning, decision trees, random forests, and
neural networks using a multilayer perceptron.

The method used by [Roggendorf2012] consisted of guiding patients with early Parkin-
son’s on a treadmill and measuring their movements with an ultrasound device on each
side. The results were a reduced arm swing amplitude in the patients and a longer stride
length compared to healthy people.

By [Huang2012], a sensor unit was used on each forearm. This sensor unit consisted of
two triaxial G-Link accelerometers that were attached to an aluminum bar. Arm swing
asymmetry, maximal cross-correlation, and instantaneous relative phase of bilateral arm
swing were compared between PD and controls. PD subjects demonstrated significantly
higher arm swing asymmetry (p = 0.002) and lower maximal cross-correlation (p < 0.001)
than controls.

An accelerometer was placed on the upper arm, as well as a magnetic angular rate
and gravity device on the shoulder by [Bertomeu2015]. The Denavit–Hartenberg model
was used, and the algorithm was based on the pseudoinverse of the Jacobian by the
acceleration of the upper arm. The accuracy of this method was demonstrated by the
use of an optoelectronic system for control purposes.

A similar system to the one we developed was used by [Viteckova2016] with nearly
the same sensors and sensor position. An eigenvector method was suggested to compare
the axes of the left and right hand. The results showed a difference between people with
Parkinson’s disease and healthy people.

12.1.1. Methodology

After, we have presented our material and methods, we will now discuss in this section
how we applied these methods. In the presentation of the data set, we already said that
we divided our recording into two different parts. First, we classified Parts (A) and (B),
which comprised the complete recording of the TUG test, see Chapter 5.3. The other
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scenario was that we only used Part (B). In Part (B), only the gait was used. Figure 12.1
shows the complete algorithm of the classification. In principle, we distinguished between
the signals of the Euler angles and the linear acceleration. First, we removed the jumps
within a signal of the Euler angles and then calculated the derivation of the signal. This
made the signal more comparable. These steps were not necessary for linear acceleration.
Then, we set the signals to a uniform length. This was necessary so that the signals
could be interpreted by CNN later during classification. After resampling, we calculated
the wavelet transformation for each individual signal. We used the resulting scalograms
for the classification. In the classifications, we analyzed three different cases. At first, we
classified each signal individually by CNN. This allowed us to show which axis of the
sensors was very important. In the second case of classification, we used the three best
signals for a multi-channel CNN. The third case was that we used the three best signals
for classification by voting.

linear

acceleration

Euler

angles

Figure 12.1.: Classification process for detecting motor dysfunctions in arm swinging.

12.2. Methods

12.2.1. Removing jumps

Figure 4.9 shows that some jumps existed in the signal of the z-axis of the Euler angle.
This was because the value range of the sensor was between 0 ◦ and 360 ◦. This made the
signal unstable. To correct this, we removed all jumps that were greater than a threshold
of 300 ◦. In equation 12.1, our procedure is shown. If the absolute value of the difference
of two successive sensor values |xi−xi+1| > 300, a correction of the signal was performed,
where i ∈ {1, ..., N}. N indicates the length of the signal. The result of the cleanup is
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given in Figure 12.2.

xi+1 =

{
xi+1 − 360 for xi < xi+1

xi+1 + 360 for xi > xi+1

(12.1)
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Figure 12.2.: Euler angles without jumps.

12.2.2. Derivation

It was not possible to create a classifier that could classify the subjects with motor and
without motor dysfunctions by using the Euler angles, because the Euler angles were
measured in absolute values. This means that the angles were not calibrated to a starting
value at the beginning of the recording. For this reason, we calculated the derivative of
each axis of the Euler angles. For this purpose, we calculated the difference between
two successive measured values. The equation of the first order discrete derivative can
be seen in equation 12.2, where N is the signal’s length, xi is the signal at index i,
and x′i is the value for the difference at i. The result of the derivation can be seen in
Figure 12.3. The derivation makes the signals more comparable for different recordings.
This is because the derivation uses the relative angle.

X ′i = xi+1 − xi, i ∈ {1, 2, ..., (N − 1)} (12.2)

12.2.3. Resampling

Before CNN can interpret the data, the signal must have a uniform length. In order
to do this, we resampled the data to a length of 512 values. For resampling, we used the
Python library SciPy [Virtanen2019].

12.2.4. Wavelet Transformation

When considering static signals, the Fourier transformation is very well suited. There are
hardly any static signals in the real world. Every signal changes its frequency dynamically
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Figure 12.3.: Derivation of the Euler angles.

in time. This also applies to the human gait. The gait is a dynamic process. For this
reason, it does not make sense to use Fourier analysis.

The origin of the data was a temporal series; therefore, we preferred the use of the
wavelet transform in order to increase the information, by decomposition of the time-
frequency. After the experiments, the accuracy showed a useful feature extracted from
this transform. For the wavelet transformation, a signal was convoluted with a wavelet
template. By selecting the kernel, we ensured that the ranges around 1.2 Hz, which
is the frequency of the arm swing [Hausdorff1998], had a high amplitude. With this
template, we calculated the wavelet transformation over the complete signal. In our case,
these were the x-, y-, and z-axes of the derived Euler angle and the x-, y-, and z-axes
of the linear acceleration of both wristbands. Figure 12.4 shows the scalograms of the
individual signals of one wristband. On the y-axis, the frequencies are shown in Hertz
and on the x-axis the time in seconds. For the calculation of the wavelet transformations,
we used the Python library PyWavelets [Lee2019]. Figure 12.4 a) ,c) , and e) corresponds
to the x-, y-, and z-axes of the derived Euler angles. We calculated for each signal the
continuous wavelet transformation with the Morlet wavelet. It can be seen that there
was a high amplitude from 0.25 Hz. In the lower frequency data < 0.25, the individual
arm swings can be seen. Figure 12.4 b), d), and f) reflects the x-, y-, and z-axes of linear
acceleration. We calculated for each signal the continuous wavelet transformation with
the Morlet wavelet. With these data, it can be seen that the largest amplitude was in
the range of 1 Hz. This corresponds to the natural arm swing since this corresponds to a
frequency of approximately 1.2 Hz [Hausdorff1998].

12.2.5. Convolutional neural network

In image classification, as well as other signals, the application of CNNs has been very
successful. The difference from common neuronal networks is that a CNN searches for
a local pattern in the input signal. When using multiple CNN layers, one after the
other, larger patterns can be detected [Abadi2016, Sze2017]. Thus, a CNN often provides
better classification results than neuronal network. In our case, we achieved the best
results with the use of three convolution layers. Then, we applied one neuronal network
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Figure 12.4.: (Scalograms of the individual signals for (a) x-axis of the derived Euler
angle; (b) y-axis of the derived Euler angle; (c) z-axis of the derived Euler
angle; (d) x-axis of linear acceleration; (e) y-axis of linear acceleration; and
(f) z-axis of linear acceleration.

with three encoders and one decoder. Our used CNN with the configuration is shown in
Figure 12.5. We used Python and the Keras library to create the CNN [Chollet2015].
We obtained the architecture for our CNN by systematically testing. We wanted to keep
the number of CNN layers as small as possible. However, with less than three layers, no
useful results were available.

In order to have a useful input for the CNN, we resampled the signal to a uniform
length of 512 values; see Section 12.2.3. We then applied a wavelet transformation to the
signal; see Section 12.2.4. This gave us a 128× 512 matrix for the signal. We used this
matrix as input for the CNN. As the activation function, we used the ReLU function
for all convolution layers. We also used the ReLU function in the hidden layers of the
encoder and decoder. The equation of the ReLU function can be seen in equation 9.7.
The characteristic of the ReLU function is that the weight of the output is not negative.
In the output layer, we used the sigmoid function, see equation 9.8. After each convolution
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Figure 12.5.: Construction of a single signal CNN for classification.

layer, we performed a two-dimensional max-pooling with a pool size of 2× 2 and a drop
out with a probability of 0.2.

The first convolutional layer searched for the smallest pattern from the signal. For con-
volution, we used a 3 × 3 matrix. In total, we created 64 different filters in the first
convolutional layer. In the second convolutional layer, we increased our kernel size to
5 × 5 and created 64 filters again. The third convolutional layer had a kernel size of
7× 7, and the filters created were reduced to 32 pieces. After the convolutional layers,
we used a flatten layer so that the signal could be interpreted by the dense layers. In the
dense layers, we started with three encoder layers with 100, 50, and 10 neurons, followed
by a decoder layer with 30 neurons. Finally, we obtained our prediction in the output
layer. Since we had a binary problem, a single neuron was used. For the training of the
models, we used a batch size of 50 and 50 epochs. For training, we used an Intel Core
i7-6700HQ with 2.6 GHz with four cores. Furthermore, the system used 16 GB RAM.
The computer required approximately 45 min to train a model.

12.2.6. Multi-Channel CNN

In the last section, we presented our architecture for a single signal. To achieve better
and more robust results, we wanted to use multiple channels x, y Euler angles, and x of
linear acceleration for classification because these signals have the most characteristics of
the gait. For this reason, we created an m-dimensional input. For the third dimension,
we used the number of m different signals used. Figure 12.6 shows the construction.
Another difference was that the first convolutional layer created 128 filters. The model
was similar to the one in Figure 12.5. The computer required approximately 2 h to train
a model. By using multiple channels, the classification result should be higher and more
robust.

12.2.7. Weight voting

The multi-channel CNN was trained with 3 signals at the same time. The difference in
voting was that for each signal, a separate model was trained, which was independent of
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Figure 12.6.: Construction of a 3-channel CNN to use three different signals for classifi-
cation.

the other models. In our case, we had a binary problem, so the calculation for the voting
was easy. We used the predicted classes and calculated the average of all predictions;
see equation (12.3), where mi is the prediction of a model from a classifier and M is the
number of classifiers.

v =
1

M

M∑

i=1

mi, i ∈ {1, 2, ...,M} (12.3)

If v ≥ 0.5, then the predicted class is motor dysfunctions (MD) and in all other cases,
no MD; see equation (12.4).

prediction =

{
MD, v ≥ 0.5

noMD, v < 0.5
(12.4)

12.3. Results

12.3.1. Parts (A) and (B) of TUG

Single layer

To find out which sensor data were particularly useful for classification, we first separated
all signals from each other. The results are shown in Table 12.1. In the table, we applied
three-fold cross-validation to the sensor data. Furthermore, we optically separated the
results from the Euler angles and the linear acceleration with a double line. For each
signal, we calculated the precision, specificity, recall, F1-score, and accuracy. In every
cell, we show the mean

x̄ =
1

N

N∑

i=1

xi, i ∈ {1, 2, ..., N} (12.5)

plus or minus the standard deviation
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s =

√√√√ 1

1−N
N∑

i=1

(xi − x̄)2, i ∈ {1, 2, ..., N} (12.6)

, where N is the length of the signal. The columns with the best results are highlighted
with bold. It can be seen that the x-axis of the Euler angle and the x-axis of the linear
acceleration produced the best results. Furthermore, it can be seen that the z-axis of the
Euler angle and linear acceleration provided the lowest results.

Table 12.1.: Results of a single signal by CNN classification. Parts (A) and (B) of the
TUG test are used, see Chapter 5.3.

Signal Sensitivity Specificity Recall F1-Score Accuracy
x Euler angles 0.918 0.939 0.887 0.898 0.928

±0.071 ±0.043 ±0.085 ±0.017 ±0.009
y Euler angles 0.891 0.874 0.775 0.829 0.882

±0.014 ±0.016 ±0.072 ±0.047 ±0.009
z Euler angles 0.57 0.844 0.606 0.587 0.821

±0.505 ±0.186 ±0.527 ±0.514 ±0.173
x linear acceleration 0.907 0.901 0.846 0.873 0.908

±0.101 ±0.048 ±0.036 ±0.046 ±0.015
y linear acceleration 0.857 0.888 0.841 0.848 0.877

±0.031 ±0.056 ±0.066 ±0.032 ±0.027
z linear acceleration 0.795 0.863 0.74 0.761 0.841

±0.118 ±0.044 ±0.043 ±0.037 ±0.009

Signal combination

In order to get better results in the classification, we decided to combine the individual
layers. For the combination, there were several possibilities. On the one hand, it was
possible to use an ensemble classifier like voting. On the other hand, we could use a multi-
channel CNN. In Table 12.1, the x-axis of the Euler angles and the linear acceleration
produced the best results. The third was the Euler angles of the y-axis. In this section,
we used these three signals to improve our results. The results are shown in Table 12.2.
We again used three-fold cross-validation for our results. Each cell represented the result
as x̄± s, see equations 12.5 and 12.6.

Table 12.2 shows the results of the signal combination classification. The three channel
CNN achieved better results than the three signal voting. The three channel CNN was
also better than any signal in Table 12.1.
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Table 12.2.: Classification results by combining the x- and y-axis of Euler angles and the
x-axis of linear acceleration. Parts (A) and (B) of the TUG test are used,
see Chapter 5.3.

Layer Sensitivity Specificity Recall F1-Score Accuracy
3 channel CNN 0.934 0.932 0.899 0.928 0.933

±0.047 ±0.013 ±0.026 ±0.043 ±0.024
3 signal voting 0.915 0.9 0.821 0.862 0.902

±0.078 ±0.02 ±0.052 ±0.026 ±0.018

12.3.2. Part (B) of TUG

Single layer

In this section, we present our results if only Part (B) of the TUG test was used for
classification. In Table 12.3, you can see the results for a CNN classification for each axis
of the sensors. As in Section 12.3.1, we used three-fold cross-validation and calculated
the average x̄ plus or minus the standard deviation s. The best results for each sensor
and each column are marked with bold. Like the analysis of the complete TUG test,
the x-axis provided the best results for Euler angles and linear acceleration. However,
the results were not as accurate as in Section 12.3.1.

Table 12.3.: Results of a single signal by CNN classification. Only Part (B) of the TUG
test is used, see Chapter 5.3.

Signal Sensitivity Specificity Recall F1-Score Accuracy
x Euler angles 0.873 0.899 0.822 0.844 0.887

±0.027 ±0.043 ±0.088 ±0.039 ±0.018
y Euler angles 0.793 0.855 0.756 0.772 0.831

±0.037 ±0.016 ±0.046 ±0.006 ±0.015
z Euler angles 0.763 0.943 0.904 0.809 0.821

±0.202 ±0.049 ±0.088 ±0.099 ±0.138
x linear acceleration 0.909 0.9 0.822 0.862 0.903

±0.012 ±0.044 ±0.088 ±0.053 ±0.032
y linear acceleration 0.804 0.832 0.705 0.748 0.821

±0.041 ±0.043 ±0.078 ±0.033 ±0.024
z linear acceleration 0.563 0.794 0.508 0.52 0.774

±0.496 ±0.147 ±0.468 ±0.453 ±0.111

Signal combination

Table 12.4 shows the results of the signal combination of Part (B) of the TUG test. For the
results, three-fold cross-validation was applied and for each cell, and the average x̄ plus or
minus the standard deviation s was calculated. The three signal voting performed best.
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However, the results were marginally better than the single signal CNN classification in
Table 12.3. Furthermore, the results were not as good as if the complete TUG test was
used for the classification.

Table 12.4.: Classification results by combining the x- and y-axis of Euler angles and the
x-axis of linear acceleration. Only Part (B) of the TUG test is used, see
Chapter 5.3.

Layer Sensitivity Specificity Recall F1-Score Accuracy
3 layer CNN 0.888 0.847 0.677 0.766 0.856

±0.045 ±0.027 ±0.065 ±0.042 ±0.024
3 signal voting 0.914 0.901 0.822 0.863 0.903

±0.03 ±0.043 ±0.088 ±0.04 ±0.024
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13
Clustering of Parkinson’s stadium

In this chapter, we use minimalistic sensor data to perform clustering based on the
Parkinson’s stadium. For this reason, we use only one axis from an insole. A problem
with Parkinson’s disease is that the stadium is often subjectively assessed. For this
reason, we want to develop a system that supports the treating physician in his diagnosis
and provides empirical measurement data. Because each person needs a different length
for each stride, it would be impossible to work with the correlations without compressing
or stretching the data, which would mean data manipulation. The advantage of the
DTW algorithm is that a distance between two time series of different lengths can be
calculated. As smaller this distance is, the more similar these time series are. The DTW
algorithm calculates the ideal path between two time series.

13.1. Related works

This work is intended to make a further contribution to the analysis of gait disorders in
Parkinson’s disease. The aim is to support the treating physician in diagnosis and in assess-
ing the severity of the movement disorder. The use of different sensors has proven useful in
the analysis of human gait for many years [Boix2018]. In the first years, single or multiple
cameras were often used to identify individuals by their gait [Kale2003, Boulgouris2005].
The Dynamic Time Warping (DTW) method has proven to be particularly useful
in distinguishing the gait of individuals [Veeraraghavan2006, Muscillo2007]. Cameras
were also used for the analysis of gait changes in neurodegenerative diseases. How-
ever, the accuracy is only sufficient to distinguish between healthy and sick persons
[Rocha2015]. In recent years acceleration, gyroscope, and magnet sensors, Inertial Mea-
surement Unit (IMU), have been used to analyze of movement disorders in Parkinson’s
disease[Ferrari2016, Ferster2015]. In [Ferrari2016], the Kalman filter is used to identify
the gait asymmetry. The Fast Fourier Transformation (FFT) is used in [Ferster2015] to
detect the freezing phases. Newest research again uses DTW, for example, for the seg-
mentation of gait sequences [Haji2018] and recognition of asymmetry in gait [Barth2017].
For the detection of freezing phases, which occur mainly during turns, the turn was
analyzed [Ferster2015, Haji2018]. In this chapter, the movement disorder stage is not to
be determined based on individual characteristics such as asymmetry or freezing, but
rather as the combination of all single disorders. The IMU sensors have been mounted on
the shoe[Ferrari2016] or on the ankle [Ferster2015, Haji2018, Barth2017]. In this case,
the sensor may slip during walking. This makes it difficult to detect the time point when
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the foot touches the ground. For a more robust stride detection, we have integrated the
sensor into an insole.

13.2. Methods

13.2.1. Preprocessing

For the present analysis, we used only the left insole’s data, namely the linear acceleration
of the y-axis, see Figure 13.1, for example, the forward acceleration, see Figure 4.5. The
stride segmentation was performed with Min-Max Pattern (MMP) of Chapter 9.2.2 -
Stride detection. The result of the stride detection can be seen in Figure 13.1. The
starting point of a stride is the maximum value of the gait cycle in the figure the black
lines. We use the complete straight walking. Start and end point of the complete straight
walking analysis are marked with red lines in Figure 13.1. They are obtained by adding
the average duration of a stride to the first or last detected maximum.

Figure 13.1.: Acceleration data of the y-axis and segmentation of the strides. The black
lines indicate the start and end of a stride. The red lines indicate the
start and end of a recording, a healthy subject a) and Parkinson’s diasease
subject b).

106



13.2.2. Dynamic time warping

Standard distance measures like Euclidean distance are not suitable to measure the
distance between two time series, since the measured values are displaced in time, or
the time series has a different length. For this reason, we used the DTW algorithm, see
Chapter 11 - Symmetry.

13.2.3. Clustering

We performed hierarchical clustering [Handl2002]. Based on the distance of all single
strides between two persons. This distance is obtained as the distance of all strides during
the TUG for the two recordings. We performed hierarchical clustering according to the
Complete-Linkage method and the Single-Linkage method and used the agglomerative
algorithm.

In Figure 13.2, the result of clustering for strides with Single-Linkage of both subjects
from section 13.2.1 can be seen. For easy understanding, the start, turn, and end of the
recording are omitted, see Figure 13.3, white line and only single strides were used here.
Here can be seen clearly that two large clusters were formed and one smaller one.

The result is shown in Figure 13.3. The green and red clusters show that the persons
can be clearly distinguished from each other. Furthermore, even incorrectly interpreted
strides in the blue cluster could be marked. These data are outliers from segmentation.
Only one stride from HS is in the wrong cluster.

13.3. Results

We clustered the data with the hierarchical clustering method using the complete linkage
and the DTW for distance measurement. For the analysis, we used all persons and the
complete walking phase, see Figure 13.1 red lines. The result is shown in the dendrogram
in Figure 13.5. In the dendrogram, we indicate the distances of the DTW algorithm
of the clusters to each other on the y-axis. On the x-axis, we have marked each data
set with the identification number (id) and the Parkinson stadium. This should help
to understand the coherence of the data better. We have chosen a distance of 440 as a
threshold to form the clusters because the results are very plausible in this constellation.
This threshold gives us seven clusters as a result.

Tables 13.1 and 13.2 show confusion matrices for the result of the clustering of persons,
Table 13.1, or recordings, Table 13.2. In Table 13.1, we have placed a confusion matrix
for which only id’s within clusters were displayed. It can be seen that the sensitivity is
57 %, and the specificity 90 %. At first glance, the sensitivity appears very low. However,
it must be taken into account that the majority of the test cases are Parkinson’s disease
subjects, which were very well adjusted and showed hardly any motor dysfunctions, see
Table 13.3. The specificity, on the other hand, is very convincing. The confusion matrix
in Table 13.2 contains all recordings used during clustering. Here the sensitivity is 55 %
and the specificity 92 %. The same reasoning applies here as to the confusion matrix in
Table 13.1.
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Figure 13.2.: The dendrogram shows the results of the cluster analysis. The strides of a
healthy person (green) and a person with Parkinson’s disease (red) were
clustered. It can clearly be seen that two large clusters form and contain
one smaller with outliers (blue).

Table 13.1.: Confusion matrix by id.

PD stadium positiv PD stadium negativ
∑

Clustering positiv 11 2 14
Clustering negativ 8 19 32∑

19 21 46

We will take a closer look at the individual clusters, see Table 13.3 and Figure 13.5, and
explain conspicuous assignments of data sets to clusters. The first green cluster contains
mostly healthy and Parkinson’s disease subjects, which do not have any particular motor
disorders. The only exception is set (24,2.0), a Parkinson’s disease subject, recorded on
the day of his discharge from hospital. As a result, the Parkinson’s disease subject was
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Figure 13.3.: Cluster result of healthy a) and Parkinson’s disease b) subjects colored. the
green cluster strides of healthy subject; red strides of Parkinson’s disease
subject; outliers are blue.

Table 13.2.: Confusion matrix by recording.

PD stadium positiv PD stadium negativ
∑

Clustering positiv 25 4 29
Clustering negativ 20 49 69∑

45 53 98

optimally adjusted to the new medication and had no symptoms. The second (red) cluster
consists of healthy and Parkinson’s disease subjects, which have no particular motor
abnormalities. Here the Parkinson’s disease subject (7, 3.0) stands out in particular. At
the time of admission, this subject was newly adjusted to his medication. As a result,
it was overdosed and over-movable. The third (turquoise) cluster consists only of test
subjects of stadium one. According to our records, the subject (10, 0) has a moderate
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tremor but was set to Parkinson’s stage zero by the medical doctor treating him. Cluster
four (violet) contains only Parkinson’s patients of stage three, where the healthy subject
(31, 0) is noticeable. The healthy subject has arthrosis in the legs and therefore had a
high motor dysfunction. In clusters five blue, six yellow, and seven black, all Parkinson’s
disease subjects are assigned to the correct cluster, see Table 13.3.

Table 13.3.: Outstanding subjects

(Id, Stadium) Cluster Symptome
(48, nan) 1 No information about symptoms, fast-moving, and

no apparent gait disorder.
(28, nan) 1 No information about symptoms, fast-moving, and

no apparent gait disorder.
(24, 2) 1 Light hypokinesis, tremor slightly dominant on the

right, light postural instability, new setting of
medication, and recording on day of discharge from
hospital.

(51, nan) 1 Tremor hand right, and no apparent gait disorder.
(50, nan) 2 No information about symptoms, and no apparent

gait disorder.
(8, 1) 2 Rigor, and tremor.
(7, 3) 2 Over-movable due to overdosing.
(47, nan) 2 No information about symptoms, and no apparent

gait disorder.
(10, 0) 3 Moderate tremor, and stadium 0 by doctor.
(29, nan) 4 Self-help group.
(49, nan) 4 Self-help group, light Tremor left, and medium

postural instability.
(19, nan) 4 Self-help group, and tremor left.
(31, 0) 4 Artrosis in the legs.

In Figure 13.4, all time series data of the respective clusters are displayed jointly. The
coincidence of pattern and time required to complete the TUG test within a cluster can
be recognized in these diagrams.
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Figure 13.4.: Time series of the clusters separately according to their assignment.
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Figure 13.5.
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14
Discussion

14.1. Hardware

As already shown in the state of the art, there are a multitude number of gait analysis
systems [Muro2014, Buckley2019, Sprager2015, Taborri2016, Ferrari2013, Muro2014].
Furthermore, other work has mostly been limited to the analysis of the lower extremities
and do not use a combination of wristband and insoles. However, this system still has
two wristbands. These provide additional data of the upper extremities. Also, the used
sensors are limited. Nevertheless, in this work, a system was created consisting of two
insoles and two bracelets. What makes this system unique. The system used ten force
sensors and an IMU sensor integrated into each insole and an IMU sensor integrated into
each wrist band. In the literature research, no comparable system could be found.

Besides, we were able to produce insoles and wristbands for the hardware by using 3D
printing. A disadvantage of this system is that the electronics in the used prototypes
were soldered by hand. This resulted in cold solder joints or that the contact can broken.

14.2. Activity recognition

By developing an Android app for activity recognition, we were able to show that a
smartphone can distinguish between activity gait and other activities such as standing,
lying, cycling, or writing messages. With an accuracy of 94.7 %, we obtain similar results
to other researchers [Hassan2018, Cao2018]. Activity recognition allows us to switch on
the wearable sensors, and data recording only activity gait is recognized. This method is
an energy-efficient solution.

14.3. Synchronization

Furthermore, we present a solution to synchronize several wearables sensors. In the
literature, this problem has already been recognized, and there were several approaches.
However, the problem is that the devices of Mbientlab can only synchronize three devices
[Anwary2018b]. We synchronize four wearables for four extremities. Another solution
was to synchronize the time during charging by cable [Mancini2011]. However, this
solution has the disadvantage that in more extended use, a drift of the clock occurs. We
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synchronize the wearables before each recording (recognition of activity gait). This way,
we start each recording without drift of the clock.

14.4. Stride detection

In our opinion, the stride detection is a critical point in the analysis of the human gait,
since all further parameters are inside this. If a stride is not well recognized, further
mistakes will occur in a more detailed analysis. The presented methods have shown that
the problem of stride detection can be solved with many different methods. AF+CNN
achieved the best performance in our tests. The advantage of the AF+CNN classifier is
that it does not require a threshold value. Furthermore, the Automatic framing algorithm
makes it possible to analyze the data during recording. Furthermore, we have shown
that the combination of force and IMU sensors can increase the results even more so
that our test produce small errors. As comfortable to carry measuring instruments for
persons with motoric dysfunctions as in Parkinson’s disease, we propose a combination
of force and IMU sensors. As an automatic stride detection process for daily life use, we
propose a joint of Automatic framing, normalization, resampling, and CNN.

14.5. Gait features

With the results of the Gait features we could confirm the results of other works
[Rampp2014, Salarian2004, Ferster2015, Wang2015, Hsu2014, Bamberg2008, Rampp2014,
Tunca2017, Sijobert2015, Mariani2010, Ferrari2015, Salarian2004, Ferster2015, Wang2015,
Hsu2014]. The features step length, step height, number of steps, step duration, duration
of the stance phase and swing phase, and times of Heel Strike, middle stance phase, toe
off, and middle swing phase could be added. These features are useful for the physician
to detect gait disorders, as they are also used to make diagnoses. The features can also
be used for classification.

14.6. Symmetry

In most of the papers dealing with symmetry, they use the stride length, stride duration,
and different gait phases to calculate the ratio of the left and right leg [Barth2015,
Hannink2018, Watanabe2018, Jiang2018]. In contrast, our symmetry calculation consid-
ers the complete time series. However, the synchronization of the sensors is essential for
this. For stride detection, we use a combination of automatic framing and CNN. The
use of CNN’s for stride detection has proven to be very useful for us. Other work has
already been able to benefit from the technology [Steinmetzer2019a]. The symmetry of
the legs is analyzed with DTW. In the results we show that the results for RI, SI, GA,
SA, and DTW are very similar for the given data set. The results confirm the results of
other studies [Blazkiewicz2014, Hubble2015].
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However, the weaknesses of the discrete symmetry calculation are visible in the results
in section 11.3.2. If the parameters were chosen incorrectly in the symmetry calculation,
asymmetries of the gait may not be visible. We could demonstrate this phenomenon in
the second part of the results. In figure 11.3 at (c), (e), and (f) the discrete symmetry was
always 1.0, but the signals were different in the amplitude. These differences could not be
measured. By using our presented method, the whole signal was used for the symmetry
calculation. Thus, it was possible to calculate not only the symmetry differences in the
time as well as in the amplitude domain. For discrete symmetry calculation, a wide
spectrum of features is important for a robust symmetry calculation. With our proposed
method this is not necessary. We were able to demonstrate that our presented method is
a useful extension for the calculation of gait symmetry with wearable sensors.

14.7. Classification of motor dysfunctions

In Tables 12.1 and 12.3, the x-axis always shows the best results of the arm swing
analysis. The x-axis corresponds to the movement in the sagittal plane. According to
the literature, the essential human gait characteristics are also present in this plane
[Zhang2007, Tafazzoli2010]. For this reason, it is a logical conclusion that the features
with the highest significance are present on this axis. We compared the results with
the complete TUG test, Parts (A) and (B), was used for the classification, as well as
if we only used the gait, Part (B), for the classification. The results showed that for
the classification of motor dysfunctions, the gait alone gave quite good results with an
accuracy of 90.3%. However, when looking at the complete test, we obtained even better
results with 93.3% accuracy. From this, we concluded that the complete TUG test was
necessary for the analysis of motor dysfunctions.

Furthermore, we classified each signal separately. During the classification, we found
out that the x-axis of the Euler angle and linear acceleration gave the best results,
independent of whether Parts (A) and (B), as well as only Part (B), were used for the
classification. From this, we concluded that the x-axis was the most relevant.

The conclusion was that we obtained better results through the combination of the
signals compared to single signals. In the classification of Parts (A) and (B), the three-
channel CNN proved to be the best solution. When classifying with only Part (B),
voting was the best choice. Table 14.1 shows our classification results compared to the
corresponding state of the art. Our results were comparable to the results from large,
expensive, and stationary video-based systems.

Our system delivered better results than the wearable system that also classified the
data [Tsipouras2012]. We could not compare the other works because they focused on a
statistical evaluation of the data. CNN, in combination with wavelet transformations,
was a powerful technique for arm swing analysis.
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Table 14.1.: Comparison of classification results with other works.

Reference Description Accuracy
[Spasojevic2015] Kinect camera 90 %
[Dranca2018] Kinect, Bayesian network 93.4 %
[Castano2019] Kinect and e-Motion capture program 96.23 %
[Tsipouras2012] Gyroscope 90 %

Our system IMU sensors 93.3 %

14.8. Classification of Parkinson’s stadium

Finally, it can be concluded that the sensor insole used for this study is very well suited
for measuring motor dysfunctions. Hierarchical clustering, in combination with Single-
Linkage and DTW, is useful for detecting outliers within a recording. In combination
with Complete-Linkage and DTW, hierarchical clustering makes a clear distinction
between subjects and the stadium of gait disorder. We also demonstrated that the linear
acceleration data at a rate of 100 Hz are sufficient to draw conclusions about a person’s
motor health. With this data rate, it is theoretically even possible to evaluate the data in
real-time. It proved to be sufficient to use only data collected from one foot to distinguish
the different levels of gait disorder.
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15
Conclusion

The central hypothesis for this work is: It is possible to evaluate the success of therapy,
motor disorders, and Parkinson’s stage by using wearables devices in daily life.

For the data analysis, a medical data set was created with Parkinson’s disease patients
and a control group. Another data set was recorded in daily life. These data sets allowed
a detailed analysis of the data. Furthermore, a public data set was used for force sensors.
The results of all data sets were consistent. It was impossible to calculate the success of
the therapy because the sample size of our longitudinal study was too small (one subject).
However, it can be assumed that the presented methods can answer this question if a
suitable data set is available.

It is possible to develop wearable devices to measure the motion of gait in daily life.
In contrast to a complex gait analysis system like the Vicon, a cheap alternative could
be developed, which can be used independently of location. This system consists of two
wristbands with IMU sensors and two insoles with IMU and force sensors. With the IMU
sensors, it is possible to record the motion of the arms and legs. The force sensors allow
us to measure the ground reaction of the feet.

Wearable devices for motion measurement can be synchronized [Steinmetzer2020] and
annex D. For the wearables, a firmware was developed, together with a developed Android
app, it is possible to control the wearables. The app also allows the synchronization
of the wearables with each other. The synchronization enables the calculation of the
gait symmetry on a new level. The synchronization of the wearables is accurate to a
maximum of 3 ms.

The activity Gait can be extracted from all other activities [Steinmetzer2020] and
annex D. Furthermore, our Android app allows the classification of human activities.
The activity Gait is calculated with an accuracy of 94.7 %. The activity detection allows
us to turn on the wearables only when needed. Thus, the wearables are used energy
efficiently.

Strides of healthy and subjects with motor dysfunctions can automatically detect
[Steinmetzer2019a] and annex D. With stride detection by IMU sensors and a CNN
classifier, we could achieve an accuracy of 92 %. If we combined the IMU and FSR
sensors, the accuracy increased to 100 %.

The time series can be used to determine the gait symmetry more precisely than the
discrete symmetry based on several features. The data sets were used to determine
several gait parameters such as stride duration, stride length, stride height, times of gait
phases, and symmetry parameters. Furthermore, a new way of calculating symmetry
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was developed by using DTW. This requires an essential requirement that the wearables
work synchronously, and the single strides of a person are filtered out of the complete
time series.

The time series can be used to determine the Parkinson’s disease stadium. We were
able to achieve a specificity of 92 % [Steinmetzer2018] and annex D. From the insoles
motions analysis, it was possible to identify the Parkinson stadium of the subjects. By
analyzing the arm motion through wavelets, it is possible to make conclusions about motor
dysfunctions in arm swing. We achieved results with 93:3% accuracy [Steinmetzer2019b]
and annex D.

This hypothesis can be partially confirmed. In this thesis, it could be shown that
significant differences in gait characteristics between a Parkinson’s patient and a control
group are present with the help of statistical tests. Furthermore, with the help of hierar-
chical clustering and DTW, the Parkinson stage could be clustered. Motor dysfunctions
in the gait could be determined with the help of wavelet transformation. The presented
methods can be applied in daily life because the activity detection allows the wearables
to work energy-efficient, and the synchronization of the wearables via Bluetooth LE
ensures high data quality.
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16
Future Works

In this work, we show that the developed system works, and we are able to analyze
human gait and motor disorders. So far, the system is only a prototype that consists
of several completed breakout boards. This was only soldered at the correct interfaces.
In the future, a design for an own board should be developed. This could be produced
by machine. This would make the microcontroller less error-prone regarding damaged
solder points. It would also pave the way for an industrial product that can be used for
diagnosis and the measurement of therapeutic success.

In order for the device to be used in medicine, it must also be certified with the
Medical Device Regulation (MDR). For this purpose, the gait analysis system must be
able to calculate valid values. For this reason, the system has to be validated against a
gold standard. Data have already been recorded, but the validation of the data is still
pending. Validation of the data is essential and an important element for further work.
In future works, it should be proved how the symmetry calculation with the DTW works
in multidimensional signals.

With the symmetry calculation with the DTW, we could show that our method
compensates for the weaknesses of the other systems and is a useful extension for
measuring symmetry. For this reason, the method should be further researched. Several
sensor signals should be used simultaneously for the calculation of the symmetry. This
would make the value even more accurate, since not only the ground reaction times are
used. Also, the behavior of the feet in the air through the orientation and acceleration
data.

Finally, the classification of the Parkinson’s disease stadium should also be revised.
Currently, the stadium is only classified according to the y-axis of linear acceleration.
This type of classification is risky because one axis should not rely on one signal alone.
A classification with all gait features of time and spatial domain would be the best way
from the medical point of view. By using simple classifiers such as k nearest neighbor,
decision tree, or Bayes network, the results can be easily understood, and the process is
available to the physician for decision making. This makes the system transparent and
comprehensible.
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1 Introducción

1.1 Antecedentes

En los últimos años, la importancia de análisis de la manera de caminar para apoyar los
diagnósticos médicos ha aumentado significativamente.

Aunque la marcha es básicamente sólo caminar de un lugar a otro la marcha bipedal es
un proceso muy complejo. Los requisitos son diferentes para cada persona y tarea. Si las
manos están libres durante la caminata, pueden apoyar adicional la marcha. Sin embargo,
es dif́ıcil para el cuerpo mantener su equilibrio si tiene que llevar objetos pesados. La
forma de andar depende de la edad, el sexo, la altura, f́ısico, peso, distribución de la
masa, condiciones de vida (qué profesión se tiene o ha realizado), ambiente (un nuevo
lugar o un lugar conocido), condición mental [Gotz2006].

La complejidad de la marcha requiere la interacción del sistema nervioso, los músculos y
el sistema cardio-respiratorio. Por esta razón, las enfermedades también se manifiestan en
el patrón de la forma de caminar [Pirker2017]. Las lesiones, enfermedades o desequilibrios
limitan la movilidad humana. Esto se manifiesta en la pérdida de la salud general
[Lord2013], la calidad de vida [Hirvensalo2000], problemas cognitivos [Verghese2007], y
el riesgo de cáıdas [Beauchet2009]. Desde un punto de vista cĺınico del análisis de la
marcha humana es de particular importancia, debido a que los problemas de marcha
en enfermedades neurodegenerativas, como la esclerosis múltiple, la amiotrófica lateral
esclerosis o la enfermedad de Parkinson, ocurren en un alto porcentaje de la población
de personas mayores [Muro2014].

James Parkinson publicó por primera vez, la descripción de la enfermedad de Parkinson
enfermedad, en su trabajo en 1817. Se presentaron śıntomas como temblores, alteraciones
temporales de la postura, pequeñas zancadas, marcha lenta y riesgo de cáıdas en seis
pacientes diferentes [Parkinson1817]. Hoy en d́ıa la United Parkinson’s Disease Rating
Scale (UPDRS) Part III [Goetz2008] se utiliza para evaluar las habilidades motoras. La
puntuación UPDRS se utiliza para determinar la etapa de la enfermedad de Parkinson
utilizando la escala Hohn Yahr [Hoehn1998]. Por lo tanto, los resultados muestran una
baja fiabilidad entre los mismos [Martinez1994, Richards1994].

Por esta razón, un método basado en sensores para medir los śıntomas motores es
esencial para la evaluación objetiva de la marcha humana. De acuerdo con Maetzler,
un sistema tecnológico utilizado en las prácticas médicas debe tener las siguientes
caracteŕısticas:

• proveer resultados válidos y precisos que sean cĺınicamente relevantes

• contribuir a una decisión terapéutica efectiva

• ofrecen un rango objetivo (es decir, un rango para proveer información adecuada
sobre un tratamiento o curso de la enfermedad)

• permiten un uso fácil y repetitivo para el personal médico y/o los pacientes de la
Enfermedad de Parkinson (PD) [Maetzler2016].
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Por esta razón, el objetivo de esta tesis es el desarrollo de un sistema de sensores en
diferentes partes del cuerpo (wearable), que mide y analiza tanto la función motora de las
piernas como de los brazos con métodos cuantitativos. Aśı debeŕıa ser posible objetivar el
proceso de decisión basado en el andar de las personas y aśı, discernir con más precisión
sobre las disfunciones las disfunciones en la motricidad.

El caṕıtulo 1 de esta tesis explicará la motivación que ha tenido el autor, se presentará
la hipótesis para esta tesis y los objetivos.

1.2 Motivación

En la actualidad, las disfunciones motoras suelen evaluarse mediante el examen visual
de médicos o especialistas en la marcha. Las evaluaciones se basan en la experiencia.
Por lo tanto, la evaluación es subjetiva. Por esta razón, el objetivo de esta tesis es el
desarrollo de un sistema de análisis de la marcha basado en sensores. En el contexto de
la cooperación con la Cĺınica Niederlausitz Senftenberg, se desarrollará un sistema capaz
de objetivar el diagnóstico de pacientes de Parkinson.

El sistema debe ser portátil. Además, debeŕıa ser barato y fácil de usar en la vida diaria.
Las desviaciones de la marcha o el caminar, como la asimetŕıa, es uno de los śıntomas
caracteŕısticos de los pacientes con PD que contribuyen al riesgo de cáıdas [Zhang2018].
El análisis de la marcha debe ser capaz de evaluar la simetŕıa de los pacientes mientras
se mueven, calcular varias caracteŕısticas de la marcha, y evaluar si un paciente tiene
disfunciones motoras.

1.3 Hipótesis

Es posible evaluar el éxito de la terapia, los desórdenes motores y el estadio de Parkinson
mediante el uso de sensores sobre el cuerpo de la persona (o wearables), en la vida
cotidiana

Los siguientes puntos se investigan y se referencian en esta tesis:

1. Es posible crear wearables para la medición del movimiento en el uso de la vida
diaria.

2. Wearables para la medición del movimiento pueden ser sincronizadas.

3. La actividad ”caminar” puede extraerse de todas las actividades de movimiento

4. Los pasos individuales pueden ser extráıdos automáticamente de la serie de tiempo
de los valores medidos.

5. De las series temporales de la marcha se pueden determinarse los valores de simetŕıa
de la marcha más exacto que de las caracteŕısticas de los pasos individuales.

6. De las series temporales de la marcha, se puede determinar el estadio de Parkinson.
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1.4 Objetivos

Con el fin de asegurar una secuencia lineal de trabajo para lograr cada objetivo de manera
coherente, se han definido los siguientes objetivos.

Selección de los sensores: En primer lugar, hay que aclarar qué sensores se utilizan
para el análisis de la marcha. Por esta razón, se deben adquirir conocimientos básicos
sobre los sensores y sistemas para el análisis de la marcha. Basándose en este conocimiento,
una selección de sensores tiene que hacer para resolver el problema.

Crear wearable hardware: La segunda tarea es seleccionar el tipo de hardware y las
posiciones para montarlos en el cuerpo humano.

Cuando se desarrollan los prototipos de hardware, el firmware y una aplicación Android
para controlar los wearables tiene que ser implementada. Cuando la fase de desarrollo
del software es completa, todav́ıa existe el problema de que los wearables no funcionan
de forma sincronizada en el tiempo. Por lo tanto, hay que desarrollar un algoritmo para
resolver este problema.

Study design: El siguiente paso es crear conjuntos de datos que se utilicen para el
análisis de la marcha. Se deben considerar los siguientes escenarios:

1. se creará un conjunto de datos de la vida cotidiana. Por lo tanto, se debe lograr
que con la aplicación Android sólo se reconoce el andar de las personas de todas
las actividades a analizar.

2. se debe crear un conjunto de datos con supervisión médica. A continuación, se
deben realizar el análisis sobre la base de este conjunto de datos. Para que se pueda
recoger el conjunto de datos médicos, se debe definir la prueba de la forma de andar
bajo el punto de vista médico, y se debe obtener la aprobación del comité ético.

Análisis de datos: Primero se deben identificar los pasos individuales. Esta es
la base para el cálculo de varios parámetros de la marcha como la longitud de los
pasos, la altura de los pasos, duración de las fases de la marcha y la simetŕıa de la
marcha. Además, se desarrollarán modelos de la clasificación.

2 Estado del Arte

2.1 Hardware

Ya en 1992, se registró el movimiento y la simetŕıa de las extremidades inferiores con
cámaras y marcadores [Vagenas1992]. Los avances tecnológicos y el desarrollo rentable
de las cámaras de profundidad han abierto nuevas posibilidades para el análisis de
movimiento por Kinect desde 2010. La cámara de profundidad extendió la cámara RGB.
Aśı, la forma de andar podŕıa ser analizada con nuevos métodos [Ince2017].
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Para el análisis de la forma de caminar de las personas, el primer paso es elegir qué
sensores se usarán para el análisis. En principio, aqúı se hace una distinción entre
sistemas lo que se puede llevar y los que no. La segunda categoŕıa del sistema de
análisis de la forma de caminar o marcha, son los wearables. Estos sensores están
conectados al cuerpo o integrados en la ropa. De este modo, es posible analizar la
marcha independientemente de la ubicación. Un sensor de ultrasónido mide la distancia
del sensor a otro objeto. Esto permite medir la distancia entre los pies y la frecuencia
de pasos [Wahab2011]. El electromiograma (EMG) utiliza electrodos para medir la
contracción muscular. Esto hace posible medir los ángulos entre las extremidades. Sin
embargo, los electrodos deben estar siempre conectados al cuerpo, lo que no es adecuado
para la medición en la vida cotidiana. Ya que los electrodos tienen que ser cambiados
después de un cierto peŕıodo de tiempo y por un profesional[Muro2014]. La forma
más común de medir la marcha utilizando wearables son los sensores de la Unidad
de Medición Inercial (IMU). Estos suelen consistir en una combinación de diferentes
sensores: Acelerómetro 3D, giroscopio 3D y magnetómetro 3D. Los datos de los sensores
individuales normalmente se fusionan usando el filtro de Kalman. Esto hace que los
datos sean más robustos. El sensor IMU permite la medición de datos de ángulo
y aceleración [Muro2014, Buckley2019, Sprager2015, Taborri2016]. Esto hace posible
calcular distancias, duraciones de fases de marcha y datos de orientación en ángulos de
Euler. En un estudio, los sensores de la UMI fueron validados contra un sistema basado
en cámaras. El resultado fue que la longitud del paso se correlaciona con el sistema,
pero debe aceptarse una desviación del 5% [Ferrari2013]. Los sensores de Resistencias
Sensibles a la Fuerza (FSR) se usan para medir la reacción de los pies en el suelo. Estos
sensores cambian el valor de la resistencia cuando se les aplica una fuerza. Esto permite
medir la fuerza en diferentes puntos. Con la ayuda de estos sensores, se pueden sacar
conclusiones sobre el movimiento de rodadura del pie y la distribución de la fuerza en el
cuerpo [Muro2014]. En esta tesis se eligió un sistema compuesto por sensores IMU y FSR.
Los sensores IMU son baratos en contraste con un sistema basado en cámaras, ahorran
espacio, son adecuados para el uso diario y proveen datos de medición suficientemente
precisos. Son la contrapartida de los sistemas basados en cámaras. Los sensores FSR
permiten medir el efecto de la fuerza en el pie. Esto permite obtener conclusiones sobre
el movimiento de balanceo y el equilibrio de las personas de prueba.

2.2 Reconocimiento de actividades

Muchos móviles inteligentes o smartphones tienen un giroscopio, un acelerómetro y un
magnetómetro. En muchos trabajos, esto se ha utilizado para identificar las actividades
de las personas [Gadaleta2018, Hassan2018, Cao2018]. Una posibilidad para implementar
esto es elegir un ancho de ventana fijo y recoger todos los valores estad́ısticos para esta
ventana, que sirven como caracteŕıstica para la clasificación. El uso de una red neuronal
ha demostrado ser útil [Hassan2018, Cao2018]. Otra posibilidad es el uso de la CNN
[Gadaleta2018]. La detección de actividad se utiliza generalmente para medir el tiempo
que una persona se ha estado moviendo durante el d́ıa. Esto es suficiente para una
estimación de la actividad de una persona en general. La calidad de los sensores de los
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smartphones es adecuada para estimar la actividad de una persona.

2.3 Sincronización

Los sistemas basados en video tienen una grabación sincronizada de todos los movimientos
de las extremidades. La desventaja es que las mediciones no pueden realizarse en la
vida diaria. En la literatura sólo se encontraron sistemas de cámaras para mediciones
de laboratorio [Viteckova2016]. Los sistemas portátiles, en cambio, podŕıan ser una
alternativa para hacer mediciones de simetŕıa de la marcha en la vida diaria, pero no
están sincronizados en el tiempo.

Para cerrar esta brecha, los microcontroladores deben estar sincronizados entre śı. Ya
se han aplicado varios métodos para ello. Una posible solución es construir una red
de sensores en la que los sensores estén conectados por cables [Viteckova2016]. Otro
trabajo presenta un sistema en el que una estación de acoplamiento sirve como estación
de carga y para la sincronización [Mancini2011]. La estación de acoplamiento puede
sincronizar cuatro sensores, pero tiene una diferencia de tiempo después de un tiempo de
funcionamiento más largo. Otros usan el sistema de MbientLab [Anwary2018b]. Para
determinar la simetŕıa de la marcha, se necesitan cuatro sensores sincronizados (uno en
cada extremidad). En trabajos anteriores, se hab́ıan probado el sistema de Mbientlab,
pero sólo puede registrar tres sensores sincronizados [Anwary2018b].

Ventajas y desventajas de los sistemas actuales:

• Los sistemas basados en cámaras pueden medir series temporales sincronizadas de
cada extremidad. Pero son estacionarios y por lo tanto no son adecuados para las
mediciones en la vida cotidiana.

• Un teléfono inteligente es útil para detectar actividades de marcha. Pero es
demasiado impreciso para la medición cĺınica.

• Los sistemas IMU son una alternativa a los sistemas basados en cámaras. Pero
tienen que estar sincronizados.

Para calcular la simetŕıa de la marcha de las series temporales utilizando sensores
incrustados en las prenda en la vida diaria, proponemos un sistema con dos pulseras con
sensores IMU, dos plantillas con un IMU y diez sensores de fuerza, y un smartphone
para la detección de actividades. Para las mediciones sincronizamos todos los sensores si
la actividad caminar se detecta en la vida diaria. Proponemos un método para calcular
la simetŕıa de todos los valores medidos del ciclo de la caminata en lugar del cálculo de
la simetŕıa con parámetros.

2.4 Detección de los pasos

Los desórdenes del movimiento que influyen en la marcha del paciente se miden con sen-
sores como giróscopos, acelerómetros, magnetómetros, sensores de presión y sensores de im-
agen. Los acelerómetros, los giróscopos se utilizan a menudo en combinación con un mag-
netómetro [Barth2015, Bobic2018, Tao2018, Koroglu2018, Hannink2018, Watanabe2018].
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Los sensores pueden estar integrados en los teléfonos inteligentes [Tao2018, Kim2018] o
fijados en el tobillo [Barth2015, Jiang2018, Hannink2018] o en el cuerpo [Koroglu2018].
Para las grabaciones de v́ıdeo para el análisis de la marcha, a veces se utiliza un sen-
sor de profundidad además de la imagen 2D [Ince2017]. Los sensores de fuerza se
instalan en las plantillas [Agostini2014, Mazumder2018b, Steinmetzer2018] y en el suelo
[Muheidat2017].

El objetivo de la integración de muchas tecnoloǵıas es la detección de los pasos, otras
se centran en el reconocimiento de actividades. La detección de pasos reconoce de forma
precisa, un solo paso en una serie de tiempo. Por el contrario, el reconocimiento de
actividad detecta diferentes tipos de movimiento, por ejemplo, caminar, estar de pie,
trotar.

Una prueba estandarizada para el diagnóstico de la enfermedad de Parkinson es el test
”Time Up and Go”. Esta prueba también es utilizada, por ejemplo, por [Mazumder2018b]
para diferenciar entre los pacientes sanos y los de Parkinson. También usamos esta
prueba en [Steinmetzer2018] bajo condiciones hospitalarias ideales para una aproximada
estimación del estadio de Parkinson.

En [Tao2018] se utiliza un filtro digital de paso bajo para eliminar los componentes de
ruido de alta frecuencia de las mediciones del acelerómetro.A partir de esto, los autores
se aseguran de que sólo se detecte un pico por cada cruce de cero de la gravedad. En
[Agostini2014] definen los candidatos a los pasos de determinan el comienzo de la fase
de andar y calculan la duración del paso. Los pasos con dos fases y una corta duración
se fusionan primero con los pasos anteriores y después con los sucesivos. Se logra una
cuota de reconocimiento de zancadas del 97% en [Barth2015] con la subsiguiente DTW
multidimensional con libre marcha. Con este método un valor umbral es fijado. Esto
empeora los resultados de los movimientos anormales o de subir escaleras [Barth2015].

El Mild Cognitive Impairment (MCI) en la marcha se clasifica en [Gwak2018]. Se regis-
traron los datos de los sensores de fotopletismograf́ıa (PPG) y de la marcha (acelerómetro
y giroscopio). El filtro de Butterworth se utilizó para eliminar el ruido de las señales de
marcha medidas. Para detectar pasos, se utilizó un algoritmo de detección de picos que
funciona con la mı́nima de la altura de pico y la distancia mı́nima de los picos. Para
condiciones normales de caminata, las frecuencias de los pasos han sido asumidas para
variar entre 1 Hz y 3 Hz. En el [Kim2018] la aceleración gravitatoria está registrada
usando un filtro de paso de banda con una frecuencia central de 2 Hz y un ancho de banda
de 2 Hz. Los pasos se detectan usando los métodos de ”Stride Feature of Spectogram” y
una arquitectura de Red Neural Artificial (ANN). Los parámetros de marcha analizados
en [Muheidat2017] como la velocidad, el tiempo de paso y la longitud del paso son dados
por una alfombra sobre la que se realizan los pasos, usando el sistema GAITRite®. En
[Koroglu2018] las UMI montadas en el pie y el cuerpo se utilizan para la detección de
pasos. Los pasos se etiquetaron usando un umbral. La detección de pasos fue realizada
por una residual red neuronal. Para el proceso de entrenamiento, se utilizó la función de
entroṕıa cruzada como loss funtion. En un paso de preprocesamiento en [Hannink2018]
las señales del acelerómetro y el giroscopio se normalizan. Se escalan a una longitud fija
de 256 muestras por paso para asegurar una entrada a la red de tamaño fijo y a igual
escala. Se detectan la postura media (Mid-stance (MS)) y el tacón (heelstrike (HS)). Para
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la detección de pasos se elige una red convolucional (CNN) de dos capas seguida de una
capa totalmente conectada y una capa readout-layer. La ventaja de las redes neuronales
(NN), los modelos ocultos Markov (HMM) y los sistemas basados en la regresión es que
no requieren un umbral.

En esta propuesta queremos comparar los métodos más utilizados para detección de
pasos, Patrones Mı́n-Máx (MMP), Deformación Dinámica del Tiempo (DTW), Redes
Neuronales Convolucionales (CNN) para poder utilizar la mejor variante de detección de
zancadas en la vida diaria, independiente de los trastornos motores.

2.5 Caracteŕısticas de la marcha

Las caracteŕısticas del andar humano pueden dividirse en un dominio de tiempo y espacio.
Los parámetros temporales de la marcha son la duración de las diferentes fases de la
marcha, como la duración de un ciclo de marcha, la fase de postura o la fase de balanceo.
Los parámetros de marcha relacionados con el espacio son la longitud o la altura del
paso. Hay diferentes métodos de aproximación a determinar estas caracteŕısticas. Para
determinar el golpe de talón y la punta del pie, con el fin de calcular la duración de la
fase de apoyo y de la fase de balanceo, hay varias posibilidades. Los sensores de fuerza
pueden utilizarse con un valor umbral fijo [Bamberg2008]. Otro método es calcular la
velocidad del pie. Si esta velocidad cae por debajo de un valor umbral, el pie está en
la fase de reposo (stand phase) [Bamberg2008, Tunca2017]. Además, de los mı́nimos y
máximos de los datos de aceleración y del giroscopio el golpe de talón y el dedo del pie
puede ser determinado [Rampp2014, Salarian2004, Ferster2015, Wang2015, Hsu2014].
Para la determinación de la longitud del paso, se utilizan los datos del giroscopio y la
aceleración para calcular el movimiento horizontal en el espacio del sensor por integración
doble [Bamberg2008, Rampp2014, Tunca2017, Sijobert2015, Mariani2010, Ferrari2015,
Salarian2004, Ferster2015, Wang2015, Hsu2014]. El mismo procedimiento se utiliza para
calcular la altura del paso en la vertical [203].

2.6 Simetŕıa de la marcha

La situación es diferente cuando los wearables evalúan enfermedades relacionadas con
los desórdenes del movimiento. Para medir y guardar las series de tiempo de la mar-
cha que se llevan, a menudo se utilizan microcontroladores en combinación con sen-
sores IMU [Barth2015, Bobic2018, Tao2018, Koroglu2018, Hannink2018, Watanabe2018,
Clemens2019, Crenshaw2006, Mancini2011, Anwary2018b, Anwary2018a, Anwary2018c,
Steinmetzer2018]. En la mayoŕıa de los casos, el movimiento de la parte baja se mi-
den en las extremidades [Barth2015, Bobic2018, Tao2018, Koroglu2018, Hannink2018,
Watanabe2018, Steinmetzer2018]. De esta manera se pueden sacar conclusiones so-
bre la longitud del paso, la cadencia, la duración del paso, las fases de la marcha y
la simetŕıa [Barth2015, Hannink2018, Watanabe2018, Jiang2018]. Hay métodos difer-
entes para el cálculo de la simetŕıa. Una forma de evaluialo es mediante las difer-
entes caracteŕısticas calculadas como la longitud del paso, la duración del paso, el
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tiempo de estar de pie, o el tiempo de oscilación de las piernas se ponen en relación
[Loiret2019, Anwary2018b, Clemens2019].

La desventaja de este método es que sólo los valores medios de las caracteŕısticas
calculadas para la marcha puede ser evaluada, pero no toda la serie temporal. Esto
es diferente para los sistemas estacionarios, que están basados en cámaras. Con estos
sistemas, el cuerpo completo puede ser grabado sincrónicamente [Crenshaw2006]. Ambos
tipos de evaluación de la simetŕıa son útiles. Sin embargo, en nuestra opinión, una
comparación directa de las series temporales es más útil, porque se pueden medir las
diferencias en los brazos y piernas relacionados directamente. La simetŕıa de los brazos y
las piernas, aśı como la simetŕıa de la parte superior e inferior extremidades es investigada
por sólo unas pocas referencias [Lin2018a, Miller2018, Viteckova2016]. Cambios en la
coordinación de las extremidades de personas con PD y adultos mayores sanos comparan
sistemáticamente la velocidad de marcha para determinar el impacto de los śıntomas de
la PD en la coordinación de las extremidades [Lin2018a]. Se colocaron marcadores en el
pie, talón, tobillo, rodilla, cadera, muslo, muñeca, codo, hombro y cabeza. Se calculó un
punto, denominado el punto estimado de las fases relativas (PERP), entre los segmentos
corporales utilizando el momento en que se reciben el máximo positivo ángulo de cada
segmento corporal. Evaluar el cambio en la asimetŕıa a lo largo del tiempo es el objetivo
en [Miller2018]. Los cambios en los movimientos son evaluados por un solo neurólogo
especializado en los desórdenes del movimiento. Un modelo de regresión loǵıstico que
incluye un control para un clustering mediante observaciones repetidas, dentro de la
persona para evaluar el cambio relativo en la asimetŕıa se ha desarrollado. Otro sistema
se centra en el estudio del impacto de la PD en las sincinesias (es decir, la simetŕıa del
movimiento) durante la marcha, y el efecto de la medicación en la simetŕıa de la marcha
[Viteckova2016]. Cada paciente fue examinado y medido con sensores IMU en su estado
ON y OFF. El valor de la simetŕıa de la tendencia se calcula como una relación de las
variabilidades de dos autovectores, que se calculan a partir de los datos de movimiento
cinemático de la extremidad izquierda y derecha. Un resumen reciente de la simetŕıa para
sistemas de análisis de movimientos, se muestra en [Viteckova2016]. El uso de puntos de
tiempo sincronizados para la determinación de la asimetŕıa es la prioridad. Eso significa
que la transmisión de datos tiene que estar sincronizada.

2.7 Detección de estadio de Parkinson por DTW

Este trabajo tiene por objeto contribuir al análisis de los desórdenes de la marcha en la
enfermedad de Parkinson. El objetivo es ayudar el posible diagnóstico del médico y en la
evaluación de la gravedad del desorden del movimiento. El uso de diferentes sensores ha
demostrado ser útil en el análisis de la marcha humana durante muchos años [Boix2018].
En los primeros años, se utilizaban a menudo una o varias cámaras para identificar a
los individuos por su forma de andar [Kale2003, Boulgouris2005]. El método Dynamic
Time Warping (DTW) ha demostrado ser particularmente eficaz para distinguir la forma
de andar de los individuos [Veeraraghavan2006, Muscillo2007]. También se utilizaron
cámaras para el análisis de cambios de la marcha en las enfermedades neurodegenerativas.
Sin embargo, la precisión es sólo suficiente para distinguir entre personas sanas y enfermas
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[Rocha2015]. En los últimos años los sensores de aceleración, giroscopio y magnetómetros
(unidad de medición inercial- IMU) se han utilizado para el análisis de los desórdenes del
movimiento en la Parkinson enfermedad [Ferrari2016, Ferster2015]. En [Ferrari2016] el
filtro de Kalman se utiliza para identificar la asimetŕıa de la marcha. La transformada
rápida de Fourier se utiliza en [Ferster2015] para detectar las fases de freezing. Las últimas
investigaciones utilizan de nuevo el DTW, por ejemplo, para la segmentación de las
secuencias de marcha y para el reconocimiento de la asimetŕıa en la marcha [Barth2017].
Para la detección de las fases de freezing, que ocurren especialmente durante los giros, y
por tanto, se analizó el giro [Ferster2015, Haji2018]. En este documento, la etapa del
desorden de movimiento no se determinará sobre la base de caracteŕısticas individuales
como la asimetŕıa o la freezing, sino más bien como la combinación de todos los desórdenes
individuales. Los sensores del IMU se ha montado en el zapato [Ferrari2016] o en el
tobillo [Ferster2015, Haji2018, Barth2017]. En este caso, el sensor puede caer durante la
marcha. Esto dificulta la detección del punto de tiempo cuando el pie toca el suelo.

Para una detección de paso mas robusta, hemos integrado el sensor en una plantilla. En
este trabajo usamos datos de sensores minimalistas para realizar un clustering basadas en
el estadio de Parkinson. Por esta razón, usamos sólo un eje de una plantilla. Un problema
con la enfermedad de Parkinson es que el estadio es a menudo evaluado subjetivamente.
Por esta razón, queremos desarrollar un sistema que apoye al médico en su diagnóstico y
que proporcione datos de medición emṕırica. Porque cada persona necesita una longitud
diferente para cada paso, seŕıa imposible trabajar con las correlaciones sin comprimir o
estirar los datos, lo que significaŕıa la manipulación de los datos. La ventaja del algoritmo
de DTW, es que puede medir un número de distancia entre dos series temporales de
longitudes diferentes. Cuanto más pequeña es esta distancia, más similares son estas
series temporales. El algoritmo DTW busca el camino ideal entre dos series temporales.

2.8 Disfunción motora en el balanceo del brazo

La mayor parte de la investigación sobre el análisis de la marcha trata sobre el análisis
del movimiento de las piernas [Mazumder2018a, Jasni2019, Stoelben2019, Balzer2018,
Prakash2019, Steinmetzer2018, Steinmetzer2019a]. Sin embargo, el análisis del movimiento
del brazo también es importante para la evaluación de un desorden de la marcha. Los
sistemas estacionarios que utilizan cámaras o ultrasonidos [Ospina2018, Spasojevic2015,
Baron2018, Lewek2010, Tsipouras2012, Castano2018, Dranca2018, Castano2019, Roggendorf2012]
y móviles se utilizan sistemas con sensores inerciales [Huang2012, Bertomeu2015, Viteckova2016]
para medir el balanceo del brazo. En [Ospina2018], se comparó los balanceos de brazo de
los pacientes de Parkinson y las personas sanas con la ayuda de una cámara Kinect. Se
observaron diferencias significativas en la amplitud y la velocidad. Los movimientos de los
brazos de los pacientes de Parkinson también mostraron a menudo asimetŕıas. El grupo
PD mostró reducciones significativas en la magnitud de la oscilación del brazo (izquierda,
p = 0,002; derecha, p = 0,006) y en la velocidad de oscilación del brazo (izquierda, p =
0,002; derecha, p = 0,004) y una asimetŕıa de oscilación del brazo significativamente mayor
(ASA) (p < 0, 001). También se logró una precisión de más del 90% para distinguir a las
personas sanas de las personas con PD usando una cámara Kinect en [Spasojevic2015].
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La clasificación entre sujetos sanos y no sanos se realiza en base a las cinco caracteŕısticas
más relevantes y las dos nuevas caracteŕısticas obtenidas de la LDA, utilizando cuatro
clasificadores diferentes, máquina de vector soporte (SVM), perceptrón multicapa (MLP),
la red neural de base radial (RB) y el vecino más cercano (KNN). Usando el sistema
de captura de movimiento Motek CAREN en [Baron2018], se detectó que los pacientes
con Parkinson tienen un tirón y un balanceo del brazo diferente en comparación con las
personas sanas. El hecho de que los pacientes de Parkinson en las primeras etapas tengan
un ASA más grande podŕıa ser combinado en [Lewek2010] con el Vicon y el Baton Rouge
sistema de laboratorio de movimiento. El p-valor fue de 0,003, para ver la independencia
de los individuos sanos frente a los que tienen la enfermedad de Parkinson. Un sistema
Kinect fue utilizado en [Castano2018] para detectar las diferencias de velocidad, amplitud
y simetŕıa en el movimiento de los brazos entre las personas sanas y las que se encuentran
en las primeras etapas de la enfermedad de Parkinson. En [Dranca2018], se investigó
qué método provéıa los mejores resultados cuando se usaba una Kinect para detectar las
etapas de la enfermedad de Parkinson. Los mejores resultados con una precisión del 93,4%
se obtuvieron con un clasificador de redes Bayesianas, usando una validación cruzada de
10 divisiones. Las caracteŕısticas relevantes estaban relacionadas con los ángulos de la
espinilla izquierda, ángulos del húmero izquierdo, curvas frontales y laterales, ángulos
del antebrazo izquierdo y el número de pasos durante un giro. Para las grabaciones
en [Castano2019], se utilizó un sistema Kinect en combinación con un programa de
captura de e-Motion. El sistema propuesto clasifica la Parkinson’s disease en tres estados
diferentes relacionados con la freezing de la marcha (FoG). Se ha logrado una precisión
del 93,4% usando las caracteŕısticas del movimiento y la posición del brazo izquierdo, la
posición del tronco para secuencias de caminata ligeramente desplazadas, y la ángulo de
la espinilla izquierda para las secuencias de caminata recta. Sin embargo, obtuvieron
una mejor precisión del 96,23% para un clasificador que sólo usó caracteŕısticas extráıdas
de los pasos y de los giros al caminar.

En [Tsipouras2012], se desarrolló un método automático para el tratamiento de la
discinesia inducida por levodopa (LID). Se usaron giroscopios en el abdomen y el pecho
y el abdomen, las muñecas y los tobillos. En general, se logró una cuota media de
detección del 90% para los pacientes de Parkinson, y la cuota media de detección y
la precisión de las clases individuales (LID, Parkinson, sano) fueron del 80% y el 77%,
respectivamente. Se han utilizado varias técnicas de clasificación para evaluación de
LID, incluyendo el clasificador Naive Bayes, KNN, fuzzy lattice reasoning (FLR), árboles
de decisión, random forests (RF), y una red neuronal usando un perceptrón multicapa
(MLP). El método utilizado en [Roggendorf2012] consist́ıa en guiar a los pacientes con
Parkinson temprano en una cinta de correr y medir sus movimientos con un dispositivo
de ultrasonido en cada lado. Los resultados fueron una reducción de la amplitud del
balanceo de los brazos de los pacientes y una mayor longitud de los pasos en comparación
con las personas sanas.

En [Huang2012], se utilizó una unidad de sensor en cada antebrazo. Esta unidad
sensorial consist́ıa en dos acelerómetros triaxiales G-Link que estaban unidos a una
barra de aluminio. La asimetŕıa del balanceo del brazo (ASA), la correlación cruzada
máxima (MXC) y la fase relativa instantánea (IRP) del balanceo bilateral del brazo se
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compararon entre la PD y las personas de control. Los sujetos con PD demostraron una
ASA significativamente más alta (p = 0,002) y una MXC más baja (p < 0, 001) que las
personas de control.

Se colocó un acelerómetro en la parte superior del brazo, aśı como un dispositivo
de velocidad angular magnética y gravedad (MARG) en el hombro en [Bertomeu2015].
Se utilizó el modelo Denavit- Hartenberg, y el algoritmo se basó en el pseudoinverso
del Jacobiano por la aceleración de la parte superior del brazo. Un sistema similar se
utilizó en [Viteckova2016] con casi los mismos sensores y la misma posición. Se sugirió
un método autovectores para comparar los ejes de la mano izquierda y la derecha. Los
resultados mostraron una diferencia entre las personas con la enfermedad de Parkinson y
las personas sanas.

3 Metodoloǵıa

Todo el proceso de reconocimiento de los datos de la marcha se basa en la comunicación
entre nuestra aplicación para Android y cuatro wearables (dos pulseras, figura 1 y dos
plantillas, figura 2). La figura 3 muestra el proceso. Las tareas funcionales del smartphone,
los wearables y el análisis de datos están separados por una ĺınea de puntos. Sin embargo,
los wearables trabajan sólo como esclavos, aśı que el smartphone siempre debe enviar una
señal para iniciando una función. Por esta razón las tareas Iniciar grabación, Detener
grabación, Sincronización y Transmisión de datos están implicadas en ambos dispositivos.
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Al principio del trabajo, se hace un reconocimiento de la actividad. Por lo tanto, se
quieren distinguir la actividad de andar de otras actividades. Otras actividades pueden
ser las actividades de montar en bicicleta, subir escaleras, acostarse, sentarse, pararse, el
smartphone está tumbado (en una mesa o escritorio), el smartphone en uso (escribiendo
un mensaje o jugando un juego), o usar el transporte (conducir en coche, autobús
o tren). La detección de actividad de andar es diseñada para mantener los sensores
en modo de espera hasta que la actividad de andar sea detectada. Esta detección de
actividad prolonga el tiempo de uso de los dispositivos., porque sólo se guardan los
valores medidos de la actividad andar. Cuando una persona hace de actividad andar,
la aplicación comprueba si una grabación está en proceso. Si no, los dispositivos que
se han incrustrado primero, y luego comienza la grabación del movimiento. Cuando la
actividad de otro tipo, como la marcha ha sido detectada, y la grabación está en proceso,
la grabación se detuvo, y los datos transmitido al smartphone para el análisis de datos.

Para las fases de la marcha, las caracteŕısticas y el cálculo de la simetŕıa, se necesita
una detección más precisa de los pasos que durante el reconocimiento de la actividad.
Por esto razón, realizamos una detección de pasos usando la CNN. Después de eso, las
fases de la marcha, las caracteŕısticas y la simetŕıa de los pasos puede ser calculado.
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Para la clasicación de las disfunciones motoras en el balanceo del brazo y la clasicación
del estadio de Parkinson con plantillas, es necesario un proceso independiente.

4 Base de datos

4.1 Base de datos para el reconocimiento de actividades

En este conjunto de datos, usamos las grabaciones de 20 sujetos sanos para probar el
sistema. Para esta propuesta, desarrollamos una aplicación para Android. Los sujetos
especificaron el comienzo, el final y el tipo de actividad a través de la aplicación antes
de cada grabación. Grabamos los datos de aceleración lineal y rotación del sistema
operativo de Android con una frecuencia de 50Hz. Los usuarios tendrán que especificar
qué actividad van a realizar. En total, se registraron las siguientes actividades: andar, ir
en bicicleta, ir por las escaleras, acostarse, sentarse, pararse, smartphone en uso (mesa
o escritorio), smartphone en uso (escribir un mensaje o jugar a un juego), y usar el
transporte (conducir en coche o tren). Hemos reducido el problema a un problema
binario y usamos en las siguientes clases sólo andar y otras. La clase “otras” contiene
las actividades de ciclismo, ir a las escaleras, acostarse, sentarse, smartphone estático,
smartphone en uso, de pie y en transporte.

4.2 Base de datos de Timed Up and Go (TUG)

Decidimos usar la prueba del TUG, figura 4, como una prueba adecuada para registrar
los datos de la marcha. Entre otras cosas, se utiliza para evaluar el rendimiento motor de
las United Parkinson Disease Rating Scale (UPDRS). Para la prueba, sólo se necesitaba
una silla con respaldo y apoyabrazos. Primero, la persona de la prueba estaba sentada
en una silla. A la orden de quien dirige el experimento, la persona que realiza la prueba
se levanta y camina en ĺınea recta durante diez metros a una velocidad apropiada hasta
una marca. En la marca, la persona que realiza la prueba, se da la vuelta y camina
diez metros en ĺınea recta, de vuelta a la silla. El sujeto que hace la prueba, se sienta y
finalmente la prueba y la grabación terminan. Para crear un conjunto de datos para su
posterior análisis, trabajamos junto con la Cĺınica Niederlausitz en el estudio ”Desarrollo
de una evaluación digital de la enfermedad de Parkinson” (solicitud de ética concedida en
diciembre de 2018 por el Comité de Ética de Brandenburgo). Todas las personas fueron
evaluadas por los médicos. Se dispońıa de un total de 39 personas diferentes con 250
grabaciones para la data set. De ellos, hab́ıa 15 pacientes con disfunción motora con 80
grabaciones y 24 personas con 170 grabaciones como grupo de control.
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4.3 Base de datos de la vida cotidiana

Para la data set de las actividades de la vida diaria tenemos un total de 7 grabaciones
de 7 personas sanas diferentes. La edad de las personas estaba entre 25 y 54 años. En
total, cada persona pasó la prueba una vez. Durante el experimento los sujetos tuvieron
que pasar la siguiente prueba. Al principio de la prueba, la persona se sienta en una
silla durante un minuto. Luego la persona se levanta de la silla y se pone de pie por un
minuto. Después de eso, la persona camina de un lado a otro durante un minuto. Luego,
la persona sube las escaleras tres pisos y luego baja las escaleras. Luego, la persona
camina un minuto más y termina frente a una silla. La persona pasa un minuto de
pie. En el penúltimo paso, la persona cambia repetidamente durante un minuto de una
posición de pie a una de sentado. Finalmente, la persona se sienta por un minuto en la
silla.

4.4 Base de datos público de la fuerza

Para el cálculo de la simetŕıa de la marcha usamos la fuerza de los datos del sensor. Para
ello utilizamos una data set público. Se trata de 93 pacientes con PD idiopática, y 73
sujetos del grupo de control. La base de datos incluye los datos de la fuerza de reacción del
suelo vertical de los sujetos mientras caminaban a su ritmo habitual, auto-seleccionado,
durante aproximadamente 2 minutos en suelo llano, ver Tabla I. Debajo de cada pie
hab́ıa 8 sensores (Ultraflex ComputerDyno Graphy, Infotronic Inc.) que miden la fuerza
(en Newtons) en función del tiempo. La salida de cada uno de estos16 sensores ha sido
digitalizada y grabada a 100 muestras por segundo, y las grabaciones también incluyen
dos señales que reflejan la suma de las salidas de los 8 sensores para cada pie. Para
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detalles sobre el formato de los datos, véase [Goldberger2003].

5 Métodos

5.1 Reconocimiento de actividades

Para posibilitar el uso energético de los wearables que se llevan puestos, sólo se activa
cuando están en uso. Para un uso eficiente de la enerǵıa, los wearables que se pueden usar,
sólo tienen que ser activadas durante la grabación. Por esta razón, decidimos usar un
clasificador de actividad binario en el smartphone. Este clasificador nos permite distinguir
la actividad de andar de otras como ir en bicicleta, ir por las escaleras, acostarse, sentarse,
de pie, smartphone en estático, smartphone en uso y usando en el transporte.

Para la detección de la actividad, utilizamos los datos de la aceleración lineal y los
datos de rotación del sistema operativo Android (OS) a una frecuencia de 50Hz. Como
caracteŕısticas, usamos un ancho de ventana fijo de 10s y un solapamiento del 50%.
Usamos el tamaño completo de la ventana y todos los ejes de los datos del sensor
como entrada para un clasificador 1D CNN. La figura 5 muestra el diseño de la CNN.
Elegimos CNN porque otros investigadores también han logrado buenos resultados con
la CNN [Gadaleta2018, Hassan2018]. Para la formación, hemos separado los datos por
personas. Esto asegura que la misma persona no está incluida en el conjunto de datos
de entrenamiento y pruebas. Dividimos los datos en que el 66% se utiliza para el
entrenamiento y el 34% para las pruebas. Durante el entrenamiento, usamos diferentes
épocas y tamaños del batch. En nuestro caso, el ajuste de 100 épocas y 100 del tamaño
del batch, han dado buenos resultados.
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5.2 Reconocimiento de pasos

En esta sección queremos presentar dos métodos comparables, Min-Max-Pattern (MMP)
y Dynamic Time Warping (DTW), y nuestro método Convolutional Neural Networks
(CNN) para el reconocimiento de pasos. Esto incluye el preprocesamiento, los algoritmos
para la detección de pasos y el proceso de validación. En la figura 3 se presenta una
visión general de los diferentes procesos de detección de pasos.

MMP La forma más simple de detectar trazas es rastrear un patrón Mı́nimo-Máximo
(MMP). Este patrón es t́ıpico en la marcha humana. Sin embargo, este patrón también
se presenta en otras secuencias de movimiento, por ejemplo, subir escaleras. Por esta
razón, este patrón no es una elección ideal [Barth2015]. Sin embargo, hemos incluido el
procedimiento para completarlo.

DTW Las señales se normalizan primero antes de que el algoritmo de detección de
pasos comienza. Nuestro algoritmo está fuertemente basado en el algoritmo presentado
por Barth [Barth2015].

CNN Las CNN se están popularizando cada vez más porque logran resultados significa-
tivamente mejores que los NN tradicionales. Las CNN se utilizan principalmente para el
reconocimiento de imágenes, pero son igual de potentes en la detección de señales.

La diferencia entre las NN y las CNN es que las CNN aprenden patrones locales. Por
el contrario, las NN tradicionales siempre usan la entrada completa. La arquitectura
convolucional multicapa le permite aumentar la complejidad de la detección. Aśı, es
posible reconocer en la primera capa sólo los patrones, y con la segunda o n-capa más y
más objetos complejos [Abadi2016, Sze2017]. Para nuestro trabajo con las CNN usamos
la libreŕıa de keras en Python de código abierto con Tensor Flow, figura 6.
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5.3 Caracteŕısticas de la marcha

5.3.1 Caracteŕısticas del tiempo de marcha

Para el cálculo de los tiempos de marcha, se estimaron los tiempos de golpe de talón
(HS), dedo del pie (TO), valor medio de fase de balanceo (MSW) y fase de postura media
(MST). Se utilizó una combinación de datos de orientación, velocidad angular y fuerza,
porque cada señal da información relevante para caracteŕısticas particulares de la marcha,
figura 7.

Heel Stike (HS) El HS es detectado por los sensores de fuerza en el talón cruzando
un valor umbral. Además, el mı́nimo local en el plano sagital de la velocidad angular
entre la fase de balanceo y la fase de apoyo se utiliza para estimar el HS.

Toe off (TO) / Terminal Stance El dedo del pie o el TO también es detectado por
los sensores de fuerza. Si los sensores de fuerza en el dedo del pie cruzan un umbral, este
es el TO. La velocidad angular también se utiliza para estimar el TO. El mı́nimo local
entre la postura y la fase de balanceo también indica el TO.

Middle Stance phase (MST) Fase de postura media o MST puede ser estimado
calculando el promedio de HS y TO.

Middle swing phase (MSW) Fase de oscilación media. Para la identificación del MSW,
se puede utilizar la suma de todos los sensores de fuerza. Dentro de la fase de oscilación
hay un mı́nimo local entre los dos máximos. Esto caracteriza al MSW. Además, también
es posible utilizar los datos de orientación. En este caso el máximo corresponde a la fase
media de balanceo.

Stance phase Fase de apoyo. La fase de apoyo se calcula calculando la diferencia entre
TOi y HSi.

Swing phase Fase de reposo La fase de reposo se calcula a partir de la diferencia entre
HSi+1 y TOi.
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5.3.2 Caracteŕısticas de la marcha espacial

Básicamente, el cálculo de la longitud de los pasos sigue los mismos principios que otros
trabajos han mostrado antes. Pero en contraste con las otras obras, el BNO Bosch 055
provee datos de orientación y aceleración lineal. Por esta razón, no es necesario restar la
gravedad para obtener la aceleración lineal. Los datos de orientación son el resultado de
la integración de las velocidades angulares. Además, los datos de orientación se optimizan
mediante la fusión de los sensores.

El tiempo del MST se utiliza como inicio para calcular la longitud y la altura de la
zancada. Debido a la deriva del sensor y a la inexactitud del mismo, se calculan al
principio del cálculo menos el valor de inicio para los datos de orientación y aceleración
a, ver fórmula 1 y 2.
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Stride length Longitud de los pasos La aceleración horizontal se calcula por:

A siguiente, la aceleración horizontal se integra para obtener la velocidad horizontal.

Para obtener la distancia horizontal, la velocidad horizontal tiene que ser integrada

Stride height La velocidad vertical se calcula por

A continuación, la aceleración vertical tiene que ser integrada para obtener la velocidad
vertical

Para obtener la distancia vertical, la velocidad vertical tiene que ser integrada.

5.4 Simetŕıa de la marcha

Para el cálculo de la simetŕıa discreta usamos los parámetros xmax y xmin. De esta
manera obtenemos un valor entre 0 y 1, porque el valor pequeño es siempre usado en el
numerador.

Ratio Index (RI) Índice de Ratio. Para determinar el RI, los valores contrarios de los
pies se dividen por cada uno de ellos, ver la ecuación 9.
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Symmetry Index (SI) Índice de Simetŕıa. El SI da la diferencia entre los parámetros
cinemáticos y cinéticos de las extremidades. Hemos ajustado el valor para que 1 represente
un marcha simétrica y asimetŕıa 0, ver ecuación 10.

Gait Asymmetry La Asimetŕıa de la marcha es similar al Índice de Ratio. Sin embargo,
el logaritmo todav́ıa se calculó a partir del resultado.

Symmetry Angle (SA) Ángulo de simetŕıa. La SA mide la relación entre dos diferentes
miembros. Dos parámetros exactamente simétricos forman un ángulo de 45. Tenemos
que corregir el valor, un valor simétrico es 1 y un 0 asimétrico, ver ecuación 12.

5.5 Simetŕıa DTW normalizada

Para medir la distancia de simetŕıa entre las series temporales (pasos) del pie derecho
y del izquierdo, usamos el DTW. La DTW se ha establecido muy bien en el análisis
de señales de series temporales. A diferencia de la distancia euclidiana, este método
puede compensar la distorsión temporal. Basado en esta flexibilidad, es un método
conocido para el análisis de las series temporales en la medicina, la ciencia y la industria.
La idea con DTW es que no se calcula la distancia de dos ı́ndices, sino la distancia a
la más adecuada. Aśı permite comparar las series temporales entre śı si se registran
con diferente duración o frecuencia. Antes de que la simetŕıa sea calculada por DTW,
las series temporales son primero estandarizadas y normalizada. En el primer paso, el
algoritmo calcula las distancias entre la serie temporal (xi)1 ≤ j ≤ n (fuerza del pie
derecho) de longitud (yj)1 ≤ j ≤ m (fuerza del pie izquierdo) de longitud m, resultando
en una matriz de n veces m D = Dij conteniendo distancias Dij entre yj y xi.

Una distancia Dij de 0 significa una simetŕıa del 100% de los valores medidos. Cuanto
más alto es el valor Dij , más baja es la simetŕıa de los extremidades. Entonces la
distancia debe ser dividida por el número de la longitud máxima de la señal.
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Para obtener un resultado de 1 para la simetŕıa y 0 para la asimetŕıa, este se calcula
usanod la ecuación 15.

5.6 Balanceo del brazo

Después de haber presentado nuestro material y métodos, ahora discutiremos en esta
sección cómo aplicamos estos métodos. En la presentación del conjunto de datos, nosotros
ya dijo que dividimos nuestra grabación en dos partes diferentes. Primero, nosotros las
partes clasificadas (A) y (B), que comprend́ıan el registro completo de la prueba del
TUG.

El otro escenario era que sólo usábamos la Parte (B). En la Parte (B), sólo el se usó
el modo de andar. La figura 8 muestra el algoritmo completo de la clasificación. En
principio, distinguimos entre las señales de los ángulos de Euler y la aceleración lineal.
Primero, eliminamos los saltos dentro de una señal de los ángulos de Euler y luego
calculamos la derivación de la señal. Esto hizo que la señal fuera más comparable. Estos
pasos no eran necesarios para la aceleración lineal. Entonces, fijamos las señales a una
longitud uniforme. Esto era necesario para que las señales pudieran ser interpretadas
por la CNN más tarde durante la clasificación. Después del resampling, calculamos la
wavelet transformación para cada señal individual. Usamos las escalas resultantes para
la clasificación. En las clasificaciones, analizamos tres casos diferentes. Al principio,
clasificamos cada señal individualmente por la CNN. Esto nos permitió mostrar qué eje
de los sensores era muy importante. En el segundo caso de clasificación, usamos las tres
mejores señales para una CNN multicanal. El tercer caso fue que usamos las tres mejores
señales para la clasificación por medio de la votación.
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5.7 DTW para reconocer el estadio de PD

Realizamos hierarchical clustering [Handl2002]. Basado en la distancia de todos los pasos
entre dos personas. Esta distancia se obtiene como la distancia de todos los pasos durante
el TUG para las dos grabaciones. Realizamos la hierarchical clustering de acuerdo con el
método de Complete-Linkage, aśı como con el de Single-Linkage y utilizar el algoritmo
aglomerado. Para facilitar la comprensión, se omiten el inicio, el giro y el final de la
grabación y aqúı sólo se utilizaron pasos sencillos.

6 Discusión

6.1 Hardware

Como ya se ha demostrado en el Estado del Arte, hay un gran número de sistemas de
análisis de la marcha [Muro2014, Buckley2019, Sprager2015, Taborri2016, Ferrari2013,
Muro2014]. También los sensores utilizados son claramente limitados. Sin embargo, en
esta obra se realizó un sistema que consiste en dos plantillas y dos pulseras sin cables.
Lo que hace que este sistema sea único. El sistema utilizaba 10 sensores de fuerza y
un sensor IMU integrado en cada plantilla y un sensor IMU integrado en cada pulsera.
En la investigación de la literatura no hay un sistema similar, con lo que es innovador.
Además, otros trabajos se han limitado en su mayoŕıa al análisis de las extremidades
inferiores. Sin embargo, este sistema todav́ıa tiene dos pulseras. Estas proveen datos
adicionales de las extremidades superiores. Pudimos producir plantillas y muñequeras
para el hardware mediante la impresión en 3D. Una desventaja de este sistema es que la
electrónica de los prototipos usados fue soldada a mano. Esto dio lugar a uniones de
soldadura en fŕıo o que el contacto tuviera roto.
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6.2 Reconocimiento de actividades

Al desarrollar una aplicación Android para el reconocimiento de actividades, pudimos
mostrar que un smartphone puede distinguir entre la actividad de andar y otras actividades
como estar de pie, acostarse, andar en bicicleta o escribir mensajes. Con una precisión
del 94.7% obtenemos resultados similares a los de otros investigadores [Gadaleta2018,
Hassan2018, Cao2018]. El reconocimiento de actividad nos permite encender los sensores
de los wearables sólo cuando se reconocen la actividad marcha. Esta propuesta es una
solución en materia de eficiencia energética.

6.3 Sincronización

Cuando se registran datos con varios sensores, se tiene el problema de la sincronización
temporal. En la literatura, este problema ya ha sido reconocido, y hubo varios métodos.
Sin embargo, el problema es que los dispositivos de Mbientlab sólo pueden sincronizar tres
dispositivos [Anwary2018b]. Otra solución fue sincronizar el tiempo durante la carga por
cable [Mancini2011]. Sin embargo, esta solución tiene la desventaja de que en un uso más
extendido, se produce una deriva del reloj. Presentamos una solución para sincronizar
varios sensores incrustados en prendas. Sincronizamos cuatro prendas, para las cuatro
extremidades. Sincronizamos los wearables antes de cada grabación (reconocimiento de
la actividad de marcha). De esta manera, empezamos cada grabación sin deriva del reloj.

6.4 Reconocimiento de pasos

Los métodos presentados han demostrado que el problema de la detección de pasos puede
resolverse de muchas formas diferentes. El mejor performance en nuestras pruebas fue
logrado por el AF-CNN. La ventaja del clasificador AF-CNN es que no requiere un
valor umbral. Además, el AF-Algoritmo permite analizar los datos durante la grabación.
Además, hemos demostrado que la combinación de la fuerza y los sensores IMU puede
aumentar los resultados aún más, aunque se pueden producir pequeños errores. En
nuestra opinión, el reconocimiento del paso es el punto más importante en el análisis de
la marcha humana, porque todos los parámetros dependen del paso. Si no se reconoce
bien el paso, se producirán más errores en un análisis más detallado. Como una cómoda
posibilidad para usar instrumentos de medición para las personas con motor disfunciones
como en la enfermedad de Parkinson, proponemos una combinación de fuerza y sensores
IMU en pulseras y plantillas.

6.5 Caracteŕısticas de la marcha

Con los resultados de las caracteŕısticas de la marcha podŕıamos confirmar los re-
sultados de otros trabajos [Rampp2014, Salarian2004, Ferster2015, Wang2015, Hsu2014,
Bamberg2008, Rampp2014, Tunca2017, Sijobert2015, Mariani2010, Ferrari2015, Salarian2004,
Ferster2015, Wang2015, Hsu2014]. También se incluyeron las caracteŕısticas de longitud
del paso, altura del paso, número de los pasos, duración del paso, duración de la fase de
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apoyo y la fase de balanceo, y tiempos de golpe de talón, valor medio de fase de apoyo,
dedo del pie y valor medio de fase de balanceo. Estas caracteŕısticas ayudan al médico a
detectar las anomaĺıas de la marcha, ya que también se utilizan para los diagnósticos.

6.6 Simetŕıa

En la mayoŕıa de los trabajos que tratan de la simetŕıa, utilizan la longitud del paso,
la duración del paso y las diferentes fases de la marcha para calcular la relación entre
la pierna izquierda y la derecha [Barth2015, Hannink2018, Watanabe2018, Jiang2018].
Para esto la sincronización de todos los sensores es esencial.

Para la detección de pasos, usamos una combinación de enmarcado automático y
CNN. El uso de CNN para la detección de pasos ha demostrado ser muy útil para
nosotros [Steinmetzer2019a]. Otros trabajos ya han podido beneficiarse de la tecnoloǵıa
[Steinmetzer2018].

La simetŕıa de las piernas se analizamos con DTW. Nuestros resultados para RI,
SI, GA, SA, y DTW confirman los resultados de otros estudios de simetŕıa discreta
[Blazkiewicz2014, Hubble2015] para la misma base de datos estudio 2019/20.

Si los parámetros fueron elegidos incorrectamente en el cálculo de simetŕıa, las asimetŕıas
de la marcha pueden no ser visibles. Podŕıamos demostrar este fenómeno en la segunda
parte de los resultados. En la figura 9 en (c), (e), y (f) la simetŕıa discreta fue siempre 1.0,
pero las señales eran diferentes en la amplitud. Estas diferencias no pod́ıan ser calculados
usando la simetŕıa discreta. Usando nuestro método presentado, la señal completa fue
usada para el cálculo de la simetŕıa. Aśı, fue posible calcular no sólo las diferencias de
simetŕıa en el tiempo, aśı como en el dominio de la amplitud.
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En este trabajo pudimos demostrar que nuestro método presentado es una extensión
útil para el cálculo de la simetŕıa de la marcha con sensores que se pueden llevar puestos.
En futuros trabajos se debeŕıa probar cómo el cálculo de la simetŕıa con el DTW funciona
en señales multidimensionales. Además, el cálculo de la simetŕıa no sólo debe aplicarse
a los sensores de fuerza, sino que también debe aplicarse a las señales de orientación,
aceleración lineal, velocidad y posición.

6.7 Balanceo del brazo

El eje x siempre muestra los mejores resultados. El eje x corresponde al movimiento en
el plano sagital. Según la literatura, las caracteŕısticas más importantes de la marcha
humana también están presentes en este plano [Zhang2007, Tafazzoli2010]. Por esta razón,
es una conclusión lógica que las caracteŕısticas de mayor importancia están presentes en
este eje. Presentamos nuestros resultados en la sección anterior.

Comparamos los resultados cuando la prueba completa del TUG, Partes (A) y (B),
fue usada para la clasificación, aśı como si sólo usáramos la actividad andar recto, Parte
(B), para la clasificación. Los resultados mostraron que, para la clasificación de las
disfunciones motoras, la actividad andar recto daba resultados bastante buenos con una
precisión del 90,3%, pero cuando se mira la prueba completa hemos obtenido resultados
aún mejores con una precisión del 93,3%. A partir de esto, concluimos que la prueba
completa del TUG era necesaria para el análisis de disfunciones motoras.

Además, clasificamos cada señal por separado. Durante la clasificación, descubrimos
que el eje x (movimiento en el plano sagital) del ángulo de Euler y la aceleración lineal
daban los mejores resultados, independientemente de si las partes (A) y (B), aśı como
sólo la parte (B) se usaron para la clasificación. A partir de esto, concluimos que el eje x
era el más relevante.

La conclusión fue que obtuvimos mejores resultados a base de la combinación de las
señales en comparación con las señales individuales. En la clasificación de las partes (A)
y (B), la CNN de tres capas resultó ser la mejor solución Al clasificar con sólo la Parte
(B), la votación fue la mejor opción. Los trabajos, que usaron sistemas estacionarios con
sólo camera Kinect [Spasojevic2015] recibieron una precisión de 90%, con la combinación
de camera Kinect y redes bayesianas [Dranca2018] , se obtuvo un 93,4%, con camera
Kinect y programa e-Motion capture [Castano2019] 96,23%. Nuestro sistema reconoció
los persones con lesiones de movimiento con una precisión del 93,3% y aśı es comparable
a los sistemas estacionarios y provee mejor resultados que el sistema con giroscopio
[Tsipouras2012] , que obtuvo una precisión del 90%.

No pudimos hacer una comparación con los otros trabajos porque se centraron en una
evaluación estad́ıstica de los datos en lugar de una clasificación. La CNN en combinación
con wavelet transformación es una poderosa técnica para el análisis del balanceo del
brazo.
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6.8 Reconocimiento de estado de Parkinson usando DTW

Finalmente se puede concluir que la plantilla del sensor utilizada para este estudio es muy
adecuada para medir las disfunciones motoras. Hierachical clustering en combinación
con Single-Linkage y DTW es útil para detectar los valores at́ıpicos dentro de una
grabación. Hierachical clustering en combinación con Complete-Linkage y DTW hace
una clara distinción entre los sujetos y el estadio del desorden de la marcha. También
demostramos que los datos de aceleración lineal a una velocidad de 100Hz son suficientes
para sacar conclusiones sobre la salud motora de una persona. Resultó suficiente utilizar
sólo los datos recogidos de un pie para distinguir los diferentes niveles de desorden de
la marcha. Esto está probablemente relacionado con el hecho de que la pierna sana
tiene que compensar los movimientos de la pierna enferma y por lo tanto no se mueve
normalmente.

Se podŕıan lograr más mejoras utilizando datos adicionales sensores, como los ángulos
absolutos y los datos de presión, aśı como utilizando los datos de los sensores de ambos
pies. Otras clasificaciones posibles son k-Nearest-Neighbor o redes neuronales y aśı
sucesivamente. Además, también podŕıa aumentarse el número de dimensiones para su
uso práctico a fin de aumentar la tasa de reconocimiento.

7 Conclusión

Durante el trabajo, se pudo validar la hipótesis de esta tesis docotral, y se pudieron
resolver muchos problemas. En contraste con un complejo sistema de análisis de la
marcha como el Vicon, se pudo desarrollar una alternativa de sensores portátil, cómodo
para llevar en la vida diaria por los pacientes y más económico que un sistema estacionario.
Con este sistema es posible evaluar el éxito de la terapia, los desórdenes motores y el
estadio de Parkinson mediante el uso de wearables en la vida cotidiana. Se desarrolló una
Android aplicación, que puede extraerse la actividad caminar de todas las actividades de
movimiento con una precisión del 94,7%. Sincronizamos cuatro prendas para cuatro ex-
tremidades, por el desarrollo de una Android aplicación de smartphone. La sincronización
de los wearables tiene una deriva del tiempo de un máximo de 3ms. Sincronizamos los
wearables antes de cada grabación (reconocimiento de la actividad caminar). De esta
manera, empezamos cada grabación sin la deriva del tiempo. Los pasos individuales
pueden ser extráıdos automáticamente por uso de CNN de la serie de tiempo de los
valores medidos. Reconocemos los pasos individuales con una precisión del 98,8%. De
las series temporales de la marcha se pueden determinarse los valores de simetŕıa de la
marcha más exacto que de las caracteŕısticas de los pasos individuales. Determinamos
varios parámetros de la marcha, como la duración y la longitud y la altura de los pasos,
los tiempos de las fases de la marcha y los parámetros de simetŕıa. Además, se desarrolló
una nueva forma de calcular la simetŕıa mediante el uso de series temporales y DTW,
que, a diferencia del uso de parámetros, evita valores de simetŕıa incorrectos en casos
especiales. De las series temporales de la marcha se pueden determinar el estadio de
Parkinson por uso de DTW con una sensibilidad del 90%.
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Abstract
Sensor-based systems for diagnosis or therapy support of motor dysfunctions need methodologies of automatically stride

detection from movement sequences. In this proposal, we developed a stride detection system for daily life use. We

compared mostly used algorithms min–max patterns, dynamic time warping, convolutional neural networks (CNN), and

automatic framing using two data sets of 32 healthy and 28 Parkinson’s disease (PD) persons. We developed an insole with

force and IMU sensors to record the gait data. The PD patients carried out the standardized time up and go test, and the

healthy persons a daily life activities test (walking, sitting, standing, ascending and descending stairs). As an automatically

stride detection process for daily life use, we propose a first stride detection using automatic framing, and after normal-

ization and resampling data a CNN is used. A F1-score of 0.938 (recall 0.968, precision 0.910) for time up and go test and

of 0.944 (recall 0.992, precision 0.901) for daily life activities test were obtained for CNN. Compared to the other detection

methods, up to 6% F-measure improvement was shown.

Keywords Stride detection � Gait analysis � Inertial sensors � Parkinson’s disease � Validation � Dynamic time warping �
Time up and go test � Convolutional neural networks

1 Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative and

progressive disease that affects 10 million persons all over

the world [1]. At an advanced stage of Parkinson’s disease,

affected individuals can be unable to control their move-

ments. Movement disorders in Parkinson’s can include

tremor, rigidity (reduced movement due to muscle tension),

akinesia (immobility) and postural instability [2]. The aim of

our cooperation with the Center of Neurology and Pain

Management of the Niederlausitz Clinic Senftenberg is to

support the diagnosis and measurement of the long-term

therapeutic success of the motor side of idiopathic Parkin-

son’s syndrome. During the last decade, a large number of

technology-based tools have been developed to measure

motion disorders in PD in order to make diagnosis more

objective [11]. A second goal of the development of devices

for the measurement of movement disorders is to measure

the therapy success in order to motivate the patient to

actively participate in the therapy [2].

Gait recognition methods are divided into model-free

and model-based approaches [3–6].

• Model-free approaches use gait representations such as

silhouette, texture, and colour to extract static gait

features, and dynamic gait features such as joint

trajectories [6, 7]. Model-free approaches usually focus

on changes in the appearance of individuals rather than

on gait dynamics.
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01968 Senftenberg, Germany

2 University of Las Palmas de Gran Canaria, Empresa, Internet

y Tecnologı́as de las Comunicaciones,

Las Palmas de Gran Canaria, Spain

3 University of Las Palmas de Gran Canaria, Signals and

Communication Department, IDeTIC,

Las Palmas de Gran Canaria, Spain

4 Niederlausitz Clinic, Center of Neurology and Pain

Management, Senftenberg, Germany

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-019-04384-6(0123456789().,-volV)(0123456789().,- volV)



• Model-based approaches such as [8–10] create move-

ment models to extract features [3–5], e.g. stride length,

height, and frequency. For diagnostic support and

measurement of therapy success, we recommend

model-based approaches because they are more resis-

tant to changes in view and scale.

Movement disorders that influence the patient’s gait are

measured with sensors such as gyroscopes, accelerometers,

magnetometers, pressure sensors and image sensors.

Accelerometers and gyroscopes are often used in combi-

nation with a magnetometer [12–17]. The sensors can be

integrated into smartphones [14, 18] or attached to the

ankle [12, 16, 19] or body [15]. For video recordings for

gait analysis, a depth sensor is sometimes used in addition

to the 2D image [20]. Force sensors are installed in insoles

[21–23] and substrates [24].

The goal of many researches is a stride detection, and

others are concerned on activity recognition. Stride detec-

tion recognizes as exactly as possible single strides in a

time series. In contrast, activity recognition detects dif-

ferent kinds of movement, e.g. walking, standing, jogging.

A standardized test for the diagnosis of Parkinson’s disease

is the time up and go test. This test is also used, for

example, by [22] to differentiate between healthy and

Parkinson’s patients. We also used this test in [23] under

ideal hospital conditions for an approximate estimation of

Parkinson’s stage.

In this proposal, we want to compare the most fre-

quently used methods for stride detection, namely min–

max patterns (MMP), dynamic time warping (DTW),

convolutional neuronal networks (CNN) in order to be able

to use the best variant of stride detection in daily life,

independent of motor disorders.

A low-pass digital filter to eliminate the high-frequency

noise components of raw accelerometer measurements is

used in [14]. Thereafter, the authors ensure that only one

peak is detected for each zero crossing of normal of gravity.

In [21], they define stride candidates by determining the

beginning of the gait phase and calculate the stride dura-

tion. Strides with two phases and a short duration are first

merged with preceding strides and afterwards with suc-

cessive strides.

A stride recognition rate of 97% is achieved in [12] with

the multi-dimensional subsequence DTW with free walk-

ing. Using this method, a threshold value is fixed. This

worsens the results for abnormal movements or climbing

stairs [12].

Mild Cognitive Impairment (MCI) in gait is classified in

[25]. Photoplethysmography (PPG) and gait (accelerometer

and gyroscope) sensor data were recorded. The Butter-

worth filter was used to remove noise from the measured

gait signals. To detect strikes, a peak detection algorithm

that works with minimum peak height and minimum peak

distance was used.

For normal walking conditions, the frequencies of the

stride have been assumed to range from 1 to 3 Hz. In [18],

gravitational acceleration is filtered by using a bandpass

filter with a center frequency of 2 Hz and a bandwidth of 2

Hz. Strides are detected using the Stride Feature of Spec-

trogram methods and an artificial neural network (ANN)

architecture.

Gait parameters analysed in [24] such as speed, stride

time and stride length are delivered by a gait mat of the

GAITRite� instrumented walkway system.

In [15], foot- and body-mounted IMUs are used for

stride detection. Strides were labelled using a threshold.

The stride detection was performed by a residual neural

network. For the training process, cross-entropy function

was used as the loss function.

In a preprocessing step in [16], the signals from

accelerometer and gyroscope are normalized and scaled to

a fixed length of 256 samples per stride to ensure equally

scaled and fixed size input to the network. Mid-stance (MS)

and heel-strike (HS) are detected. For stride detection, a

two-layer convolutional network followed by one fully

connected layer and a readout-layer is chosen.

The advantage of neural networks (NN), hidden Markov

models (HMM) and regression-based systems is that they

do not require a threshold.

In order to be able to carry out gait measurements at home

without laboratory conditions, we have designed insoles

with installed sensors. To find the best method of stride

detection, we compare in this proposal the most used

methods min–max patterns, dynamic time warping, convo-

lutional neuronal networks, and daily life activities test on

the basis of two data sets from 32 healthy and 28 PD persons.

We would like to propose a system that recognizes the

walking strides of Parkinson’s patients in daily life. To the

best of our knowledge, there is no other study detecting strides

1. automatically

2. without a manually set threshold

3. independent of motor dysfunction

4. independent of the Parkinson’s stage of the patient

5. exclusively from walking activity (not from, e.g.

descending, ascending stairs, sitting activities)

This work is divided into six sections. Section 2 describes

the developed hardware, the tests performed by patients

and healthy persons. The preprocessing procedures nor-

malization, resampling, and ideal stride forming are

described in Sect. 3. The stride detection methods we

compare are explained in Sect. 4. The results achieved are

presented in Sect. 5. Section 6 indicates the conclusions

and further developments.
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2 Data and setup

2.1 Hardware

In the previous section, we have presented relevant works

which have contributed significantly to our work. Each

research group uses different sensors and experimental

setups; therefore, we want to explain our approach.

For the data recording, we used two insoles. The insoles

were made with a 3D printer and a flexible material. Ten

force sensors (FSR 402 short from Interlink) are used per

insole, see Fig. 1. The four force sensors at the heel and at the

ball are arranged parallel to each other so that the postural

stability within the foot can be measured. The BNO 055

sensor from Bosch is also mounted in the insole. This sensor

is an inertial sensor consisting of a gyroscope, accelerometer

and a magnetometer. This sensor has a co-processor for

sensor fusion. The sensor fusion calculates absolute orien-

tations and linear acceleration values directly. The output is

therefore angle velocity, acceleration, quaternions, Euler

angles and linear acceleration at a frequency of 100 Hz. The

sensor is located in the middle of the insole, see Fig. 1.

2.2 Sensor data

Figure 2 shows data of gait. In the first graph (a) are shown

the three-dimensional orientation data, in (b) the three-di-

mensional linear acceleration data, in (c) the force of three

different zones (heel, metatarsus and toe) and in (d) the

average of all force sensors. For our evaluation, we use the

y- and z-axis of the orientation and linear acceleration data,

as well as the mean value of all force sensors. We do not

use the x-axis of the orientation and linear acceleration

data, because it has already been determined in other work

that these values contain hardly any information about the

gait and we can confirm this from our experience [12].

Furthermore, we use the derivation of the orientation data

y0 and z0.

2.3 Data sets

2.3.1 Daily life activities

For the daily life activities dataset, we have a total of 7

recordings of 7 different healthy persons. The age of the

persons was between 25 and 54 years. In total, each

person passed the test one time. During the experiment,

the candidates had to pass the following test, see Fig. 3.

At the beginning of the test, the person sits on a chair for

1 min. Then, the person gets up from the chair and

stands for 1 min. After that, the person walks back and

forth for 1 min. Then, the person goes up stairs three

floors and then down the stairs. Next, the person walks

for another minute again and ends up in front of a chair.

The person spends 1-min standing. In the second last

step, the person changes repeatedly for 1 min from a

standing to a sitting position. Finally, the person sits for

1 min on the chair.

2.3.2 Time up and go test

The time up and go (TUG) test dataset consists of total 50

subjects. Subjects suffer from 28 Parkinson’s disease with

a maximum stadium of 3 by Hohn and Yahr [26]. The

healthy subjects without motoric disfunctions are used as

control group.

The test subjects had to pass a gait test of the MDS-

UPDRS [27]. For this purpose, the person sits on a chair

with back and armrests. They get up from the chair and

walk 10 m straight away. At a mark, the subject turns 180�

and walks back to the chair. Then, the subject sits down

again. The complete process of the TUG test is shown in

Fig. 4.

Fig. 1 Insole with force and

IMU sensors
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2.4 Training and test data

To create our training data, we label manually our daily life

activities and TUG test datasets into strides and no strides,

see Fig. 5.

Data are split into training and test data. In order to

avoid biasing the results, we make sure that data assigned

to an individual are either only in test data or only in

training data. 70% of the data were used for training and

30% for testing. This type of separation makes the training

data totally different from the test data. This means there

are no redundant data to improve the results. Since there is

a small dataset for the classification, we decided to use a k-

fold cross-validation with mixing. We select seven folders

(a)

(b)

(c)

(d)

Fig. 2 a Orientation data as

Euler angles; b linear

acceleration; c average force of

heel (four sensors), metatarsus

(two sensors) and bunion (four

sensors); d average of all force

sensors

Fig. 3 Process of daily life

activities test
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for the daily life activity Test. We use five folders for

training and two for the test.

3 Preprocessing

3.1 Normalization

In order to enable the classifiers to work with uniform

values, we normalize the data. For the normalization of the

data, we use the min–max normalization. Thus, our result

vector has a value ranging from 0 to 1. The normalization

is shown in Eq. 1. We calculate the normalization for every

xi8i 2 f0; . . .;N � 1g of the feature X where N is the length

of feature X. Functions minðXÞ and maxðXÞ return the

absolute minimum and maximum of the feature X. The

result is a normalized value xnorm
i 2 Xnorm [28].

xnorm
i ¼ xi � minðXÞ

maxðXÞ � minðXÞ ð1Þ

3.2 Resampling

After normalization, the individual signals are transformed

to a uniform length of 100 values. This step is necessary

because classifiers such as CNN always require the same

tensors as input. For resampling, we use the Python

Fig. 4 Process of time up and

go (TUG) test

Fig. 5 Original and manually labelled data

Neural Computing and Applications

123



function ‘‘resampling’’ in the library signal. This method is

based on FFT.

3.3 Ideal stride template

For the stride detection with the DTW, we need an ideal

stride as a template. For estimating the ideal stride, we also

use the DTW in combination with the labelled training data.

For this, we create a distance matrix D
ðM;NÞ
stride ; based on the

costs for all strides to each other, where M is the number of

rows and N the number of columns. The cost D
ði;jÞ
stride is the

distance between two strides by DTW. Then, we sum the

costs of all columns for each row in vector Costi

Costi ¼
XN�1

j¼0

D
ði;jÞ
stride;8i 2 f0; . . .;M � 1g; j 2 f0; . . .;N � 1g:

ð2Þ

After that, we choose the minimum of the vector Cost.

Cideal stride ¼ minðCostiÞ 8i 2 f0; 1; . . .;M � 1g ð3Þ

This stride will be used as an ideal model for a stride. An

example of our approach can be seen in Table 1. To choose

the ideal stride [12], we resampled the signals to a uniform

length and averaged each index over all the strides.

4 Methods

In the previous section, we presented the datasets, the

hardware and the preprocessing. In this section, we want

present two comparable methods, min–max-pattern (MMP)

and dynamic time warping (DTW), and our method con-

volutional neural networks (CNN). This includes prepro-

cessing, algorithms for stride detection, and the validation

process. An overview of the different stride detection

processes can be found in Fig. 6.

4.1 Min–max-pattern

The simplest way to detect strides is to trace a minimum–

maximum-pattern (MMP). This pattern is typical in human

gait. However, this pattern also occurs in other motion

sequences, e.g. climbing stairs. For this reason, this pattern

is not an ideal choice [12]. Nevertheless, we have included

the procedure for the sake of completeness.

The idea is that with a fixed window width the time

series is traversed over the y-axis of the orientation data.

The index of the minimum and maximum within the

window is for each window stored. We have set the size of

the window to 90 values, because this corresponds to 0.9 s,

which is more than half duration of an average human

stride. The average duration is about 1.1 s, 110 values [29].

Inside this window, all maxima and minima of a stride are

expected to be included, without overlapping with a second

stride.

The indices of all minima and maxima can then be

displayed in a separate frequency table. All indices where

the absolute frequency is greater than the average are

potential strides. After that, a logical check is made,

because each minimum must be followed by a maximum.

This ensures that minima and maxima are always presented

in pairs, see Fig. 7. Next, the distance from each minimum

to the corresponding maximum is determined. If this dis-

tance is outside the 90% of the confidence interval of all

strides used for training, it is assumed that it is not a stride.

The 90% confidence interval was chosen to remove

extremely short or long steps. This confidence interval has

proven to be useful in our tests.

Now we want to determine the corresponding stand

phase for each MMP. In the standing phase, the angle

change is almost zero. We form the derivation of the y-axis

of the orientation data y0 and calculate the standard devi-

ation sy0 of the y0 sequence. Now, the ranges are selected

between y0i [ � sy0 � 0:25 and y0i\þ sy0 � 0:25. We have

chosen the coefficient 0.25 because we only look for areas

close to zero. The person’s standing phase is located in this

Table 1 Example of a distance matrix for selecting the ideal stride

Stride 1 Stride 2 Stride 3
P

Stride 1 0 2 3 5

Stride 2 2 0 5 7

Stride 3 3 5 0 8

The best choice is stride 1 with the minimum costs to all other strides

(bold)

Fig. 6 Stride detection processes
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area. Thus, we receive the areas of the standing phases.

Finally, we select the mean index of the region within the

standing phase between the minima–maxima patterns. This

index indicates the start or end of a stride. We estimate the

beginning of the first stride or the end of the last stride of a

sequence of strides by the average length of the strides.

4.2 DTW

DTW is used to measure the similarity or distance of two

signals based on the best path. The particular feature of the

method is that the signals do not have to have the same

length. In contrast, the Euclidean distance always deter-

mines the distance between two points directly. For stride

detection, we use the force, orientation, derivative orien-

tation and linear acceleration data. The DTW searches for

the ideal path between two signals, see Fig. 8 [30]. The

signals are first normalized before the algorithm for stride

detection begins. Our algorithm is strongly based on the

algorithm presented by Barth [12].

By using the ideal stride, see Sect. 3.3, we calculate the

distance matrix D(M, N) between the ideal stride and the

test signal we want to analyse, see Fig. 9, where M is the

length of the ideal stride and N the length of the test signal.

Then, we calculate the accumulated cost matrix

C(M, N). For this, we add the minimum costs from the

distance matrix D. The lowest row of the matrix C results

from the bottom row of the matrix D, see Eq. 4 [12].

Cð0; nÞ ¼ Dð0; nÞ8n 2 f0; . . .;N � 1g ð4Þ

The first column of the cost matrix C results from the sum

of the previous element of the matrix C and the current

element of the matrix D, see Eq. 5.

Cðm; 0Þ ¼ Cðm� 1; 0Þ þ Dðm; 0Þ8m 2 f0; . . .;M � 1g
ð5Þ

All other elements of the cost matrix C are calculated from

the minima of the neighbourhood summed with the dis-

tance of the current element, see Eq. 6. The result of the

cost matrix C is shown in Fig. 9 in the second last row.

Cðm;nÞ ¼ minðCðm� 1;nÞ;Cðm� 1;n� 1Þ;Cðm;n� 1ÞÞ

þDðm;nÞ8m 2 0; . . .;M � 1;n 2 f0; . . .;N � 1g
ð6Þ

As a result of the cost matrix, the summed costs are dis-

played in the first row. The first line of the cost matrix is in

Fig. 7 Min–max-pattern recognition

Fig. 8 DTW: ideal path between strides of healthy and PD subjects
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the last line of Fig. 9. It can be seen in the last line of the

figure. In the next step, a threshold value is selected to

mark the end of a step. In our case, we chose the threshold

of 17. A threshold value of 20, as recommended by Barth,

was not useful in our case, as steps at the turn were often

detected during the TUG test [12].

Finally, we follow the minimal path beginning at the end

of the stride. Thus, we get the beginning of a stride, see

Fig. 10.

4.3 CNN

CNN are becoming more and more popular because they

achieve significantly better results than traditional NN.

CNN are used primarily for image recognition, but they are

just as powerful at detecting signals. The difference

between NN and CNN is that CNN learn local patterns. In

contrast, traditional NN always use the entire input. The

multilayer convolutional architecture allows you to

increase the complexity of detection. Thus, it is possible to

recognize in the first layer only patterns, and with the

second or n-layer more and more complex objects [31, 32].

For our work with the CNN, we use the open source python

library Keras with tensorflow.

Preprocessing for CNN includes normalization and

resampling, see Fig. 11. Via resampling, all training data

are resampled to a length of 100 values. For the classifi-

cation with CNN, we use a sequential network. As an

activation function, we use the rectified linear unit (ReLU)

function with except at the output layer, see Eq. 7, where x

is the input. At the output layer, we use the sigmoid

function, see Eq. 8, because a ReLu function is not suit-

able. For output layer, it is recommended to use a Sigmoid

or Softmax function. The first one-dimensional convolu-

tional layer creates 100 filters with a kernel size of 3.

(a)

(b)

(c)

(d)

Fig. 9 DTW algorithm between ideal stride and a test signal. a Raw y orientation signal; b distance matrix between raw signal and template;

c accumulated distance matrix; d summed costs of the accumulated distance matrix

Fig. 10 Path between stride start

and end
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f ðxÞ ¼ maxð0; xÞ ð7Þ

f ðxÞ ¼ 1

1 þ e�x
ð8Þ

To reduce the filters, we apply a max pooling with a pool

size of 3 and a dropout with probability 0.2. The second

convolutional layer consists of 100 filters and a kernel size

of 5. This is followed by max pooling again with a pool

size of 3. This is followed by a so-called dropout with

probability 0.2, where single connections are randomly

deleted [33]. After that, we have a flattening layer to adjust

the dimensions for the NN. Next, we have two dense lay-

ers. The first has 20 neurons and the second 30 neurons.

4.4 Automatic framing

In contrast to the MMP or DTW method, the CNN signals

must have a uniform length. This is important that the

classifier always has the same inputs. In this case, we

develop an algorithm that systematically cuts out a small

windows from our entire signal that the classifier can detect

strides. The algorithm uses dynamic window sizes that

even strides with different durations can be detected. The

average duration of a stride is 1:1 s � 0:2 s [29], which

corresponds to 110 � 20 values. Therefore, we use average

window size of 110 � 30 values, so we capture all possible

ranges. The window w can have the following sizes

w ¼ f80; 90; 100; 110; 120; 130; 140g: ð9Þ

To increase performance, the algorithm always skips seven

values when scanning the signal. This increases the per-

formance, because not every single increment is classified

seven times. If the classifier within a window detects a

stride with a probability more than 70%, the stride is stored

in a list with start index, end index and probability of the

stride. A recognition probability of 70% is very low. In a

later step, we select the stride with the highest probability.

This deletes unnecessary strides. Based on the first detected

stride, overlaps up to a maximum of

Overlapping ¼ Detected stride þ ðAverage stride � 0:8Þ
ð10Þ

are saved. The factor 0.8 was selected so that a large range

is available for stride detection. Thus, a tolerance is given

if a classification error has been made. Based on the

average stride duration of 1:1 s � 0:2 s values [29]. Because

multiple strides represent the same stride by overlapping,

we need to select the best fitting stride. For this reason, we

choose the area from the first detected stride to the end of

the overlap. Then, we select from this range this stride with

the highest probability of being a stride. This stride is then

defined as a valid stride. An example of the result is shown

in Fig. 12.

To check the results of the algorithm, we use two test

procedures. With the first method, we use the labelled data.

For the second method, we use the original signals. Here,

we always mark the absolute minimum within one step

� 10 ms. If the predicted stride lies within this range, it is

marked as a correct detected stride [12].

Fig. 11 Schema of the CNN layers

Fig. 12 Stride detection by CNN
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4.5 Measurement

In the previous sections, we have presented various meth-

ods for stride detection. In this section, we describe our

methods for evaluating the results.

While we have a binary classification problem (stride,

not stride), we present our results in a 2 � 2 confusion

matrix, see Table 2. The table is used to help in the fol-

lowing sections to understand the equations.

For the true positive values, we have labelled the strides

first. We used the minimum of the strides in the y-axis

value from the orientation data. If the marking of a stride is

included from the starting point and end point of the

algorithms, it will be evaluated as True Positive. In order to

be assigned to the true negative values, the average step

duration of 110 values was assumed. This allowed us to

calculate how many wrong decisions were made over time.

4.5.1 Sensitivity

Sensitivity (recall) is a widespread measurement in medi-

cine. It indicates the ratio of predicted strides to all strides

inside our test data, see Eq. 11.

Sensitivity ¼
P

True positiveP
Total labelled positive

ð11Þ

4.5.2 Specificity

The specificity describes how well our system can distin-

guish steps from all other activities (no steps). It is the ratio

of undetected strides in all test data where no steps were

present, see Eq. 12.

Specificity ¼
P

True negative

Total labelled negative
ð12Þ

4.5.3 Precision

The precision is the proportion of correctly predicted steps

to all predicted steps, see Eq. 13.

Precision ¼
P

True positiveP
Predicted condition positive

ð13Þ

4.5.4 Accuracy

Accuracy is the ratio of all correctly recognized strides and

all correctly recognized other activities (no stride) to all

test data, see Eq. 14.

Accuracy ¼
P

True positive þ
P

True negativeP
Total population

ð14Þ

4.5.5 F1-score

The F1-Score is the harmonious average between precision

and recall. In this way, both measures are combined into

one value.

F1 score ¼ 2 � Precision � Recall

Precision þ Recall
ð15Þ

5 Results

In this section, we would like to present our results, which

were achieved by using the data sets daily life activities

and TUG test by using the presented methods.

5.1 Measured using IMU sensors

We do not use any force sensors to train the daily life

activities 1 data sets. Because the TUG test data set was

made with an older version of the insole (without force

sensors). So the data are comparable.

Table 3 shows the results of the daily life activities data

set. The MMP, DTW algorithm and AF ? CNN classifi-

cation were compared. For the test, the complete time

series were used. The sensitivity shows that the MMP and

AF ? CNN algorithms perform best. The DTW algorithm

performs comparatively well. From this, it can be assumed

that the DTW algorithm does not always detect strides

correctly. In contrast, the MMP and AF ? CNN algorithms

detect strides very well. The DTW algorithm has the

highest specificity followed by the AF ? CNN algorithm.

The MMP algorithm performs worse. From this, it can be

assumed that the DTW and AF ? CNN algorithms detect

other activities, e.g. standing or going stairs as well as no

strides. However, the MMP algorithm has big problems

Table 2 Binary confusion

matrix
Labelled class

Positive Negative
P

Predicted positive True positive False positive Total predicted positive

Predicted negative False negative True negative Total predicted negative
P

Total labelled positive Total labelled negative Total
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with this. This result is the identical to Barth’s results [12].

With F1-score and accuracy, the AF ? CNN algorithm

performs best, closely followed by the DTW algorithm. For

this reason, we would recommend the AF ? CNN algo-

rithm for stride detection.

5.2 Measured using IMU and force sensors

These results show the improvement in classification that is

achieved when additional force sensors are used for clas-

sification. The force sensors have been reduced to three

different measuring points. For this purpose, we have cal-

culated the average value of heel, metatarsus and ball of

foot, as already described in Sect. 2.2. Table 4 shows a

comparison of the AF ? CNN method with and without

force sensors. It is clearly to seen that the classification

result for our test data was completely correct. With the

addition of force sensors, the gain in information increased

significantly. This result can be related to the small data set

of individuals tested and all did not have motor

dysfunctions.

5.3 TUG test

The classifiers were not trained again during the test of the

TUG test data set. We used the models from Sect. 5.1. This

shows how independent the model is of motor dysfunctions

or other appearance. In addition, the test took place in a

completely different environment. The results are shown in

Table 5. The results were grouped by classifiers with the

subgroups PD and no PD.

The AF ? CNN algorithm shows the best results for PD

and no PD at F1-score and accuracy. From this, it can be

concluded that the algorithm reacts well to changed data

and is therefore very robust. However, it has a relatively

weak specificity value. This is due to the fact that the

AF ? CNN algorithm wrongly counted other activities as a

stride. The DTW algorithm scored worst in this test. This

can be explained by the fact that the threshold was not

optimized for the data. The algorithm can therefore react

poorly to new data. This demonstrates the weakness of a

fixed threshold in the algorithm. The same also applies to

the MMP algorithm.

6 Discussion

The presented methods have shown that the problem of

stride detection can be solved with many different methods.

The best performance in our tests was achieved by AF-

CNN. The advantage of the AF-CNN classifier is that it

does not require a threshold value. Furthermore, the AF-

algorithm makes it possible to analyse the data during

recording.

Furthermore, we have shown that the combination of

force and IMU sensors can increase the results even more,

so that our test produces small errors.

Table 3 Daily life activities 1

(IMU sensors)
Sensitivity Specificity Precision F1-score Accuracy

MMP 0.990 0.771 0.658 0.791 0.838

DTW 0.896 0.986 0.969 0.931 0.956

AF ? CNN 0.992 0.940 0.901 0.944 0.958

Best results are highlighted in bold

Table 4 Daily life activities 2

(labelled data)
Sensitivity Specificity Precision F1-score Accuracy

AF ? CNN (IMU) 0.978 0.994 0.978 0.974 0.988

AF ? CNN (IMU ? force) 1.0 1.0 1.0 1.0 1.0

Best results are highlighted in bold

Table 5 Results of the data set

TUG test (IMU sensors)
Group Sensitivity Specificity Precision F1-score Accuracy

MMP PD 0.838 0.895 0.925 0.879 0.86

No PD 0.844 0.778 0.871 0.857 0.820

DTW PD 0.615 0.852 0.875 0.723 0.703

No PD 0.663 0.844 0.887 0.759 0.727

AF ? CNN PD 0.983 0.812 0.899 0.939 0.920

No PD 0.968 0.818 0.91 0.938 0.916

The best results separated by PD or no PD are highlighted in bold
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In our opinion, the step recognition is the most impor-

tant point in the analysis of the human gait, since all further

parameters are inside this. If the step is not well recog-

nized, further mistakes will occur in a more detailed

analysis.

As comfortable to carry measuring instruments for

persons with motoric dysfunctions as in Parkinson’s dis-

ease, we propose a combination of force and IMU sensors.

As an automatical stride detection process for daily life

use, we propose a joint of automatic framing, normaliza-

tion, resampling, and CNN.
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Abstract: Due to increasing life expectancy, the number of age-related diseases with motor
dysfunctions (MD) such as Parkinson’s disease (PD) is also increasing. The assessment of MD is visual
and therefore subjective. For this reason, many researchers are working on an objective evaluation.
Most of the research on gait analysis deals with the analysis of leg movement. The analysis of arm
movement is also important for the assessment of gait disorders. This work deals with the analysis of
the arm swing by using wearable inertial sensors. A total of 250 records of 39 different subjects were
used for this task. Fifteen subjects of this group had motor dysfunctions (MD). The subjects had to
perform the standardized Timed Up and Go (TUG) test to ensure that the recordings were comparable.
The data were classified by using the wavelet transformation, a convolutional neural network (CNN),
and weight voting. During the classification, single signals, as well as signal combinations were
observed. We were able to detect MD with an accuracy of 93.4% by using the wavelet transformation
and a three-layer CNN architecture.

Keywords: wavelet transformation; gait analysis; inertial sensors; Parkinson’s disease; machine
learning; wearable sensors

1. Introduction

The life expectancy of humankind is increasing worldwide. Life expectancy is projected to
increase in the 35 industrialised countries with a probability of at least 65% for women and 85% for
men. There is a 90% probability that life expectancy at birth among South Korean women in 2030
will be higher than 86.7 years, the same as the highest worldwide life expectancy in 2012, and a 57%
probability that it will be higher than 90 years [1]. Due to the increasing life expectancy, the number of
old-age diseases is also increasing. One of them is PD. At present, there are 10 million people affected
by this disease, and the trend is increasing [2]. Parkinson’s disease is a neurodegenerative disease
and is currently incurable. However, the progression of the disease can be delayed by medication.
For this reason, an exact diagnosis is very important so that the medication can be adjusted as well
as possible to the particular person. There are different rating scales for the uniform assessment,
e.g., the Unified Parkinson’s Disease Rating Scale (UPDRS) [3]. With the help of this rating scale,
for example, cognitive and motor performance are assessed. One of the motor tests is the Timed Up
and Go (TUG). The assessment is visual and therefore subjective. For this reason, many researchers are
working on the objective evaluation of this test.

Electronics 2019, 8, 1471; doi:10.3390/electronics8121471 www.mdpi.com/journal/electronics
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Most of the research on gait analysis deals with the analysis of leg motion [4–10]. However,
the analysis of the arm movement is also important for the assessment of a gait disorder.
Stationary systems that use cameras or ultrasound [11–19] and mobile systems with inertial
sensors [20–22] are used to measure the arm swing.

In [11], the arm swings of Parkinson’s patients and healthy persons with the help of a Kinect
camera were compared. Significant differences in amplitude and speed were observed. The arm
movements of Parkinson’s patients also often showed asymmetry. The PD group showed significant
reductions in arm swing magnitude (left, p = 0.002; right, p = 0.006) and arm swing speed (left, p = 0.002;
right, p = 0.004) and significantly greater arm swing asymmetry (ASA) (p < 0.001). An accuracy of
more than 90% in distinguishing healthy people from persons with PD was also achieved using a
Kinect camera in [12]. Classification between healthy and non-healthy subjects is performed based
on the five most relevant features and the two new obtained features from LDA, using four different
classifiers, support vector machine (SVM), multilayer perceptron (MLP), the radial basis (RB) neural
network, and k nearest neighbor (KNN). Using the motion capture system Motek CAREN in [13], it was
detected that Parkinson’s patients have a different jerk and arm swing length compared to healthy
people. The fact that Parkinson’s patients in the early stages have a larger ASA could be confirmed
in [14] with the Vicon and the Baton Rouge motion lab system. The p-value for distinguishing healthy
individuals from individuals with Parkinson’s disease was 0.003. A Kinect system was used in [16]
to detect the differences in speed, amplitude, and symmetry in arm movement between healthy
people and people in the early stages of Parkinson’s disease. In [17], it was investigated which model
method provided the best results when using a Kinect to detect Parkinson’s disease stages. The best
results with an accuracy of 93.4% were obtained with a special Bayesian network classifier using
10-fold cross-validation. The relevant features were related to left shin angles, left humerus angles,
frontal and lateral bends, left forearm angles, and the number of steps during a spin. For the recordings
in [18], a Kinect system was used in combination with an e-Motion capture program. The proposed
system classifies PD into three different stages related to freezing of gait (FoG). An accuracy of 93.4%
was reached using the features of the movement and position of the left arm, the trunk position for
slightly displaced walking sequences, and left shin angle for straight walking sequences. However,
they obtained a better accuracy of 96.23% for a classifier that only used features extracted from slightly
displaced walking steps and spin walking steps.

In [15], an automatic method for the treatment of levodopa-induced dyskinesia (LID) was
developed. Gyroscopes were used on the abdomen and chest and the abdomen, chest, wrists,
and ankles. In general, an average detection rate of 90% for Parkinson’s patients was achieved,
and the average detection rate and the precision of the individual classes (LID, Parkinson, healthy)
were 80% and 77%, respectively. Several classification techniques have been used for LID assessment,
including the naive Bayes classifier, KNN, fuzzy lattice reasoning (FLR), decision trees, random forests
(RF), and neural networks using a multilayer perceptron (MLP).

The method used in [19] consisted of guiding patients with early Parkinson’s on a treadmill and
measuring their movements with an ultrasound device on each side. The results were a reduced arm
swing amplitude in the patients and a longer stride length compared to healthy people.

In [20], a sensor unit was used on each forearm. This sensor unit consisted of two triaxial
G-Link accelerometers that were attached to an aluminum bar. Arm swing asymmetry (ASA),
maximal cross-correlation (MXC), and instantaneous relative phase (IRP) of bilateral arm swing
were compared between PD and controls. PD subjects demonstrated significantly higher ASA (p =
0.002) and lower MXC (p < 0.001) than controls.

An accelerometer was placed on the upper arm, as well as a magnetic angular rate and gravity
(MARG) device on the shoulder in [21]. The Denavit–Hartenberg model was used, and the algorithm
was based on the pseudoinverse of the Jacobian by the acceleration of the upper arm. The accuracy of
this method was demonstrated by the use of an optoelectronic system for control purposes.
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A similar system was used in [22] with nearly the same sensors and sensor position.
An eigenvector method was suggested to compare the axes of the left and right hand. The results
showed a difference between people with Parkinson’s disease and healthy people.

In our approach, we want to propose a medical wearable system that:

(a) classifies between subjects with motor dysfunctions and a control group based exclusively on
arm motions

(b) uses 3D data from the accelerometer, gyroscope, and magnetometer
(c) includes new parameters
(d) is small and easy to use
(e) is not bound to a location
(f) requires a small number of sensors
(g) is low cost

According to the previously mentioned classification, this paper is organized as follows. Section 2
describes our materials. The section is divided into the medical experiment protocol, the hardware
used, and the dataset. Then, in Section 3, a description of our methods and how we apply the methods
to our data are described. Section 4 include the results. Finally, a discussion and comparison is found
in Section 5.

2. Materials

2.1. Protocol

We decided to use the TUG test as a suitable test for recording gait data. Among other things, it is
used to evaluate the motor performance of the UPDRS. For the test, only a chair with a backrest and
armrests was needed. At first, the test person was sitting on a chair. Upon a command from the test
leader, the test person stood up and walked straight ahead for ten meters at an appropriate speed to a
mark. At the mark, the test person turned around and walked ten meters straight ahead, back to the
chair. The test person sat down in the chair. The test and the recording were then finished. We divided
the TUG into two different parts for later analysis of the data. Part (A) contained all data of the TUG
including standing up and sitting down in the chair. Part (B) included going straight to the mark,
turning around, and going straight back to the chair. Parts (A) and (B) are shown in Figure 1. The aim
of this splitting was to extract the gait data from the complete recording.

Mark
Chair

10 meters

B

A

Figure 1. Process of the Timed Up and Go (TUG) test.
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2.2. Hardware

For data recording, we used two wristbands with the Meta Motion Rectangle wearable sensors
from Mbientlab; see Figure 2 [23]. This is an inertial measurement unit (IMU) sensor. It consists of a
BMI 160 with a 3-axis gyroscope and a 3-axis accelerometer and a BMM 150 with a 3-axis magnetometer.
By using the Bosch sensor fusion algorithm, the Euler angle and linear acceleration can be obtained [24].
The x-axis corresponds to the gait direction.

Figure 2. (a) Wristband with the Meta Motion Rectangle sensor. (b) Position of the sensor during
the measurement.

2.3. Data

2.3.1. Dataset

To create a dataset for later analysis, we worked together with the Niederlausitz Clinic in the
study “Development of a digitalParkinson Disease Assessment” (ethics request granted in December
2018 by Ethics Committee Brandenburg). All persons were evaluated by the physicians. A total of
39 different persons with 250 recordings were available for the dataset. Of these, there were 15 motor
dysfunction patients with 80 recordings and 24 persons with 170 recordings as the control group.
Table 1 summarizes the data.

Table 1. Amount of persons and records from the Parkinson’s and control groups.

Label Persons Records

Motor dysfunction 15 80

Control 24 170

2.3.2. Sensor Data

While the subjects performed the TUG test, 3D Euler angles and 3D linear acceleration of the arms
were captured. The signals for the Euler angles and the linear acceleration were the result of the sensor
fusion algorithm from Bosch. Both signals were recorded at a frequency of 100 Hz. The algorithm
for the sensor fusion used the data from the accelerometer, gyroscope, and magnetometer. Figure 3
shows at the top the 3D Euler angles and at the bottom the 3D linear acceleration signals. In Figure 3,
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the complete signal of one wristband during the TUG test is shown. Furthermore, Part (A) contains all
recorded data and Part (B) the data between the black dotted lines, the active walking parts.
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Figure 3. Euler angles and linear acceleration of one wristband for the TUG test.

3. Methods

3.1. Removing Jumps

Figure 3 shows that some jumps existed in the signal of the z-axis of the Euler angle. This was
because the value range of the sensor was between 0◦ and 360◦. This made the signal unstable.
To correct this, we removed all jumps that were greater than a threshold of 300◦. In Equation (1),
our procedure is shown. If the absolute value of the difference of two successive sensor values
|xi − xi+1| > 300, a correction of the signal was performed, where i ∈ {1, ..., N}. N indicates the length
of the signal. The result of the cleanup are given in Figure 4.

xi+1 =

{
xi+1 − 360 f or xi < xi+1

xi+1 + 360 f or xi > xi+1
(1)

0 5 10 15 20 25
time (s)

−100

0

100

200

Eu
le
r a

ng
le
s (

°)

x
y
z

Figure 4. Euler angles without jumps.
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3.2. Derivation

It was not possible to create a classifier that could classify the subjects with motor dysfunctions
(MD) and no MD by using the Euler angles, because the Euler angles were measured in absolute
values. This means that the angles were not calibrated to a starting value at the beginning of the
recording. For this reason, we calculated the derivative of each axis of the Euler angles. For this
purpose, we calculated the difference between two successive measured values. The equation of the
first order discrete derivative can be seen in (2), where N is the length of the signal, xi is the signal at
index i, and x′i is the value for the difference at i. The result of the derivation can be seen in Figure 5.
The derivation makes the signals more comparable for different recordings. This is because the relative
angle is used by the derivation.

X′i = xi+1 − xi, i ∈ {1, 2, ..., (N − 1)} (2)
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Figure 5. Derivation of the Euler angles.

3.3. Resampling

Before CNN can interpret the data, the signal must have a uniform length. To do this,
we resampled the data to a length of 512 values. For resampling, we used the Python library SciPy [25].

3.4. Wavelet Transformation

When considering static signals, the Fourier transformation is very well suited. Unfortunately,
there are hardly any static signals in the real world. Every signal changes its frequency dynamically in
time. This also applies to the human gait. The gait is a dynamic process. For this reason, it does not
make sense to use Fourier analysis.

The origin of the data was a temporal series; therefore, we preferred the use of the wavelet
transform in order to increase the information, by decomposition of the time frequency. After the
experiments, the accuracy showed a useful feature extracted from this transform. For the wavelet
transformation, a signal was convoluted with a wavelet template. By selecting the kernel, we ensured
that the ranges around 1.2 Hz (frequency of the arm swing [26]) had a high amplitude. With this
template, we calculated the wavelet transformation over the complete signal. In our case, these were
the x-, y-, and z-axes of the derived Euler angle and the x-, y-, and z-axes of the linear acceleration of
both wristbands. Figure 6 shows the scalograms of the individual signals of one wristband. On the
y-axis, the frequencies are shown in Hertz and on the x-axis the time in seconds. For the calculation of
the wavelet transformations, we used the Python library PyWavelets [27].
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Figure 6. (a) x-axis of the derived Euler angle. (b) y-axis of the derived Euler angle. (c) z-axis of the
derived Euler angle. (d) x-axis of linear acceleration. (e) y-axis of linear acceleration. (f) z-axis of
linear acceleration.

Figure 6a,c,e corresponds to the x-, y-, and z-axes of the derived Euler angles. We calculated for
each signal the continuous wavelet transformation with the Morlet wavelet. It can be seen that there
was a high amplitude from 0.25 Hz. In the lower frequency data < 0.25, the individual arm swings can
be seen.

Figure 6b,d,f reflects the x-, y-, and z-axes of linear acceleration. We calculated for each signal
the continuous wavelet transformation with the Morlet wavelet. With these data, it can be seen that
the largest amplitude was in the range of 1 Hz. This corresponds to the natural arm swing since this
corresponds to a frequency of approximately 1.2 Hz [26].

3.5. CNN

In image classification, as well as other signals, the application of CNNs has been very successful.
The difference from common NNs is that a CNN searches for a local pattern in the input signal.
When using multiple CNN layers, one after the other, larger patterns can be detected [28,29]. Thus,
a CNN often provides better classification results than NN. In our case, we achieved the best results
with the use of three convolution layers. Then, we applied one NN with three encoders and one
decoder. Our used CNN with the configuration is shown in Figure 7. We used Python and the Keras
library to create the CNN [30]. We obtained the architecture for our CNN by systematically testing.
We wanted to keep the number of CNN layers as small as possible. However, with less than three
layers, no useful results were available.
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...

...

...

...

...

Signal Conv 1 Conv 2

matrix
128 x 512

... ...

Flatten

...

...

...

Dense Layers Output

     filter: 64
kernel size: (3,3)

pool size: (2,2)
drop-out: 0.2

         filter: 64
kernel size: (5,5)

pool size: (2,2)
drop-out: 0.2

Conv 3

...

     filter: 32
kernel size: (7,7)

pool size: (2,2)
drop-out: 0.2

activation: reluactivation: relu activation: relu

...

...

100
dense:

50 10 30
activation:

relu relu relu relu sigmoid

Figure 7. Construction of a single signal CNN for classification.

In order to have a useful input for the CNN, we resampled the signal to a uniform length of
512 values; see Section 3.3. We then applied a wavelet transformation to the signal; see Section 3.4.
This gave us a 128× 512 matrix for the signal. We used this matrix as input for the CNN. As the
activation function, we used the ReLU function for all convolution layers. We also used the ReLU
function in the hidden layers of the encoder and decoder. The equation of the ReLU function can be
seen in Equation (3). The characteristic of the ReLU function is that the weight of the output is not
negative. In the output layer, we used the sigmoid function; see Equation (4). After each convolution
layer, we performed a two-dimensional max-pooling with a pool size of 2× 2 and a drop out with a
probability of 0.2.

f (x) = max(0, x) (3)

f (x) =
1

1 + e−x (4)

The first convolutional layer searched for the smallest pattern from the signal. For convolution,
we used a 3× 3 matrix. In total, we created 64 different filters in the first convolutional layer. In the
second convolutional layer, we increased our kernel size to 5× 5 and created 64 filters again. The third
convolutional layer had a kernel size of 7× 7, and the filters created were reduced to 32 pieces. After the
convolutional layers, we used a flatten layer so that the signal could be interpreted by the dense layers.
In the dense layers, we started with three encoder layers with 100, 50, and 10 neurons, followed by
a decoder layer with 30 neurons. Finally, we obtained our prediction in the output layer. Since we
had a binary problem, a single neuron was used. For the training of the models, we used a batch size
of 50 and 50 epochs. For training, we used an Intel Core i7-6700HQ with 2.6 GHz with four cores.
Furthermore, the system used 16 GB RAM. The computer required approximately 45 min to train
a model.

3.6. Multi-Channel CNN

In the last section, we presented our architecture for a single signal. To achieve better and more
robust results, we wanted to use multiple channels x, y Euler angles, and x of linear acceleration for
classification. For this reason, we created an m-dimensional input. For the third dimension, we used
the number of m different signals used. Figure 8 shows the construction. Another difference was
that the first convolutional layer created 128 filters. The model was similar to the one in Figure 7.
The computer required approximately 2 h to train a model.
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Figure 8. Construction of a 3-channel CNN to use three different signals for classification.

3.7. Weight Voting

The multi-channel CNN was trained with 3 signals at the same time. The difference in voting
was that for each signal, a separate model was trained, which was independent of the other models.
In our case, we had a binary problem, so the calculation for the voting was easy. We used the predicted
classes and calculated the average of all predictions; see Equation (5), where mi is the prediction of a
model from a classifier and M is the number of classifiers.

v =
1
M

M

∑
i=1

mi, i ∈ {1, 2, ..., M} (5)

If v ≥ 0.5, then the predicted class is MD and in all other cases, no MD; see Equation (6).

prediction =

{
MD, v ≥ 0.5

noMD, v < 0.5
(6)

3.8. Evaluation

We decided to use 3-fold cross-validation for the classification to make the results of our applied
methods reasonable. We used 66.6% of the data for training and 33.3% for testing. For each measurement,
we calculated the sensitivity, specificity (precision), recall, F1-score, and accuracy. For this, we used the
confusion matrix in Table 2.

Table 2. Binary confusion matrix.

Classes

Positive Negative

predicted TP FP
positive true positive false positive

predicted FN TN
negative false negative true negative

Sensitivity (recall) is a widespread measurement in medicine. It indicated the ratio of predicted
MD to all MD inside our test data; see Equation (7). The specificity described how well our system
can distinguish MD from the control group (no MD). It was the ratio of predicted non-MD persons in
all test data where healthy persons were present; see Equation (8). Precision was the proportion of
correctly predicted MD to all MD; see Equation (9). Accuracy was the ratio of all correctly recognized
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MD and no MD to all test data; see Equation (10). The F1-score (F1) was the harmonious average
between precision and recall; see Equation (11).

recall = sensitivity =
TP

TP + FN
(7)

speci f icity =
TN

FP + TN
(8)

precision =
TP

TP + FP
(9)

accuracy =
TP + TN

TP + FP + FN + TN
(10)

F1 = 2 · precision · recall
precision + recall

(11)

3.9. Methodology

After we have presented our material and methods, we will now discuss in this section how
we applied these methods. In the presentation of the dataset, we already said that we divided our
recording into two different parts. First, we classified Parts (A) and (B), which comprised the complete
recording of the TUG test. The other scenario was that we only used Part (B). In Part (B), only the gait
was used. Figure 9 shows the complete algorithm of the classification. In principle, we distinguished
between the signals of the Euler angles and the linear acceleration. First, we removed the jumps
within a signal of the Euler angles and then calculated the derivation of the signal. This made the
signal more comparable. These steps were not necessary for linear acceleration. Then, we set the
signals to a uniform length. This was necessary so that the signals could be interpreted by CNN later
during classification. After resampling, we calculated the wavelet transformation for each individual
signal. We used the resulting scalograms for the classification. In the classifications, we analyzed
three different cases. At first, we classified each signal individually by CNN. This allowed us to
show which axis of the sensors was very important. In the second case of classification, we used the
three best signals for a multi-channel CNN. The third case was that we used the three best signals for
classification by voting.

linear

acceleration

Euler

angles

Figure 9. Classification process for detecting motor dysfunctions in arm swinging.
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4. Results

4.1. Parts (A) and (B) of TUG

4.1.1. Single Layer

To find out which sensor data were particularly useful for classification, we first separated
all signals from each other. The results are shown in Table 3. In the table, we applied three-fold
cross-validation to the sensor data. Furthermore, we optically separated the results from the Euler
angles and the linear acceleration with a double line. For each signal, we calculated the precision,
specificity, recall, F1-score, and accuracy. In every cell, we show the mean x̄ = 1

N ∑N
i=1 xi, i ∈ {1, 2, ..., N}

plus or minus the standard deviation s =
√

1
1−N ∑N

i=1(xi − x̄)2, i ∈ {1, 2, ..., N}, where N is the length
of the signal. The columns with the best results are highlighted with bold. It can be seen that the x-axis
of the Euler angle and the x-axis of the linear acceleration produced the best results. Furthermore,
it can be seen that the z-axis of the Euler angle and linear acceleration provided the lowest results.

Table 3. Results of a single signal by CNN classification. Parts (A) and (B) of the TUG test are used.

Signal Sensitivity Specificity Recall F1-Score Accuracy

x Euler angles 0.918 ± 0.071 0.939 ± 0.043 0.887 ± 0.085 0.898 ± 0.017 0.928 ± 0.009
y Euler angles 0.891± 0.014 0.874± 0.016 0.775± 0.072 0.829± 0.047 0.882± 0.009
z Euler angles 0.57± 0.505 0.844± 0.186 0.606± 0.527 0.587± 0.514 0.821± 0.173
x linear acceleration 0.907 ± 0.101 0.901 ± 0.048 0.846 ± 0.036 0.873 ± 0.046 0.908 ± 0.015
y linear acceleration 0.857± 0.031 0.888± 0.056 0.841± 0.066 0.848± 0.032 0.877± 0.027
z linear acceleration 0.795± 0.118 0.863± 0.044 0.74± 0.043 0.761± 0.037 0.841± 0.009

4.1.2. Signal Combination

To get better results in the classification, we decided to combine the individual layers. For the
combination, there were several possibilities. On the one hand, it was possible to use an ensemble
classifier like voting. On the other hand, we could use a multi-channel CNN. In Table 3, the x-axis of
the Euler angles and the linear acceleration produced the best results. The third was the Euler angles
of the y-axis. In this section, we used these three signals to improve our results. The results are shown
in Table 4. We again used three-fold cross-validation for our results. Each cell represented the result as
x̄± s, as introduced in Section 4.1.1.

Table 4. Classification results by combining the x- and y-axis of Euler angles and the x-axis of linear
acceleration. Parts (A) and (B) of the TUG test are used.

Layer Sensitivity Specificity Recall F1-Score Accuracy

3 channel CNN 0.934± 0.047 0.932± 0.013 0.899± 0.026 0.928± 0.043 0.933± 0.024
3 signal voting 0.915± 0.078 0.9± 0.02 0.821± 0.052 0.862± 0.026 0.902± 0.018

Table 4 shows the results of the signal combination classification. The three channel CNN achieved
better results than the three signal voting. The three channel CNN was also better than any signal in
Table 3.

4.2. Part (B) of TUG

4.2.1. Single Layer

In this section, we present our results if only Part (B) of the TUG test was used for classification.
In Table 5, you can see the results for a CNN classification for each axis of the sensors. As in Section 4.1.1,
we used three-fold cross-validation and calculated the average x̄ plus or minus the standard deviation
s. The best results for each sensor and each column are marked with bold. Like the analysis of
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the complete TUG test, the x-axis provided the best results for Euler angles and linear acceleration.
However, the results were not as accurate as in Section 4.1.1.

Table 5. Results of a single signal by CNN classification. Only Part (B) of the TUG test is used.

Signal Sensitivity Specificity Recall F1-Score Accuracy

x Euler angles 0.873± 0.027 0.899± 0.043 0.822± 0.088 0.844± 0.039 0.887± 0.018
y Euler angles 0.793± 0.037 0.855± 0.016 0.756± 0.046 0.772± 0.006 0.831± 0.015
z Euler angles 0.763± 0.202 0.943± 0.049 0.904± 0.088 0.809± 0.099 0.821± 0.138
x linear acceleration 0.909± 0.012 0.9± 0.044 0.822± 0.088 0.862± 0.053 0.903± 0.032
y linear acceleration 0.804± 0.041 0.832± 0.043 0.705± 0.078 0.748± 0.033 0.821± 0.024
z linear acceleration 0.563± 0.496 0.794± 0.147 0.508± 0.468 0.52± 0.453 0.774± 0.111

4.2.2. Signal Combination

Table 6 shows the results of the signal combination of Part (B) of the TUG test. For the results,
three-fold cross-validation was applied and for each cell, and the average x̄ plus or minus the standard
deviation s was calculated. The three signal voting performed best. However, the results were
marginally better than the single signal CNN classification in Table 5. Furthermore, the results were
not as good as if the complete TUG test was used for the classification.

Table 6. Classification results by combining the x- and y-axis of Euler angles and the x-axis of linear
acceleration. Only Part (B) of the TUG test is used.

Layer Sensitivity Specificity Recall F1-Score Accuracy

3 layer CNN 0.888± 0.045 0.847± 0.027 0.677± 0.065 0.766± 0.042 0.856± 0.024
3 signal voting 0.914± 0.03 0.901± 0.043 0.822± 0.088 0.863± 0.04 0.903± 0.024

5. Discussion

In Tables 3 and 5, the x-axis always shows the best results. The x-axis corresponds to the movement
in the sagittal plane. According to the literature, the most important characteristics of human gait are
also present in this plane [31,32]. For this reason, it is a logical conclusion that the features with the
highest significance are present on this axis.

We presented our results in the previous section. We compared the results when the complete
TUG test, Parts (A) and (B), was used for the classification, as well as if we only used the gait, Part (B),
for the classification. The results showed that for the classification of motor dysfunctions, the gait alone
gave quite good results with an accuracy of 90.3%, but when looking at the complete test, we obtained
even better results with an accuracy of 93.3%. From this, we concluded that the complete TUG test
was necessary for the analysis of motor dysfunctions.

Furthermore, we classified each signal separately. During the classification, we found out that the
x-axis of the Euler angle and linear acceleration gave the best results, independent of whether Parts (A)
and (B), as well as only Part (B) were used for the classification. From this, we concluded that the
x-axis was the most relevant.

The conclusion was that we obtained better results through the combination of the signals
compared to single signals. In the classification of Parts (A) and (B), the three-channel CNN proved to
be the best solution. When classifying with only Part (B), voting was the best choice.

Table 7 shows our classification results compared to the corresponding state-of-the-art works.
Our results were comparable to the results from large, expensive, and stationary video based systems.
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Table 7. Comparison of classification results with other works.

Reference Description Accuracy

Our System IMU sensors 93.3%
[12] Kinect camera 90%
[17] Kinect, Bayesian network 93.4%
[18] Kinect and e-Motion capture program 96.23%
[15] Gyroscope 90%

Our system delivered better results than the wearable system that also classified the data [15].
We could not make a comparison with the other works because they focused on a statistical evaluation
of the data. CNN in combination with wavelet transformations was a powerful technique for arm
swing analysis.
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a b s t r a c t 

Gait deviations such as asymmetry are one of the characteristic symptoms of motor dysfunctions that 

contribute to the risk of falls. Our objective is to measure gait abnormalities such as asymmetry of the 

lower limbs in order to evaluate the diagnosis more objectively. For the measurement we use inertial 

measurement unit (IMU) sensors and force sensors, which are integrated in wristbands and insoles. To 

extend the battery life of wearable devices, we only save data of the activity gait within the wearables. 

Therefore we perform activity recognition with a smartphone. Using convolutional neural network (CNN) 

we achieved an accuracy of 94.7 % of the activity gait recognition. Before recording we synchronize the 

wearable sensors and reach a maximum latencies of 3 ms . Before the analysis of the symmetry we detect 

the strides by using a CNN with an accuracy of 98.8 %. For the symmetry evaluation we used dynamic 

time warping (DTW). The DTW enables us to calculate symmetry of the complete time series of human 

gait. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the greatest achievements of modern medicine is that 

the life expectancy of the global population is continuously in- 

creasing [1] . However, it also creates new problems. The epidemi- 

ology of old-age diseases is a significant part of the problem. These 

include, for example, Parkinson’s disease (PD) [2] . PD is often com- 

bined with motor dysfunctions. For this reason, it is essential to 

assess the patient’s motor skills at regular intervals. Furthermore, 

the measurement of motor skills can be used for conclusions about 

the progress of the disease and treatment success. Bradykinesia, 

rigor, tremor, postural instability, and walking disorders are typi- 

cal symptoms of the disease. The aim of our cooperation with the 

Niederlausitz Clinic Senftenberg is to measure gait abnormalities in 

PD, such as the asymmetry of the upper and lower limbs in daily 

life. Thus, the diagnosis can be more objective and therapy more 

effective. Furthermore, the continuous measurements should give 

the patient feedback to the therapy success and thus can be moti- 

vated for the therapy. For this reason, we created a mobile system 

that provides objective measurement data to the physician to be 

able to evaluate motor disease quantitatively. Gait deviations such 

as asymmetry are one of the characteristic symptoms of patients 
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(T. Steinmetzer). 

with PD that contribute to the risk of falls [3] . For the continuous 

measurement of motion in daily life, we propose the use of wear- 

able microcontroller-based systems. For this reason, we propose a 

system that: 

1. uses sensors that the user can comfortably carry the whole day 

2. records and transmits data in an energy-saving manner 

3. synchronizes the arm and leg sensors in real-time 

4. filters out the activity gait from any other movement activity 

5. analyses the symmetry of legs individually and to each other 

This work is divided into seven sections. Relevant works for 

this paper are introduced in section II. Section III describes the 

developed hardware, the test performed by the users. All carried 

out procedures we need for the analysis of the A-symmetry are 

described in Section IV. The results achieved are presented in 

Section V. Section VI indicates the discussion and Section VII the 

conclusion and further development. 

2. Related works 

For the symmetry analysis of the gait in daily life, time series 

must be recorded with the wearable sensors. Therefore it is 

necessary to extract the activity gait from all activities such as 

sitting, standing, climbing stairs, or walking. To be able to calculate 

symmetry values from this time series, the system must work 

synchronously. 

https://doi.org/10.1016/j.micpro.2020.103118 

0141-9331/© 2020 Elsevier B.V. All rights reserved. 
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2.1. Sensors 

Already in 1992, motion and symmetry of the lower extrem- 

ities were recorded with cameras and markers [4] . Technologi- 

cal advances and the cost-effective development of depth cameras 

have opened up new possibilities for motion analysis by Kinect 

from 2010. The depth camera extended the RGB camera. Thus the 

gait could be analyzed with new methods [5] . The disadvantage of 

camera systems is that they are stationary. 

In the following years, the use of gyroscopes, accelerometers 

magnetometers, and force sensors were further developed, and the 

popularity of the sensors increased, as the many smartphones and 

game console controllers are equipped with these sensors. The ad- 

vantage of these sensors is that these are integrated into small de- 

vices and that they are wearable. Thus it is possible to analyze the 

human gait independent of location. These sensors are often used 

to determine strides or activities [6–15] . 

2.2. Activity recognition 

Many smartphones have a gyroscope, accelerometer, and mag- 

netometer. In many studies, this has been used to try to identify 

the activities of people [13–15] . One possibility to implement this 

is to choose a fixed window width and collect all statistical values 

for this window, which serve as a characteristic for the classifica- 

tion. The use of a neural network has proven to be useful here 

[14,15] . Another possibility is the use of CNN’s [13] . 

Activity detection is usually used to reflect the time a person 

has been moving throughout the day. This is sufficient for an ac- 

tivity estimation of a person in general. The quality of smartphone 

sensors is adequate to estimate the activity of a person. 

2.3. Symmetry 

The situation is different when wearables assess diseases 

related to movement disorders. In this case, IMU sensors are at- 

tached to specific joints or integrated into clothing. To measure and 

store the time series of gait wearable containing microcontrollers 

in combination with IMU sensors are often used [6–11,16–22] . 

In most cases, the motion of the lower extremities is measured 

[6–11,22] . Thereby conclusions can be made about the stride 

length, cadence, stride duration, gait phases, and symmetry 

[6,10,11,23] . 

There are different methods for the calculation of symmetry. 

One approach is that different calculated features like step length, 

step duration, standing time, or swing time of the legs are put into 

relation [16,20,24] . The disadvantage of this method is that only 

average values of the calculated characteristics for the gait can be 

assessed, but not the entire time series. This is different for sta- 

tionary systems, which are camera-based. With these systems, the 

complete body can be recorded synchronously [17] . Both types of 

symmetry evaluation are useful. However, in our opinion, a direct 

comparison of the time series is most useful, because differences 

in the related arms and strides can be measured directly. 

The symmetry of arms and legs, as well as the symmetry of 

the upper and lower limbs with each other, investigate only a few 

papers [25–27] . Changes of interlimb coordination in individuals 

with PD and healthy older adults while systematically manipulat- 

ing walking speed are compared to determine the impact of PD 

symptoms on interlimb coordination [25] . Markers were placed on 

the foot, heel, ankle, knee, hip, thigh, wrist, elbow, shoulder, and 

head. A point estimate of the relative phase (PERP) between body 

segments was calculated by using the moment at which the posi- 

tive maxima were reached for the angle of each body segment. To 

assess change in asymmetry over time is the objective in [26] . The 

changes in movements are assessed by a single neurologist special- 

izing in movement disorders. A robust ordinal logistic regression 

model that includes a control for clustering due to repeated obser- 

vations within-person for evaluating the relative change in asym- 

metry is used. 

Another system focuses on the study of the impact of PD on 

synkinesias (i.e., the symmetry of movement) during walking, and 

the effect of medication on the gait symmetry [27] . Every patient 

was tested and measured using IMU-sensors in his ON and OFF 

state. The trend symmetry value is calculated as a ratio of the 

variabilities of two eigenvectors, which are calculated from the 

kinematic motion data of the left and right limb. An up-to-date 

overview of symmetry analysis systems for movements is shown 

in [28] . 

The use of identical time points for the determination of 

A-symmetry is of the highest importance. That means data 

transmission has to be synchronized. 

2.4. Synchronization 

The video-based systems have a synchronized recording of 

all extremity movements. The disadvantage is that the measure- 

ments cannot be carried out in daily life. Only camera systems 

for laboratory measurements were found in the literature [27] . 

Wearable systems, in contrast, could be an alternative for making 

symmetry measurements of gait in daily life, but they are not 

time-synchronized. 

To closing this gap, the microcontrollers must be synchronized 

with each other. Several approaches have already been pursued 

this. A possible solution is to build up a sensor network in which 

the sensors are connected by wires [27] . Another work presents a 

system where a docking station serves as a charging station and 

for synchronization [18] . The docking station can synchronize four 

wearable sensors, but it has a time drift after a longer runtime. 

Others use the system of MbientLab [20] . To determine the sym- 

metry of the gait, we need four synchronized sensors (one at each 

limb). In earlier works, we had tested the system of Mbientlab, but 

it can only record three synchronized sensors [20] . 

Advantages and disadvantages of current systems: 

– Camera-based systems can measure synchronized time series of 

each limb. But they are stationary and therefore not suitable for 

measurements in everyday life. 

– A smartphone is useful for detecting gait activities. But it’s too 

imprecise for clinical measurement. 

– IMU systems are an alternative to camera-based systems. But 

they have to be synchronized. 

To calculate the gait symmetry of time series using wearable 

sensors in daily life, we propose a system with two wristbands 

with IMU sensors, two insoles each with one IMU and ten force 

sensors, and a smartphone for activity detection. For the measure- 

ments, we synchronize all sensors if the activity walk is detected in 

daily life. We propose a method to calculate the symmetry from all 

measured values of the gait cycle instead of the symmetry calcu- 

lation with parameters. For our prototype, we only used data from 

healthy subjects. 

3. Material 

3.1. Hardware 

3.1.1. Smartphone 

For activity detection, we used various smartphones and tablets 

with the Android operating system. To be independent of a spe- 

cific device. However, the device must be able to provide linear 

acceleration and rotation data. We recorded both sensor data with 
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Fig. 1. Insole with force and IMU sensor. 

Fig. 2. Wristband and IMU sensor. 

a frequency of 50 %. To make the system energy efficient, we use 

smartphones for activity detection. Only if the smartphone has de- 

tected the activity gait , the wearables record the data. 

3.1.2. Wearables 

For the motion measurement, we use Bosch BNO055 IMU sen- 

sors consisting of a gyroscope, accelerometer, and magnetome- 

ter [29] . The sensors are mounted in insoles, see Fig. 1 , and in 

wristbands, see Fig. 2 . The BNO 055 sensor has an integrated co- 

processor for the sensor fusion that calculates the absolute orienta- 

tion and linear acceleration. So angle velocity, acceleration, quater- 

nions, Euler angles, and linear acceleration values are received with 

100 Hz . For force measurement, we use ten FSR 402 force sensors 

in the insoles [30] . Furthermore, the natural rolling motion can be 

measured by the horizontal arrangement of the sensors. The par- 

allel arrangement of the sensors should later make it possible to 

calculate the balance, see (b) in Fig. 1 . The insoles were printed 

with a 3D printer. We used flexible material to achieve a lower 

bias by using the insoles. To get a lower bias and higher comfort 

by a foreign insole, we made the insole out of flexible material. 

3.2. Data set 

3.2.1. Activity recognition 

In this data set, we use recordings of 20 healthy subjects to test 

the system. For this propose, we developed an Android App. The 

subjects specified the start, end, and type of activity via the App 

before each recording. We recorded linear acceleration and rotation 

data of the Android operating system with a frequency of 50 Hz . 

The users had to specify in which activity they performed. In to- 

tal the following activities were recorded gait, cycling, go stairs, ly- 

ing, sitting, standing, smartphone lying around (table or desk), smart- 

phone in use (writing a message or play a game), and use transport 

(drive by car or train). We have reduced the problem to a binary 

problem and use in the following only the classes gait and other . 

The class other contains the activities cycling, go stairs, lying, sit- 

ting, smartphone lying around, smartphone in use, standing, and use 

transport . 

3.2.2. Daily life 

For the daily life data set, we have a total of 7 recordings of 7 

different healthy persons. The age of the persons was between 25 

and 54 years. The persons passed the following test: 

1. sitting on a chair for 1 minute 

2. stand up and standing for 1 minute 

3. walking for 1 minute 

4. ascending stairs over three floors 

5. descending stairs over three floors 

6. walking for 1 minute 

7. standing for 1 minute in front of the chair 

8. sit down 

9. sitting on a chair for 1 minute 

4. Methods 

4.1. Methodology 

The whole process for the recognition of gait data is based on 

the communication between our Android App and four wearable 

devices (two wristbands and two insoles). Fig. 3 shows the pro- 

cess. We have separated the functional tasks of the smartphone 

and wearables with a dotted line. However, the wearables work 

only as slaves, so the smartphone must always send a signal for 

starting a function. For this reason the tasks Stop Recording, Data 

Transmission, Synchronization and Start Recording are involved by 

both devices. 

At the beginning of the workflow, we make an activity recogni- 

tion. Thus, we want to distinguish the activity gait again, the activ- 

ity other . The activity detection is designed to keep the wearable 

sensors in standby mode until the activity gait is detected. This ac- 

tivity detection extends the usage time of the wearable devices. 

When a person does the activity gait , the app checks if a 

recording is in process. If not, the wearable devices have first syn- 

chronized, and then the recording of the movement starts. When 

Fig. 3. Process of synchronize, record, and evaluate data. 
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Fig. 4. Schema of the CNN layers for activity recognition. 

the activity other as gait has been detected, and the recording is 

in process, the recording stopped, and the data transmitted to the 

smartphone. 

For the symmetry calculation, we need a more accurate detec- 

tion of the strides than with the activity recognition. For this rea- 

son, we perform a stride detection by using CNN to detect individ- 

ual strides of the foot. After that, the symmetry of the strides can 

be calculated. 

4.2. Activity recognition 

To enable energy-efficient use of the wearable devices, they 

are only powered when they are in use. The energy-efficient use 

means that the wearable devices only have to be switched on dur- 

ing recording. For this reason, we decided to use a binary activ- 

ity classifier in the smartphone device. This classifier enables us to 

distinguish the activity gait from other like cycling, go stairs, lying, 

sitting, smartphone lying around, smartphone in use, standing, and 

use transport. 

For the activity detection, we use data of the linear acceleration 

and rotation data of the Android operating system (OS) at a fre- 

quency of 50 Hz . As features, we use a fixed window width of 10 s 

and an overlap of 50 %. We use as input the x-, y-, and z- axis of 

the linear acceleration and rotation data of the complete window 

as input for a 1D CNN classifier. Fig. 4 shows the design of the 

CNN. We chose CNN because other researchers have also achieved 

good results with CNN [13,14] . 

For the construction of the model, we use the activation func- 

tion rectified linear unit (ReLU) function except for the output 

layer. The first layer is a convolutional layer with 300 filters and a 

kernel size of 9. Next is a max pooling with a size of 5 and a drop- 

out with 0.2. Then follows another convolution layer with 100 fil- 

ters and a kernel size of 7. Then again, a max pooling with a size 

of 5 and a drop-out with a probability of 0.25. Next comes a flat- 

ting layer. In the following, there are different dense layers with 

30, then 10, and finally 50 neurons. The last layer is the output 

layer, which uses a sigmoid function as the activation function. 

For training, we have separated the data by persons. This en- 

sures that the same person is not included in the training and 

test data set. We split the data that 66 % (13 subjects) are used 

for training, and 34 % (7 subjects) for testing. During training, we 

use different epochs and batch sizes. In our case, the setting of 100 

epochs and 100 batch sizes has proven good results. 

4.3. Synchronization 

4.3.1. Process 

The synchronization takes place according to the following 

scheme, see Fig. 5 . The master device is the smartphone, and the 

slaves are the four wearable devices. 

Fig. 5. Process of synchronization. 
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1. The master sends an empty Bluetooth packet to the first slave 

(reference slave) and the second slave. 

2. Each slave replies with its device time (milliseconds since 

power-on) as soon as it receives the packet of the master. 

3. The master receives the responses and measures the time dif- 

ference between them. 

4. To avoid random response times (e.g., caused by physical influ- 

ences), the process is repeated multiple times. 

5. The median is the time difference between the reception of the 

packets by the reference slave and the second slave. 

6. The master calculates the offset of the second device (see for- 

mula 2) and sends it to the second device. 

7. Now, the second slave knows its offset compared to the refer- 

ence slave. 

8. Steps 1 to 7 are repeated with the first slave and the third slave. 

9. Steps 1 to 7 are repeated with the first slave and the fourth 

slave. 

As a result, we get the offsets between the reference device 

and the other three measuring devices. The four measuring de- 

vices record data synchronously. Unfortunately, a drift can occur 

between the devices. To prevent this, the synchronization is re- 

peated before each recording. 

4.3.2. Verification test setup 

To be able to measure the Bluetooth latency correctly, we have 

wired the microcontrollers to each other. Two microcontrollers are 

connected by wire using their serial output and input. The output 

pin of one device is connected with the input pin of the other de- 

vice and vice versa. In the beginning, the outputs are set to ”low”. 

One of the two devices now initiates a ”high” output and starts 

a timer. The other device registers this event by reading a ”high”

input and answers to the first device by setting its output pin to 

”high”, too. The first device stops the timer as soon as it registers 

a ”high” input. According to repeated measurements, the serial la- 

tency is lower than 1 ms Because this latency measurement does 

not influence the synchronization latency, it is ignored in the fol- 

lowing section. 

4.3.3. Latency bluetooth 

In the next step, we measure the latency and offset of the An- 

droid OS to send a Bluetooth packet to the microcontrollers. Fur- 

thermore, we also measure the time at which packets are received 

if the microcontrollers have sent them. For the measurement of the 

offset between the microcontrollers, we use the test setup from 

Section 4.3.2 . For the test setup, the microcontrollers (M1) and 

(M2) were placed at the same distance to the Android smartphone 

(A) so that the same signal strength exists for all devices. Other- 

wise, this can corrupt the result. The results of the measurement 

can be seen in Table 1 . The first and second columns A send M1 

and A send M2 are the time stamps of the Android OS in mil- 

liseconds ( ms ) when the commands were executed. Diff 1 is the 

difference in ms between column (AsendM2) − (AsendM1) . The RL 

column is the wired offset between the two microcontrollers mea- 

sured using the method in the 4.3.2 section. This offset is the real 

offset. R1 and R2 are the timestamps in ms of the received Blue- 

tooth packets of the microcontrollers. The last column l reflects the 

difference of the columns R 2 − R 1 in ms . This offset, the Android 

OS uses to calculate the device offsets. Perfect synchronization is 

achieved when RL = l. 

The measurement was repeated three times. Therefore each 

measurement is separated in the table by a double line. The 

columns RL and l show a correlation to each other. For this rea- 

son, it was written in bold. 

The Table 1 shows that the packets are sent with different pri- 

orities by the Android OS. Thus the column Diff 1 does not corre- 

late with RL . The values of the three measurements of A send M1 

and A send M2 by Pearson correlation give the following results 

0.034, -0.272, -0.617. This means that there is no correlation. On 

Table 1 

Latency between Android and two microcontrollers between sending and receiving time for three different executions. A send M1 and A 

send M2 are the timestamps when the commands are executed by the Android OS. Diff 1 is the difference of (A send M2) − (A send M1) . RL 

is the wired latency between both microcontrollers when receiving the packets. R1 and R2 are the times when the Android OS has received 

the packets from the microcontrollers. l is the difference of R 2 − R 1 . Bold shows the correlation between wired l and calculated l . 

A send M1 A send M2 DIFF 1 RL R 1 R 2 l 

1552473386320 1,552,473,386,332 12 23 1,552,473,386,373 1,552,473,386,396 23 

1552473402974 1,552,473,402,985 11 27 1,552,473,403,025 1,552,473,403,054 29 

1552473411800 1,552,473,411,804 4 23 1,552,473,411,851 1,552,473,411,872 21 

1552473415820 1,552,473,415,829 9 30 1,552,473,415,863 1,552,473,415,897 24 

1552473418088 1,552,473,418,100 12 28 1,552,473,418,131 1,552,473,418,160 29 

1552473420520 1,552,473,420,527 7 28 1,552,473,420,564 1,552,473,420,593 29 

1552473422598 1,552,473,422,604 6 31 1,552,473,422,638 1,552,473,422,672 34 

1552473424513 1,552,473,424,523 10 29 1,552,473,424,557 1,552,473,424,585 28 

1552473426282 1,552,473,426,295 17 28 1,552,473,426,327 1,552,473,426,355 28 

1552473428201 1,552,473,428,209 8 28 1,552,473,428,239 1,552,473,428,267 28 

1552475001845 1,552,475,001,849 4 43 1,552,475,001,888 1,552,475,001,929 41 

1552475013106 1,552,475,013,111 5 19 1,552,475,013,159 1,552,475,013,179 20 

1552475014617 1,552,475,014,624 7 33 1,552,475,014,658 1,552,475,014,730 72 

1552475015951 1,552,475,015,964 13 32 1,552,475,015,996 1,552,475,016,029 33 

1552475017448 1,552,475,017,460 12 23 1,552,475,017,495 1,552,475,017,517 22 

1552475018910 1,552,475,018,920 10 24 1,552,475,018,958 1,552,475,018,979 21 

1552475020302 1,552,475,020,309 7 31 1,552,475,020,346 1,552,475,020,380 34 

1552475021704 1,552,475,021,713 9 31 1,552,475,021,751 1,552,475,021,780 29 

1552475022982 1,552,475,022,995 13 29 1,552,475,023,021 1,552,475,023,049 28 

1552475024662 1,552,475,024,670 8 28 1,552,475,024,709 1,552,475,024,737 28 

1552477976517 1,552,477,976,523 6 42 1,552,477,976,564 1,552,477,976,605 41 

1552477978212 1,552,477,978,222 10 29 1,552,477,978,258 1,552,477,978,287 29 

1552477979992 1,552,477,980,003 11 16 1,552,477,980,046 1,552,477,980,067 21 

1552477981607 1,552,477,981,616 9 31 1,552,477,981,651 1,552,477,981,685 34 

1552477983153 1,552,477,983,165 12 31 1,552,477,983,193 1,552,477,983,227 34 

1552477984567 1,552,477,984,581 14 31 1,552,477,984,611 1,552,477,984,645 34 

1552477986029 1,552,477,986,036 7 43 1,552,477,986,078 1,552,477,986,120 42 

1552477987445 1,552,477,987,455 10 28 1,552,477,987,486 1,552,477,987,515 29 
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the other hand, the columns l and RL correlate strongly by Pearson 

correlation with the following values 0.743, 0.580, 0.982. 

This can be explained by the fact that the microcontrollers M1 

and M2 process the commands sequentially, and thus all com- 

mands are equally authorized. Furthermore, it is possible to receive 

signals at the app in real-time because there are several threads 

available. 

Out of this knowledge, we can say the receive time of the 

smartphone is the offset in which the microcontrollers sent the 

signal. We use this fact for synchronization. In summary, we can 

note that when sending packages of two microcontrollers at the 

same time, these also arrive simultaneously. 

4.3.4. Synchronization algorithm 

Based on the data from sections 4.3.2 and 4.3.3 we can now 

propose a solution to synchronize two microcontrollers via Blue- 

tooth. The following steps describe the procedure of the algorithm: 

1. The Android device A sends a packet to microcontrollers M 1 

and M 2. 

2. M 1 sends a packet to A . The packet holds a timestamp of the 

system time t 1 directly before sending it. 

3. M 2 sends a packet to A . The packet holds a timestamp of the 

system time t 2 directly before sending it. 

4. A receives a packet from M 1 at a real-time R 1. 

5. A receives a packet from M 2 at a real-time R 2. 

With this information we can calculate our receive latency l in 

formula (1) where c represents an possible error. 

l = R 2 − R 1 + c (1) 

To determine the offset o from M 2 to M 1, we use the formula 

(2) . 

o = (t2 − t1) + l (2) 

Of course, in the proposed algorithm, errors can occur, which 

are the result of disturbances in the magnetic field or other phys- 

ical effects. Therefore we perform the algorithm eleven times and 

use the median of the latency to determine the best synchroniza- 

tion between the devices M 1 and M 2. 

4.4. Stride detection 

After the activity recognition algorithm has identified the 

phases of the activity gait , we use the transmitted, synchronized 

sensor data of the wearable devices to perform a stride detection. 

In the version of our proposed system, we used only the insole 

data for the stride detection and symmetry calculation. To train 

the classifier, first, we manually labeled the data After labeling, 

the data was normalized and resampled to a uniform length. Then, 

we trained our CNN to get a model for stride detection.To detect 

strides from the daily life data set, we use automatic framing to 

extract fragments from the recording. By fragments, we mean dif- 

ferent parts of a recording. These fragments we normalized and 

resampled. The CNN model classifies these fragments for possible 

strides. This process is shown in Fig. 6 . 

Fig. 6. Process of stride detection with CNN. 

4.4.1. Normalization 

We use a Min-Max-Normalization to normalize all data be- 

tween range 0 to 1. The normalization were executed for every 

x i ∀ i ∈ { 0 , . . . , N − 1 } of the feature X , where N is the length of 

feature X , see formula 3 . The result is a normalized vector X 

norm 

with the values x norm 

i 
∈ X norm . The functions min ( X ) and max ( X ) re- 

turn the minimum and maximum of the feature X . 

x norm 

i = 

x i − min (X ) 

max (X ) − min (X ) 
(3) 

4.4.2. Resampling 

For using the CNN classifier, we need a uniform signal length. 

Therefore we transform all signals to a uniform length of 100 val- 

ues. The Python function resampling in the library SciPy use a Fast 

Fourier Transformation (FFT) based method [31] . 

4.4.3. CNN 

To build the CNNs model, we use a sequential network, see 

Fig. 7 . 

As the activation function, we use the rectified linear unit 

(ReLU) function with except at the output layer. As input we use 

the x-, y-, and z-axis of the linear acceleration and Euler angles. 

The first one-dimensional convolutional layer creates 100 filters 

with a kernel size of 3. To reduce the filters, we apply a max pool- 

ing with a pool size of 3 and a drop-out with probability 0.2. After 

the second convolutional layer consists of 100 filters and a kernel 

size of 5, this is followed by max-pooling again with a pool size of 

3. A drop-out follows them with probability 0.2, where single con- 

nections are randomly deleted [32] . After that, we have a flattening 

layer to adjust the dimensions for the neural network (NN). Next, 

we have two dense layers. The first has 20 neurons, and the second 

30 neurons. Last we have an output layer with a sigmoid function 

as the activation function. As a result, we obtain a probability of 

the signal being a stride. 

4.4.4. Automatic framing 

A real signal cannot be manually labeled. Thus, an algorithm 

should be that task. For this reason, we use automatic framing. 

The automatic framing creates dynamic window sizes, which we 

use as input for the CNN in the stride detection. For detection, we 

use dynamic window sizes. The average duration of a stride is 1.1 s 

[33] that is equivalent to 110 values of the data. Therefore we use 

an average window size of 110 ± 30 values. The window w can 

Fig. 7. Schema of the CNN layers. 
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Fig. 8. Predicted strides. 

have the following sizes 

w = { 80 , 90 , 100 , 110 , 120 , 130 , 140 } . (4) 

From the signal to be classified, windows with all sizes are used. 

All dynamic windows are resampled to a uniform length of 100 

values and normalized with the functions from Section 4.4.1 and 

4.4.2 . If the CNN detects a stride with more than 70 % probabil- 

ities within a window, it is saved in a list. The stride with the 

highest probability from the list is only used and defined a valid 

stride. We mark the absolute minimum within a stride ± 10 ms . 

To distinguish the strides from each other, we use overlapping, see 

Eq. 5 . Overlapping allows us to separate new strides from others. If 

the predicted stride lies within this range, it is marked as detected 

stride, see Fig. 8 . 

ov erlapping = det ect ed stride + (a v erage stride · 0 . 8) (5) 

4.5. Symmetry 

The calculation of the symmetry of two strides is possible by 

the previously performed synchronization in Section 4.3 . To calcu- 

late the symmetry, we first do a stride detection like in Section 4.4 . 

So that we always have a fixed reference timestamp (e.g., right 

foot) point within a stride. We use the time stamp of the minimum 

inside a stride, see Fig. 9 . 

To measure the symmetry distance between the time series 

(strides) of the right and left foot, we use the DTW. DTW has be- 

Fig. 9. Orientation data of the left and right foot with the corresponding minima. 

Fig. 10. DTW Symmetry result at person 1 with a distance value of 130.52. 

come very well established in the analysis of time-series signals. 

In contrast to Euclidean distance, this method can compensate for 

time warping. Based on this flexibility, it is a popular method for 

the analysis of time series in medicine, science, and industry. The 

idea with DTW is that not the distance of two indices is calcu- 

lated, but the distance to the most fitting one. Thus allows com- 

paring time series with each other if they recorded with different 

duration or frequency. 

In the first step, the algorithm calculates distances between the 

time series ( x i ) 1 ≤ i ≤ n (e.g. orientation angle of the right foot) of 

length n and ( y j ) 1 ≤ j ≤ m 

(e.g. orientation angle of the left foot) of 

length m , resulting in a n times m matrix D = D i j containing dis- 

tances D ij between y j and x i . The distances within the matrix are 

calculated by the sum of the current distance and the minimum 

distance of a previous neighboring element, see Eq. 6 [34] . 

D i j = (x i − y j ) 
2 + min { D i −1 , j , D i −1 , j−1 , D i, j−1 } (6) 

A distance D ij of 0 means 100 % symmetry of the measured val- 

ues. The higher the value D ij , the lower is the symmetry of the two 

feet, see Fig. 10 . 

5. Results 

5.1. Activity recognition 

For recognition of activity gait , we have performed a five-fold 

cross-validation. The results are shown in Table 2 . For the results 

we have specified precision, recall, F1-Score and Accuracy. For each 

column we have given the average value and standard deviation. 

5.2. Synchronization 

In the Tables 3 , 4 , and 5 the measured values of a synchroniza- 

tion are shown. In the tables, the first column is a numbered index. 

It is followed by the receiving time of the reference microcontroller 

and the third column of the to be synchronized microcontroller. 

Column four is the calculated latency of both microcontrollers, and 

column five is the wired measured latency over the wires. The last 

column shows the error from calculated to measured latency. For 

the most accurate timestamp, we calculate the median of the la- 

tencies l . 

Table 2 

Results for recognition of activity gait . 

precision recall F1-Score accuracy 

CNN 0.958 ± 0.031 0.683 ± 0.023 0.884 ± 0.011 0.947 ± 0.005 
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Table 3 

Latency between microcontroller M1 and M2. 

index M1 M2 l wired l c 

1 1,552,919,014,830 1,552,919,014,946 116 81 35 

2 1,552,919,014,999 1,552,919,015,047 48 8 40 

3 1,552,919,015,776 1,552,919,015,154 -622 -665 43 

4 1,552,919,015,838 1,552,919,015,897 59 55 4 

5 1,552,919,015,950 1,552,919,015,972 22 20 2 

6 1,552,919,016,005 1,552,919,016,014 9 6 3 

7 1,552,919,016,055 1,552,919,016,064 9 7 2 

8 1,552,919,016,098 1,552,919,016,106 8 5 3 

9 1,552,919,016,147 1,552,919,016,156 9 8 1 

10 1,552,919,016,191 1,552,919,016,199 8 4 4 

11 1,552,919,016,240 1,552,919,016,262 22 21 1 

Table 4 

Latency between microcontroller M1 and M3. 

index M1 M3 l wired l c 

1 1,552,919,585,669 1,552,919,585,703 34 34 0 

2 1,552,919,585,731 1,552,919,585,728 -3 -5 2 

3 1,552,919,585,770 1,552,919,585,781 11 8 3 

4 1,552,919,585,824 1,552,919,585,827 3 4 1 

5 1,552,919,585,862 1,552,919,585,877 15 16 1 

6 1,552,919,585,924 1,552,919,585,914 -10 -8 2 

7 1,552,919,585,961 1,552,919,585,978 17 17 0 

8 1,552,919,586,024 1,552,919,586,014 -10 -8 2 

9 1,552,919,586,061 1,552,919,586,078 17 17 0 

10 1,552,919,586,124 1,552,919,586,114 -10 -9 1 

11 1,552,919,586,161 1,552,919,586,171 10 9 1 

Table 5 

Latency between microcontroller M1 and M4. 

index M1 M4 l wired l c 

1 1,552,988,793,978 1,552,988,794,019 41 41 0 

2 1,552,988,794,060 1,552,988,794,056 -4 5 9 

3 1,552,988,794,110 1,552,988,794,119 9 8 1 

4 1,552,988,794,154 1,552,988,794,145 -9 -4 5 

5 1,552,988,794,203 1,552,988,794,199 -4 -5 1 

6 1,552,988,794,227 1,552,988,794,236 9 9 0 

7 1,552,988,794,258 1,552,988,794,262 4 3 1 

8 1,552,988,794,295 1,552,988,794,313 18 17 1 

9 1,552,988,794,359 1,552,988,794,348 -11 -10 1 

10 1,552,988,794,395 1,552,988,794,404 9 11 2 

11 1,552,988,794,451 1,552,988,794,442 -9 -8 1 

Table 6 

Latency between microcontroller M1 and M2. 

index l c 

3 -622 43 

8 8 3 

10 8 4 

6 9 3 

7 9 2 

9 9 1 

5 22 2 

11 22 1 

2 48 40 

4 59 4 

1 116 35 

In the Tables 6 , 7 , and 8 the latencies are shown in sorted and 

the median is printed bold. All three tables provide a positive error 

of 1 ms to the reference device. Thus, the total latency is 1 ms . In 

other measurements, we have a total error of 3 ms . Since we record 

the sensor data with 100 Hz , this error is tolerable for symmetry 

calculation. 

Table 7 

Latency between microcontroller M1 and M3. 

index l c 

6 -10 2 

8 -10 2 

10 -10 1 

2 -3 2 

4 3 1 

11 10 1 

3 11 3 

5 15 1 

7 17 0 

9 17 0 

1 34 0 

Table 8 

Latency between microcontroller M1 and M4. 

index l c 

9 -11 1 

4 -9 5 

11 -9 1 

2 -4 9 

5 -4 1 

7 4 1 

3 9 1 

6 9 0 

10 9 2 

8 18 1 

1 41 0 

Table 9 

Daily life stride detection. 

recall precision F1-Score Accuracy 

CNN 0.978 0.978 0.974 0.988 

Table 10 

Results of the symmetry calculation. 

subject number strides DTW median 

1 90 130.52 

2 45 309.91 

3 86 576.42 

4 37 351.40 

5.3. Stride detection 

For stride detection, we have performed a seven-fold cross- 

validation. The results are shown in Table 9 . For the results we 

have specified precision, recall, F1-Score and Accuracy. For each 

column we have given the average value and standard deviation 

[35] . 

5.4. Symmetry 

The Table 10 shows the results for the symmetry of four differ- 

ent healthy persons. The first column is the subject number. Col- 

umn two is the number of strides used to calculate symmetry. In 

the last column, the median distance of the DTW is shown. All 

persons had no motor dysfunctions. Person 3 has the largest sym- 

metry deviation. An earlier operation of one knee probably causes 

these motor dysfunction. The median distance of DTW from per- 

son 3 is shown in Fig. 11 . In contrast, the median distance of DTW 

of person 1 in Fig. 10 is smaller than that of person 3. Thus, the 

gait symmetry of person 1 is more accurate than that of person 3. 
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Fig. 11. DTW Symmetry result at person 3 with a distance value of 576.42. 

6. Discussion 

We have presented a system for real-time analysis of gait sym- 

metry that can be used comfortably by people in their daily life 

and is independent of the location. The system can be used for 

measurement of human gait. 

By developing an Android app for activity recognition, we were 

able to show that a smartphone can distinguish between activity 

gait and other activities such as standing, lying, cycling, or writing 

messages. With an accuracy of 94.7 % we obtain similar results to 

other researchers [13–15] . Activity recognition allows us to switch 

on the wearable sensors, and data recording only activity gait is 

recognized. This method is an energy-efficient solution. 

Furthermore, we present a solution to synchronize several 

wearables sensors. In literature, this problem has already been rec- 

ognized, and there were several approaches. However, the problem 

is that the devices of Mbientlab can only synchronize three devices 

[20] . We synchronize four wearables for four extremities. Another 

solution was to synchronize the time during charging by cable [18] . 

However, this solution has the disadvantage that in more extended 

use, a drift of the clock occurs. We synchronize the wearables be- 

fore each recording (recognition of activity gait ). This way, we start 

each recording without drift of the clock. 

In most of the papers dealing with symmetry, they use the 

stride length, stride duration, and different gait phases to calculate 

the ratio of the left and right leg [6,10,11,23] . In contrast, our sym- 

metry calculation considers the complete time series. However, the 

synchronization of the sensors is essential for this. For stride detec- 

tion, we use a combination of automatic framing and CNN. The use 

of CNN’s for stride detection has proven to be very useful for us. 

Other work has already been able to benefit from the technology 

[35] . The symmetry of the legs is analyzed with DTW. 

7. Conclusion 

With our work, we were able to present a complex system that 

can analyze the human gait symmetry with the help of wearable 

devices in daily life. For future work, we want to calculate further 

features from the time series. By synchronizing the wearable 

devices, more fundamental symmetry characteristics can be cal- 

culated, like cadence, cyclogram, mono pedal phase, or bipedal 

phase. Other features such as symmetry ratio, symmetry index, 

gait asymmetry, symmetry angle, stride length, or stride height 

are also possible. These additional features provide a wide range 

of features to evaluate human gait. With all these features, more 

accurate classification of PD stage in the use of machine learning 

should be possible. 
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Abstract—We present a new method for detecting gait disor-
ders according to their stadium using cluster methods for sensor
data. 21 healthy and 18 Parkinson subjects performed the Time
Up and Go test. The time series were segmented into separate
steps. For the analysis the horizontal acceleration measured by
a mobile sensor system was considered. We used Dynamic Time
Warping and Hierarchical Custering to distinguish the stadiums.
A specificity of 92% was achieved.

Index Terms—DTW, clustering, parkinson disease, time series

I. INTRODUCTION

This work is intended to make a further contribution to the
analysis of gait disorders in Parkinson’s disease. The aim is to
support the treating physician in diagnosis and in assessing the
severity of the movement disorder. The use of different sensors
has proven itself useful in the analysis of the human gait for
many years [1]. In the first years, single or multiple cameras
were often used to identify individuals by their gait [2] [3].
The Dynamic Time Warping (DTW) method has proven to be
particularly effective in distinguishing the gait of individuals
[4] [5]. Cameras were also used for the analysis of gait
changes in neurodegenerative diseases. However, the accuracy
is only sufficient to distinguish between healthy and sick
persons [6]. In recent years sensors acceleration-, gyroscope-
and magnetometersensors (inertial measurement unit - IMU)
have been used for the analysis of movement disorders in
Parkinson’s disease [7] [8]. In [7] the Kalman filter is used to
identify the gait asymmetry. The Fast Fourier transformation
is used in [8] to detect the freezing phases. Newest research
again uses DTW e.g. for the segmentation of gait sequences
[9] and for recognition of asymmetry in gait [10]. For the
detection of freezing phases, which occur especially during
turns, the turn was analyzed [8] [9]. In this paper, the stage
of the movement disorder is not to be determined on the basis
of individual characteristics such as asymmetry or freezing,
but rather as the combination of all single disorders. The IMU
sensors have been mounted on the shoe [7] or on the ankle

Fig. 1. Insole for gait analysis

[8] [9] [10]. In this case, the sensor may slip during walking.
This makes it difficult to detect the time point when the foot
touches the ground. For a more robust step detection we have
integrated the sensor into an insole.
In this work we use minimalistic sensor data to perform clus-
tering based on the Parkinson’s stadium. For this reason, we
use only one axis from an insole. A problem with Parkinson’s
disease is that the stadium is often subjectively assessed. For
this reason, we want to develop a system that supports the
treating physician in his diagnosis and provides empirical
measurement data. Because each person needs different length
for each step, it would be impossible to work with the
correlations without compressing or stretching the data, which
would mean data manipulation. The advantage of the DTW
algorithm is that you can measure a distance number between
two time series of different lengths. The smaller this distance
is, the more similar these time series are. The DTW algorithm
searches for the ideal path between two time series.
This work is divided into four sections. Section II describes
the developed hardware, the test performed by the patient
and the procedures used for preprocessing, step analysis and
clustering. The results achieved are presented in Section III.
Section IV indicates the conclusions and further developments.
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II. METHODS

A. Hardware

For data recording we use insoles produced by a 3D printer
(see Fig. 1). Each insole is equipped with a microcontroller
MetaMotionR from Mbientlab. This microcontroller has a
gyroscope and an acceleration sensor (Bosch BMI160) and
a magnetic sensor (Bosch BMM150). A major advantage of
the microcontroller is that it integrates a sensor fusion from
Bosch. This gives us absolute angles and linear acceleration.
We use the insoles in combination with an Android app to
control the recording and data transfer via Bluetooth. Euler
angle and linear acceleration are recorded at 100 Hz. The data
are saved to a flash memory and transferred to the Android
app only after the exercise has been completed.

B. Test set-up

We used the Timed Up and Go test (TUG) [11], a stan-
dardized test for the Unified Parkinson’s Disease Rating Scale
(UPDRS) [12]. This test is used to estimate the motoric
dysfunction of Parkinson’s patients. It starts by sitting on a
chair with armrests and a backrest. On command the subject
stands up and walks 10m straight to a mark, turns around at
the mark, walks back to the chair and sits down again.

C. Data

We collected 53 recordings from 21 healthy subjects (HS)
and 45 recordings from 19 subjects suffering from Parkinson’s
disease. Out of the Parkinson patients 8 subjects were in
hospital, denoted by PPH (hospital) in the following, and
10 were recruited form a self-help group, denoted by PPS
(self-help group) in the following. For PPH the Parkinson
level usually evaluated by a medical specialist on the scale
of Hoehn-Yahr [13]. Levels between 1 and 3 were observed.
For PPS patients the level was unkown, denoted by nan in
table III and Fig. 7.

D. Preprocessing

For the present analysis we used only the data of the left
insole, namely the linear acceleration of the y-axis (see Fig.
2), i.e. the forward acceleration (see Fig. 1). Step segmenta-
tion was performed with an algorithm detecting minima and
maxima within a window of 100 frames. A step consists of
a minimum followed by a maximum. We use this pattern to
recognize the steps. The result of the step detection can be
seen in Fig. 2. We have set the starting point of a step to the
maximum of a step (black line). In addition, we have removed
all steps exceeding or falling below 4 times the interquartile
for step length.

For the later analysis in section III results we use the
complete straight walking phase. Start or end points of the
complete straight walking phase analysis are marked with red
lines in Fig. 2, and are obtained by adding the average duration
of a step to the first or last detected maximum, respectively.

Fig. 2. Acceleration data of the y-axis and segmentation of the steps. The
black lines indicate the start and end of a step. The red lines indicate the start
and end of a recording.

E. Dynamic Time Warping

Standard distance measures like Euclidean distance are not
suitable to measure the distance between two time series,
since the measured values are displaced in time or the time
series have a different length. For this reason we used the
DTW algorithm. The DTW searches for the best path within a
distance matrix. We use DTW to measure the distance between
two steps or two recordings.

In the first step, the algorithm calculates distances between
the time series (xi)1≤i≤n of length n and (yj)1≤j≤m of length
m, resulting in a n times m matrix D = Dij containing
distances Dij between yj and xi. The distances within the
matrix are calculated by the sum of the current distance and
the minimum distance of an previous neighboring element, see
formula 1 [14].

Dij = |xi − yj |+min{Di−1,j , Di−1,j−1, Di,j−1} (1)

The resulting distance of the two time series can be found
at the position Dnm in the matrix. The path leading from D11

to Dnm can be traced in the matrix D. Such a path is shown
for a single step in Fig. 3. The figure shows one step for a HS
(green) and one step for a PPS (blue). The black lines indicate
the connections of both time series for distance formation. It
can be seen that the PPS needs more time to complete the
step. However, the pattern of both steps is very similar.
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Fig. 3. The graphic shows one period of each step of HS and PPS with the
path of the DTW algorithm.

F. Clustering

We performed hierarchical clustering [15]. Based on the
distance of all single steps between two persons. This distance
is obtained as the distance of all steps during the TUG
for the two recordings. We performed hierarchical clustering
according to the Complete-Linkage method as well as to the
Single-Linkage method and use the agglomerative algorithm.

In Fig. 4 the result of clustering for steps with Single-
Linkage of both subjects from section II-D can be seen. For
easy understanding the start, turn and end of the recording are
omitted (see Fig. 5, white line) and only single steps were
used here. Here can be seen clearly that two large clusters
were formed and one smaller one.

The result is shown in Fig. 5. The green and red clusters
show that the persons can be clearly distinguished from each
other. Furthermore, even incorrectly interpreted steps in the
blue cluster could be marked. These data are outliers from
segmentation. Only one step from HS is in the wrong cluster.

III. RESULTS

We clustered the data with the hierarchical clustering
method using the complete linkage and the DTW for distance
measurement. For the analysis we used all persons and the
complete walking phase (see Fig. 2, red lines). The result is
shown in the dendrogram in the appendix in Fig. 7. In the
dendrogram we indicate the distances of the DTW algorithm of
the clusters to each other on the y-axis. On the x-axis we have
marked each data set with the id and the Parkinson stadium.
This should help to understand better the coherence of the
data. We have chosen the distance of 440 as the threshold
for the forming of the clusters, because the results are very

Fig. 4. The dendrogram shows the results of the cluster analysis. The steps
of a healthy person (green) and a person with Parkinson’s disease (red) were
clustered. It can clearly be seen that two large clusters form and contain one
smaller with outliers (blue).

Fig. 5. Cluster result of HS (top), PPS (bottom) colored. the green cluster
steps of HS; red steps of PPS; outliers are blue.

plausible in this constellation. This threshold gives us seven
clusters as a result.

Table I and II show confusion matrices for the result of the
clustering of persons (Table I) or recordings (Table II).

In Table I we have placed a confusion matrix for which
only id’s within clusters were displayed. It can be seen that
the sensitivity is 57% and the specificity 90%. At first glance,
the sensitivity appears very low. However, it must be taken
into account that the majority of the test cases are PPS,
which were very well adjusted and showed hardly any motor
dysfunctions (Table III). The specificity, on the other hand, is
very convincing.

The confusion matrix in Table II contains all recordings
used during clustering. Here the sensitivity is 55% and the
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TABLE I
CONFUSION MATRIX BY ID

PD stadium positiv PD stadium negativ
∑

Clustering positiv 11 2 14
Clustering negativ 8 19 32∑

19 21 46

TABLE II
CONFUSION MATRIX BY RECORDING

PD stadium positiv PD stadium negativ
∑

Clustering positiv 25 4 29
Clustering negativ 20 49 69∑

45 53 98

specificity 92%. The same reasoning applies here as to the
confusion matrix in Table I.

In the following we will take a closer look at the individual
clusters (see Table III) and discuss conspicous assingments
of data sets to clusters. The first green cluster contains mostly
HS and PPS which do not have any particular motor disorders.
The only exception is data set (24,2.0), a PPH, recorded on
the day of his discharge from hospital. As a result the PPH
was optimally adjusted to the new medication and had no
symptoms. The second (red) cluster consists of HS and PPS,
which have no particular motor abnormalities. Here the PPH
(7, 3.0) stands out in particular. At the time of admission, this
subject was newly adjusted to his medication. As a result, it
was overdosed and over-movable. The third (turquoise) cluster
consists only of test subjects of stadium one. According to our
records, the subject (10, 0) has a moderate tremor, but was set
to Parkinson’s stage zero by the medical doctor treating him.
Cluster four (violet) contains only Parkinson’s patients of stage
3, where the HS (31, 0) is noticeable. The HS has artrosis in
the legs and therefore had a high motor dysfunction. In clusters
5 blue, 6 yellow and 7 black all PPH are assigned to the correct
cluster. In the appendix in Table III all results are summarized
again.

In Fig. 6 all time series data of the respctive clusters are
displayed jointly. The coincidence of pattern and time required
to complete the TUG test within a cluster can be recognized
in these diagrams.

IV. CONCLUSION

Finally it can be concluded that the sensor insole used
for this study is very well suited for measuring motor
dysfunctions. Hierachical clustering in combination with
Single-Linkage and DTW is useful for detecting outliers
within a recording. Hierachical clustering in combination
with Complete-Linkage and DTW makes a clear distinction
between subjects and the stadium of gait disorder. We also
demonstrated that the linear acceleration data at a rate of
100Hz are sufficient to draw conclusions about a person’s
motor health. With this data rate it is theoretically even possi-
ble to evaluate the data in real time. It proved to be sufficient

Fig. 6. Time series of the clusters separately according to their assignment

to use only data collected from one foot to distinguish the
different levels of gait disorder. Further improvements could

Authorized licensed use limited to: BTU Cottbus-Senftenberg. Downloaded on July 22,2020 at 17:05:10 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
OUTSTANDING SUBJECTS

(Id, Stadium) Cluster Symptome
(48, nan) 1 no information about symptoms;

fast-moving;
no apparent gait disorder

(28, nan) 1 no information about symptoms;
fast-moving;

no apparent gait disorder
(24, 2) 1 light Hypokinesis ;

Tremor slightly dominant on the right;
light Postural instability

new setting of medication
recording on day of discharge from hospital

(51, nan) 1 Tremor hand right;
no apparent gait disorder

(50, nan) 2 no information about symptoms;
no apparent gait disorder

(8, 1) 2 Rigor ;
Tremor

(7, 3) 2 Over-movable due to overdosing;
(47, nan) 2 no information about symptoms;

no apparent gait disorder
(10, 0) 3 moderate tremor;

Stadium 0 by doctor
(29, nan) 4 self-help group;
(49, nan) 4 self-help group;

light Tremor left
medium postural instability

(19, nan) 4 self-help group;
Tremor left

(31, 0) 4 artrosis in the legs;

be achieved by using additional sensor data such as absolute
angles and pressure data as well as by using the sensor
data of both feet. Other possible classifications are k-Nearest-
Neighbor or Neural Networks and so on. In addition, the
number of dimensions could also be increased for practical
use in order to boost the recognition rate.
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for Gait and Arm Swing Analysis. In Wavelet Transform and Complexity, Inte-
chOpen: 2019.

[Chen2011] Chen, X., & Dai, W. (2011). Maximum entropy principle for uncertain
variables. International Journal of Fuzzy Systems, 13(3), 232-236.

[Chelius2011] Chelius, G., Braillon, C., Pasquier, M., Horvais, N., Gibollet, R. P., Espiau,
B., & Coste, C. A. (2011). A wearable sensor network for gait analysis: A six-
day experiment of running through the desert. IEEE/ASME Transactions On
Mechatronics, 16(5), 878-883.

217

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI160-DS000-07.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI160-DS000-07.pdf


[Chen2018] Chen, H., Liu, X., & Zhao, G. (2018, August). Temporal Hierarchical
Dictionary with HMM for Fast Gesture Recognition. In 2018 24th International
Conference on Pattern Recognition (ICPR) (pp. 3378-3383). IEEE.

[Chollet2015] Chollet, F., Keras. 2015. Available online: https://keras.io (accessed
on 11 10 2019).

[Clemens2019] Clemens, S., Kim, K. J., Gailey, R., Kirk-Sanchez, N., Kristal, A., & Gau-
naurd, I. (2019). Inertial sensor-based measures of gait symmetry and repeatability
in people with unilateral lower limb amputation. Clinical Biomechanics.

[Crea2014] Crea, S., Cipriani, C., Donati, M., Carrozza, M. C., & Vitiello, N. (2014).
Providing time-discrete gait information by wearable feedback apparatus for lower-
limb amputees: usability and functional validation. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 23(2), 250-257.

[Crenshaw2006] Crenshaw, S. J., & Richards, J. G. (2006). A method for analyzing joint
symmetry and normalcy, with an application to analyzing gait. Gait & posture,
24(4), 515-521.

[Dempsey2018] Dempsey, A. F., Pyrznawoski, J., Lockhart, S., Barnard, J., Campagna,
E. J., Garrett, K., ... & O’Leary, S. T. (2018). Effect of a health care professional
communication training intervention on adolescent human papillomavirus vaccina-
tion: a cluster randomized clinical trial. JAMA pediatrics, 172(5), e180016-e180016.

[Dennis2016] Dennis, S. (2016). Secondary prevention of chronic health conditions in
patients with multimorbidity: what can physiotherapists do?.

[Diaz2020] Dı́az, S., Stephenson, J. B., & Labrador, M. A. (2020). Use of Wearable Sensor
Technology in Gait, Balance, and Range of Motion Analysis. Applied Sciences,
10(1), 234.

[Domhardt2019] Domhardt, M., Geßlein, H., von Rezori, R. E., & Baumeister, H. (2019).
Internet-and mobile-based interventions for anxiety disorders: A meta-analytic
review of intervention components. Depression and anxiety, 36(3), 213-224.

[Dranca2018] Dranca, L., de Mendarozketa, L.D.A.R., Goñi, A., Illarramendi, A., Gomez,
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